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Abstract

We consider Brownian diffusions on the real line, interacting through rank-dependent
drifts. It is known that in the mean-field limit, such particle systems behave like
independent copies of a so-called nonlinear diffusion process. We prove a similar
asymptotic behaviour at the level of stationary distributions. Our proof is based on
explicit expressions for the Laplace transforms of the stationary distributions of both
the particle system and the nonlinear diffusion process, and yields convergence of
the marginal distributions in Wasserstein distances of all orders. We highlight the
consequences of this result on the study of rank-based models of equity markets, such
as the Atlas model.
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1 Introduction

1.1 Rank-based interacting diffusions

Let b : [0, 1] → R be a continuous function, and take a real number σ 6= 0. For all
n ≥ 2, consider the system of rank-based interacting diffusions, or particles, defined by

∀i ∈ {1, . . . , n}, dXn
i (t) = bn

 n∑
j=1

1{Xn
j (t)≤Xn

i (t)}

dt+ σdWi(t), (1.1)

where (W1(t), . . . ,Wn(t))t≥0 is a standard Brownian motion in Rn, and for all k ∈
{1, . . . , n},

bn(k) := n

∫ k
n

v= k−1
n

b(v)dv = n

(
B

(
k

n

)
−B

(
k − 1

n

))
, B(u) :=

∫ u

v=0

b(v)dv.

By the Girsanov theorem, the stochastic differential equation (1.1) possesses a unique
weak solution, and actually a unique strong solution [21]. It describes the evolution
of n Brownian particles on the real line, such that the particle with k-th rank in the
increasing order of positions has a drift bn(k). This is an instance of a system of competing
particles [16, 1, 17, 18].
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Chaoticity of the stationary distribution of rank-based interacting diffusions

Assume that the law of the vector of initial positions (Xn
1 (0), . . . , Xn

n (0)) is chaotic,
that is to say that it behaves like independent copies of a scalar random variable X(0)

when n grows to infinity (see Definition 1.3 below). Then it is a classical result for
such kind of particle systems that the chaoticity of the initial positions is propagated by
the temporal evolution (1.1), in the sense that the processes (X1

n(t))t≥0, . . . , (X
n
n (t))t≥0

behave themselves like independent copies of a scalar diffusion process (X(t))t≥0. The
latter process can be explicitly identified, it is the unique weak solution to the nonlinear
(in McKean’s sense [14]) stochastic differential equation{

dX(t) = b(Ft(X(t)))dt+ σdW (t),

Ft(x) = P(X(t) ≤ x).
(1.2)

The expression nonlinearity in McKean’s sense refers to the fact that the drift coefficient
of the stochastic differential equation depends on the law of X(t), which is the effect
of the nonlinearity of the associated Fokker-Planck equation. For this reason, (X(t))t≥0

will be referred to as the nonlinear diffusion process. The propagation of chaos results
for the particle system (1.1) were obtained in [8, 10]; we also refer to [9, 19, 11, 5] for
nonconstant diffusion coefficients.

These propagation of chaos results are not uniform in time, and therefore do not
provide any indication of the link between the long time behaviour of the particle system
and the long time behaviour of the nonlinear diffusion process. The purpose of this
article is to clarify this link by showing that the stationary distribution of a suitably
modified version of the particle system, to which we shall refer as the projected particle
system, is chaotic with respect to the stationary distribution of the nonlinear process,
which completes the picture concerning the long time and large scale behaviour of the
particle system detailed on Figure 1.

Particle system (projected)

Stationary distribution Pn∞

Nonlinear diffusion process

Stationary distribution P∞

n → +∞: propagation of chaos [10]

n → +∞: chaoticity (Theorem 1.5)

t → +∞: ergodicity [15] t → +∞: ergodicity [11]

Figure 1: A summary of convergence results, in long time as well as for a large number
of particles, for the projected particle system.

We first recall what is known on the long time behaviour of both the particle system
and the nonlinear diffusion process in Subsection 1.2, then we state our main result in
Subsection 1.3. We discuss some applications of our result and some possible extensions
related to Stochastic Portfolio Theory in Subsection 1.4, and provide an outline of the
article in Subsection 1.5.

1.2 Projected particle system and nonlinear diffusion process

As was remarked in [10], the solution to (1.1) cannot converge to an equilibrium,
since its projection along the direction (1, . . . , 1) is a Brownian motion with constant drift.
One can however address the long time behaviour of the projection onto the hyperplane

Mn := {(z1, . . . , zn) ∈ Rn : z1 + · · ·+ zn = 0},
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Chaoticity of the stationary distribution of rank-based interacting diffusions

which is orthogonal to the singular direction (1, . . . , 1). The resulting process is called
the projected particle system, it is the Mn-valued diffusion process solving

dZni (t) =

bn
 n∑
j=1

1{Zn
j (t)≤Zn

i (t)}

− b̄
dt+ σ

n− 1

n
dWi(t)−

σ

n

∑
j 6=i

dWj(t), (1.3)

where b̄ := 1
n

∑n
k=1 bn(k) = B(1). Propagation of chaos for the projected particle system

toward the nonlinear diffusion process (1.2) was established in [10].
In order to describe the long time behaviour of both the projected particle system

and the nonlinear diffusion process, we introduce the following set of equilibrium
assumptions:

(E1) b̄ = B(1) = 0,

(E2) B(u) > (1− u)B(0) + uB(1) for all u ∈ (0, 1),

(E3) b(0) > 0 > b(1).

Assumption (E1) concerns the average drift of the centre of mass of the particle system.
Assumption (E2) is usually referred to as the Oleinik E-entropy condition in the literature
of hyperbolic differential equations, and it ensures the existence of an equilibrium for
both the projected particle system and the nonlinear diffusion process. Note that under
Assumption (E1), it simply rewrites B(u) > 0 for all u ∈ (0, 1). Assumption (E3) is
a nondegeneracy condition for the drift of extremal particles, it implies in particular
exponential tails for the stationary distribution of the nonlinear diffusion process.

The following proposition concerning the long time behaviour of the projected particle
system is due to Pal and Pitman [15, Theorem 8]. We use the notation z(1) ≤ · · · ≤ z(n) to
refer to the order statistics of a vector (z1, . . . , zn) ∈ Rn.

Proposition 1.1. Under Assumption (E2), for all n ≥ 2,

Zn :=

∫
z∈Mn

exp

(
2

σ2

n∑
k=1

bn(k)z(k)

)
dz < +∞,

and the probability distribution with density

pn∞(z) :=
1

Zn
exp

(
2

σ2

n∑
k=1

bn(k)z(k)

)
with respect to the surface measure dz on Mn is the unique stationary distribution of
the process (Zn1 (t), . . . , Znn (t))t≥0.

Let us remark that the density pn∞(z) only depends on the order statistics of z, and
therefore is invariant under the permutations of the coordinates of z. As a consequence,
the probability distribution Pn∞ := pn∞(z)dz is a symmetric probability distribution on Rn,
which gives full measure to Mn. Under the assumption that b be decreasing on [0, 1],
which together with Assumption (E1) implies both Assumptions (E2) and (E3), Jourdain
and Malrieu [10, Theorem 2.12] proved that Pn∞ satisfies a Poincaré inequality with a
uniform constant with respect to n, and deduced uniform exponential convergence to
equilibrium for the projected particle system.

On the other hand, the stationary distributions of the nonlinear diffusion process
were described in [11]. This description relies on the function Φ : (0, 1) → R defined
under Assumptions (E1), (E2) and (E3) by

∀u ∈ (0, 1), Φ(u) :=
σ2

2

(∫ u

v=0

v

B(v)
dv −

∫ 1

v=u

1− v
B(v)

dv

)
. (1.4)

ECP 20 (2015), paper 60.
Page 3/20

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v20-4063
http://ecp.ejpecp.org/


Chaoticity of the stationary distribution of rank-based interacting diffusions

It is recalled in Lemma 2.1 below that Φ is the inverse function of the cumulative
distribution function F∞ of a certain probability distribution P∞ on R, which satisfies∫

x∈R
|x|P∞(dx) =

∫ 1

u=0

|Φ(u)|du < +∞,
∫
x∈R

xP∞(dx) =

∫ 1

u=0

Φ(u)du = 0.

We can now describe the set of stationary distributions of the nonlinear process, which
follows from [11, Proposition 4.1].

Proposition 1.2. Under Assumptions (E1), (E2) and (E3), the stationary probability
distributions for the nonlinear process (X(t))t≥0 are the translations of the probability
distribution P∞; that is to say, the probability distributions with cumulative distribution
function x 7→ F∞(x+ x̄) for some x̄ ∈ R.

Ergodicity results for the nonlinear diffusion process were obtained in [10, 11]. Note
that in [11], the stationary distributions are proven to be the translations of the function
Ψ defined on (0, 1) by

∀u ∈ (0, 1), Ψ(u) :=
σ2

2

∫ u

v= 1
2

dv

B(v)
.

Since Φ and Ψ have the same derivative, it is clear that the set of translations of Φ−1

coincides with the set of translations of Ψ−1.
As a consequence of Proposition 1.2, a stationary distribution for the nonlinear

process is characterised by its expectation. In particular, P∞ is the unique centered
stationary distribution of the nonlinear process.

1.3 Main result

In order to state our main result, we first recall the definition of the notion of
chaoticity [20, Definition 2.1, p. 177]. If Pn is a probability distribution on Rn and
k ∈ {1, . . . , n}, we denote by P k,n the marginal distribution of the k first coordinates
under Pn.

Definition 1.3. For all n ≥ 1, let Pn be a symmetric probability distribution on Rn, and
let P be a probability distribution on R. The sequence (Pn)n≥1 is said to be P -chaotic if,
for all k ≥ 1, P k,n converges weakly to the product measure P⊗k.

Recall that we denote by Pn∞ the unique stationary distribution of the projected
particle system; it is the probability distribution on Rn with density pn∞(z) with respect
to the surface measure dz on Mn. On the other hand, P∞ refers to the unique centered
stationary distribution of the nonlinear diffusion process. Of course, our purpose is
to establish the P∞-chaoticity of the sequence (Pn∞)n≥1. We shall actually prove the
convergence of P k,n∞ in a stronger sense than in Definition 1.3; namely, in Wasserstein
distance [22].

Definition 1.4. Let k ≥ 1 and q ∈ [1,+∞). The Wasserstein distance of order q between
two probability distributions µ and ν on Rk is defined by

Wq(µ, ν) := inf
(X,Y )∈Π(µ,ν)

(E[|X − Y |q])1/q
,

where Π(µ, ν) refers to the set of pairs of random variables with marginal distributions µ
and ν.

We can now state our main result.

Theorem 1.5. Under Assumptions (E1), (E2) and (E3), for all k ≥ 1, for all q ∈ [1,+∞),

lim
n→+∞

Wq

(
P k,n∞ , (P∞)⊗k

)
= 0.
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In particular, the sequence of stationary distributions Pn∞ of the projected particle system
is P∞-chaotic.

The proof of Theorem 1.5 relies on the explicit computation of the Laplace transform
of P 2,n

∞ , see Subsection 1.5 below.

Remark 1.6. The definition of Wq depends on the choice of the norm | · | on Rk. But
since all norms are equivalent on Rk, all the associated distances Wq are also equivalent.
Therefore, convergence results for the Wq topology do not depend on the choice of the
underlying norm. In this article, we take the convention that the Wasserstein distance of
order q is defined with respect to the `q norm |x| := (|x1|q + · · ·+ |xk|q)1/q on Rk.

1.4 Discussion and comments

Figure 1 illustrates the fact that, when it makes sense, the interversion of the limits
‘n→ +∞’ and ‘t→ +∞’ is generically correct for functionals of systems of rank-based
interacting particles.

This remark is of interest in the study of rank-based models of equity markets, such
as the Atlas model introduced by Fernholz in the framework of Stochastic Portfolio
Theory [6, 3, 7]. Indeed, in this context, relevant quantities such as capital distribution
curves or growth rates of portfolios are expressed in terms of the stationary distribution
Pn∞ described in Proposition 1.1. The asymptotic behaviour of these quantities, when the
size of the market grows to infinity, were investigated in [3, 4]. On the other hand, it was
suggested in [12] to use the propagation of chaos results of [11] to obtain a functional
description of an infinite market first, and then apply the available ergodicity results on
the nonlinear diffusion process to derive closed formulas for these relevant quantities.
Theorem 1.5 is a first step toward the validation of the equivalence of both approaches,
and we refer to [12] for a detailed account.

The gap process (Y n1 (t), . . . , Y nn−1(t))t≥0 is defined in terms of the particle system by

∀k ∈ {1, . . . , n− 1}, Y nk (t) := Xn
(k+1)(t)−X

n
(k)(t),

where we recall that x(1) ≤ · · · ≤ x(n) refers to the order statistics of the vector
(x1, . . . , xn) ∈ Rn. Note that the gap process can also and indifferently be defined
by replacing the particle system (Xn

1 (t), . . . , Xn
n (t))t≥0 with the projected particle system

(Zn1 (t), . . . , Znn (t))t≥0. This process is of particular importance in Stochastic Portfolio
Theory [6, 3] and under Assumption (E2), its long time behaviour is known to be de-
scribed by an inhomogeneous product of exponentially distributed random variables [15,
Theorem 8]. In the present case, it is straightforward to check that the pushforward
measure of Pn∞ by the application

(z1, . . . , zn) ∈Mn 7→
(
z(2) − z(1), . . . , z(n) − z(n−1)

)
∈ [0,+∞)n−1

is the product measure

qn∞ :=

n−1⊗
k=1

Exp

(
2n

σ2
B

(
k

n

))
.

In view of the discussion above, it is natural to wonder whether Theorem 1.5 has
a natural transcription in terms of the gap process. It actually turns out that the
description of the large scale behaviour of the stationary distribution of the gap process
only follows from elementary observations, and does not rely on Theorem 1.5. First,
the independence structure between the stationary gaps is obviously preserved when
n varies. Second, precise asymptotics for the marginal distribution of each stationary
gap are obtained by studying the behaviour of the quantity 2n

σ2B( kn ) when k varies in
{1, . . . , n− 1} and n grows to infinity. In particular, under Assumption (E3), the first and
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Chaoticity of the stationary distribution of rank-based interacting diffusions

last gaps converge to (nondegenerate) exponentially distributed random variable with
respective parameters 2

σ2 b(0) and − 2
σ2 b(1), while the kn-th gap, with kn/n→ u ∈ (0, 1),

converges to 0 at rate 2n
σ2B(u).

As a possible extension of the present work, it is very natural to address similar
questions for models with a nonconstant diffusion coefficient σ2. On the one hand, the
long time behaviour of the associated nonlinear diffusion process was studied in [11] and
the result is a straightforward extension of Proposition 1.2, up to replacing the definition
of the function Φ with

∀u ∈ (0, 1), Φ(u) :=

∫ u

v=0

σ2(v)v

2B(v)
dv −

∫ 1

v=u

σ2(v)(1− v)

2B(v)
dv.

On the other hand, the stationary distribution of the projected particle system is in
general not explicit, with the notable exception of the case of an affine variance function
σ2(u) = σ2

0 + ρu, with σ2
0 > 0, σ2

0 + ρ > 0. Then [2, Theorem 2, p. 622] implies that
Proposition 1.1 holds true with a stationary density p̂n∞ with respect to the surface
measure on Mn, defined by

p̂n∞(z) :=
1

Ẑn
exp

(
2

σ2
0

n∑
k=1

b̂n(k)z(k)

)
, b̂n(k) := n

 B( kn )

1 + ρ
σ2
0

k+1/2
n

−
B(k−1

n )

1 + ρ
σ2
0

k−1/2
n

 .

Since b̂n(k) cannot be written as the increment on [k−1
n , kn ] of some function B̂, the

extension of Theorem 1.5 to this case is expected to require more involved algebra than
in the present paper. We will therefore not address this extension, but leave it open
for future research. Further generalisations of our results to more elaborated models
could also include hybrid Atlas models [2], systems with asymmetric collisions [13], and
general systems of competing particles [17, 18].

1.5 Outline of the article

In Section 2, we give an explicit expression of the Laplace transform of P∞ and
P 2,n
∞ . In Section 3, we use these expressions to prove the weak convergence of P 2,n

∞
to the product measure (P∞)⊗2, thereby obtaining chaoticity for pairs of particles. It
is a well-known fact that this result is enough to ensure chaoticity for collections of k
particles for arbitrary k ≥ 2, and the strengthening of this result in Wasserstein distance
leading to Theorem 1.5 is detailed in Section 4.

1.6 Notations

Throughout the article, we use the following notations: for all s, t ∈ R, s ∧ t :=

min{s, t}, s ∨ t := max{s, t}, [s]− := 0 ∨ (−s) and [s]+ := 0 ∨ s. Besides, bsc denotes the
integer part of s.

2 Expression of the Laplace transforms

In this section, we obtain explicit expressions for the Laplace transforms of P∞ and
P 2,n
∞ . These expressions are respectively derived in Subsections 2.1 and 2.2.

2.1 Expression of L∞(r)

For all r ∈ R, we denote by

L∞(r) :=

∫
x∈R

exp(rx)P∞(dx)
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the Laplace transform of P∞. Since the inverse of the cumulative distribution function
F∞ of P∞ is Φ, L∞(r) has a natural expression in terms of the function Φ, namely

L∞(r) =

∫ 1

u=0

exp(rΦ(u))du.

In order to study the domain on which L∞ is finite, we first recall a few properties of Φ.

Lemma 2.1. Under Assumptions (E1), (E2) and (E3), the function Φ is C2 and increasing
on (0, 1), and satisfies

Φ(u) ∼ σ2

2b(0)
log(u) when u ↓ 0, Φ(u) ∼ σ2

2b(1)
log(1− u) when u ↑ 1. (2.1)

Besides, it is integrable on [0, 1] and such that∫ 1

u=0

Φ(u)du = 0. (2.2)

Proof. Assumptions (E1) and (E3) together with the continuity of b imply that

• when u ↓ 0, B(u) ∼ b(0)u, with b(0) > 0,

• when u ↑ 1, B(u) ∼ −b(1)(1− u), with b(1) < 0,

and combining these estimates with Assumption (E2), we deduce that the integrals in
the right-hand side of (1.4) are finite, and the function Φ is C2 and increasing on (0, 1),
and satisfies (2.1). The integrability of Φ on [0, 1] follows from (2.1) and the continuity of
Φ on (0, 1), and by the Fubini-Tonelli theorem,∫ 1

u=0

∫ u

v=0

v

B(v)
dvdu =

∫ 1

v=0

v(1− v)

B(v)
dv =

∫ 1

u=0

∫ 1

v=u

1− v
B(v)

dvdu,

whence (2.2).

As a consequence, the point (2.1) ensures that, under the assumptions of Lemma , as
soon as r is taken in the set

V := {r ∈ R : −2b(0)/σ2 < r < −2b(1)/σ2},

then L∞(r) < +∞. We note that V is an open subset of R and contains 0.

2.2 Expression of L2,n
∞ (s, t)

For all (s, t) ∈ R2, we denote by

L2,n
∞ (s, t) :=

∫
z∈Mn

exp(sz1 + tz2)pn∞(z)dz

the Laplace transform of P 2,n
∞ . Its expression is given in the next proposition.

Proposition 2.2. Under Assumptions (E1), (E2) and (E3), for all (s, t) taken in the set

V2 := {(s, t) ∈ V × V : s+ t ∈ V},

there exists n0 ≥ 2 such that, for all n ≥ n0, L2,n
∞ (s, t) is finite and writes

L2,n
∞ (s, t) =

1

n(n− 1)

n∑
i=1

∑
j 6=i

Jni,j(s, t),
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where, for all 1 ≤ i < j ≤ n, Jni,j(s, t) is defined by

i−1∏
k=1

1

1− (s+ t)σ
2

2n
k/n

B(k/n)

j−1∏
k=i

1

1− tσ2

2n
k/n

B(k/n) + sσ
2

2n
1−k/n
B(k/n)

n−1∏
k=j

1

1 + (s+ t)σ
2

2n
1−k/n
B(k/n)

,

while, for all 1 ≤ j < i ≤ n, Jni,j(s, t) is defined by

j−1∏
k=1

1

1− (s+ t)σ
2

2n
k/n

B(k/n)

i−1∏
k=j

1

1− sσ2

2n
k/n

B(k/n) + tσ
2

2n
1−k/n
B(k/n)

n−1∏
k=i

1

1 + (s+ t)σ
2

2n
1−k/n
B(k/n)

.

We note that V2 is an open subset of R2 and contains 0.
The proof of Proposition 2.2 is provided in §2.2.2. We first collect preliminary

estimates in §2.2.1.

2.2.1 Preliminary estimates

Under the assumptions of Proposition 2.2, for all r ∈ V, for all n ≥ 1, for all k ∈
{1, . . . , n− 1}, let us define

f+
k,n(r) := r

σ2

2n

k/n

B(k/n)
, f−k,n(r) := −r σ

2

2n

1− k/n
B(k/n)

,

so that the quantities Jni,j(s, t) introduced in Proposition 2.2 rewrite

Jni,j(s, t) :=

i−1∏
k=1

1

1− f+
k,n(s+ t)

j−1∏
k=i

1

1− f+
k,n(t)− f−k,n(s)

n−1∏
k=j

1

1− f−k,n(s+ t)
if i < j,

Jni,j(s, t) :=

j−1∏
k=1

1

1− f+
k,n(s+ t)

i−1∏
k=j

1

1− f+
k,n(s)− f−k,n(t)

n−1∏
k=i

1

1− f−k,n(s+ t)
if i > j.

In this paragraph, we exhibit upper bounds on the quantities f+
k,n(r) and f−k,n(r), for

r ∈ {s, t, s + t}, which ensure that the quantities Jni,j(s, t) are well defined for n large

enough. We roughly proceed as follows: when k/n is far from 1, then k/n
B(k/n) remains

bounded by above, so that f+
k,n(r) is arbitrarily small for n large enough. On the contrary,

when k/n is close to 1, then

k/n

B(k/n)
' − 1

b(1)(1− k/n)
,

so that

f+
k,n(r) ' −r σ2

2b(1)

1

n− k
,

and the fact that r ∈ V provides natural bounds on the right-hand side. The same ideas
allow to obtain similar bounds on f−k,n(r).

We now give a rigorous formulation of these arguments. Under Assumption (E3), for
all ε > 0 such that ε < b(0) ∧ (−b(1)), we introduce

Vε := {r ∈ R : −2(b(0)− ε)/σ2 < r < 2(−b(1)− ε)/σ2},
Vε2 := {(s, t) ∈ Vε × Vε : s+ t ∈ Vε}.

Similary to V and V2, the sets Vε and Vε2 are open subsets of R and R2 respectively, and
both contain 0. For all r ∈ Vε, we define

α+(r) :=
[r]+σ2

2(−b(1)− ε)
∈ [0, 1), α−(r) :=

[r]−σ2

2(b(0)− ε)
∈ [0, 1).

For δ ∈ (0, 1/2) small enough and depending on ε,
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• for all u ∈ [0, δ], B(u) ≥ u(b(0)− ε),

• for all u ∈ [1− δ, 1], B(u) ≥ (1− u)(−b(1)− ε).

Besides, by Assumptions (E1), (E2) and (E3), the functions u 7→ B(u)/u and u 7→
B(u)/(1 − u) are positive on the respective intervals (0, 1 − δ] and [δ, 1), and have a
positive limit at the respective points 0 and 1. Therefore we have

m−(δ) := inf
u∈[0,1−δ]

B(u)

u
> 0, m+(δ) := inf

u∈[δ,1]

B(u)

1− u
> 0.

The heuristic arguments detailed at the beginning of the subsection translate into
the following precise estimates: fixing (s, t) ∈ Vε2, we have, for all r ∈ {s, t, s+ t}, for all
n ≥ 1, for all k ∈ {1, . . . , n− 1},

f+
k,n(r) = r

σ2

2n

k/n

B(k/n)
≤


[r]+σ2

2nm−(δ)
if k < n(1− δ),

[r]+σ2

2(n− k)

k/n

−b(1)− ε
≤ α+(r)

n− k
if k ≥ n(1− δ).

(2.3)

Similarly,

f−k,n(r) = −r σ
2

2n

1− k/n
B(k/n)

≤


[r]−σ2

2nm+(δ)
if k > nδ,

[r]−σ2

2k

1− k/n
b(0)− ε

≤ α−(r)

k
if k ≤ nδ.

(2.4)

In particular, if n is chosen so that

[s+ t]+σ2

2nm−(δ)
≤ 1

2
,

then we deduce from (2.3) that, for all k ∈ {1, . . . , n− 1},

f+
k,n(s+ t) ≤

{
1/2 if k < n(1− δ),
α+(s+ t) if k ≥ n(1− δ).

Similarly, if n is chosen so that

[t]+σ2

2nm−(δ)
≤ 1− α−(s)

2
,

[t]+σ2

2nm−(δ)
+

[s]−σ2

2nm+(δ)
≤ 1

2
,

[s]−σ2

2nm+(δ)
≤ 1− α+(t)

2
,

then we deduce from (2.3) and (2.4) that, for all k ∈ {1, . . . , n− 1},

f+
k,n(t) + f−k,n(s) ≤


(α−(s) + 1)/2 if k ≤ nδ,
1/2 if nδ < k < n(1− δ),
(α+(t) + 1)/2 if k ≥ n(1− δ).

These results are gathered together in the following lemma.

Lemma 2.3. Let (s, t) ∈ V2. Under the assumptions of Proposition 2.2, there exists ε > 0

such that (s, t) ∈ Vε2. Let δ ∈ (0, 1/2) depending on ε and satisfying the conditions above.
Let us define ᾱ ∈ [1/2, 1) by

ᾱ := max

{
1

2
, α+(s+ t), α−(s+ t),

α+(s) + 1

2
,
α−(s) + 1

2
,
α+(t) + 1

2
,
α−(t) + 1

2

}
.

Then, there exists n0 ≥ 2 such that, for all n ≥ n0, for all k ∈ {1, . . . , n− 1}

max
{
f+
k,n(s+ t), f+

k,n(t) + f−k,n(s), f+
k,n(s) + f−k,n(t), f−k,n(s+ t)

}
≤ ᾱ.
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2.2.2 Computation of L2,n
∞ (s, t)

Let us first note that, since pn∞(z)dz is a symmetric probability distribution on Rn, then
for all symmetric and nonnegative function f : Rn → R,∫

z∈Mn

f(z1, . . . , zn)pn∞(z1, . . . , zn)dz =

∫
z∈Mn

f(z1, . . . , zn)p̃n∞(z1, . . . , zn)dz,

where, for all z = (z1, . . . , zn) ∈Mn,

p̃n∞(z1, . . . , zn) = n!1{z1≤···≤zn}
1

Zn
exp

(
2

σ2

n∑
k=1

bn(k)zk

)
.

Using the symmetry of pn∞(z)dz again, we deduce that, for all (s, t) ∈ V2,

L2,n
∞ (s, t) =

1

n(n− 1)

n∑
i=1

∑
j 6=i

∫
z∈Mn

exp(szi + tzj)p̃
n
∞(z)dz.

Let us now fix i ∈ {1, . . . , n} and j 6= i, and define

Jni,j(s, t) :=

∫
z∈Mn

exp(szi + tzj)p̃
n
∞(z)dz.

Note that, at this stage, nothing prevents Jni,j(s, t) from being infinite. We use the
parametrisation of Mn by the n− 1 coordinates

x1 = z1, . . . , xi−1 = zi−1, xi+1 = zi+1, . . . , xn = zn.

Then Mn is defined by xi = F (x1, . . . , xi−1, xi+1, . . . , xn) in Rn, with

F (x1, . . . , xi−1, xi+1, . . . , xn) := −(x1 + · · ·+ xi−1 + xi+1 + · · ·+ xn),

so that the surface measure writes

dz =
√

1 + |∇F (x1, . . . , xi−1, xi+1, . . . , xn)|2dx1 · · · dxi−1dxi+1 · · · dxn
=
√
ndx1 · · · dxi−1dxi+1 · · · dxn,

therefore we obtain

Jni,j(s, t) =
n!
√
n

Zn

∫
(x1,...,xi−1,xi+1,...,xn)∈Rn−1

exp

txj +
∑
k 6=i

(
2

σ2
(bn(k)− bn(i))− s

)
xk


× 1{x1≤···≤xi−1≤−(x1+···+xi−1+xi+1+···+xn)≤xi+1≤···≤xn}dx1 · · · dxi−1dxi+1 · · · dxn.

We denote S := x1 + · · ·+ xi−1 + xi+1 + · · ·+ xn, and let yk := xk + S, for all k 6= i, in the
right-hand side above. Then we have

1{x1≤···≤xi−1≤−(x1+···+xi−1+xi+1+···+xn)≤xi+1≤···≤xn} = 1{y1≤···≤yi−1≤0≤yi+1≤···≤yn},

and

txj +
∑
k 6=i

(
2

σ2
(bn(k)− bn(i))− s

)
xk = tyj +

∑
k 6=i

(
2

σ2
(bn(k)− bn(i))− s

)
yk

− S

t+
∑
k 6=i

(
2

σ2
(bn(k)− bn(i))− s

) .
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Note that S =
∑
k 6=i(yk − S), which implies S = 1

n

∑
k 6=i yk. Besides,

∑
k 6=i

(
2

σ2
(bn(k)− bn(i))− s

)
=
∑
k 6=i

2

σ2
bn(k)− (n− 1)

2

σ2
bn(i)− (n− 1)s

= −n 2

σ2
bn(i)− (n− 1)s,

since
∑n
k=1 bn(k) = nb̄ = 0 by Assumption (E1). As a consequence,

txj +
∑
k 6=i

(
2

σ2
(bn(k)− bn(i))− s

)
xk =

∑
k 6=i

γk,ni,j (s, t)yk,

where

γk,ni,j (s, t) := −s+ t

n
+

2

σ2
bn(k) + 1{k=j}t.

As a conclusion,

Jni,j(s, t) =
n!
√
n

nZn

∫
(y1,...,yi−1,yi+1,...,yn)∈Rn−1

exp

∑
k 6=i

γk,ni,j (s, t)yk


× 1{y1≤···≤yi−1≤0≤yi+1≤···≤yn}dy1 · · · dyi−1dyi+1 · · · dyn

=
n!
√
n

nZn
J−,ni,j (s, t)J+,n

i,j (s, t),

where J−,ni,j (s, t) is defined by∫ 0

yi−1=−∞

∫ yi−1

yi−2=−∞
· · ·
∫ y2

y1=−∞
exp(γ1,n

i,j (s, t)y1 + · · ·+ γi−1,n
i,j (s, t)yi−1)dy1 · · · dyi−1,

and J+,n
i,j (s, t) is defined by∫ +∞

yi+1=0

∫ +∞

yi+2=yi+1

· · ·
∫ +∞

yn=yn−1

exp(γn,ni,j (s, t)yn + · · ·+ γi+1,n
i,j (s, t)yi+1)dyn · · · dyi+1.

Let n0 ≥ 2 and ᾱ ∈ [1/2, 1) be given by Lemma 2.3. We deduce from the definition
of γk,ni,j (s, t) that, if n ≥ n0, then, for all i, j ∈ {1, . . . , n} such that i 6= j, for all k ∈
{1, . . . , i− 1},

γ1,n
i,j (s, t) + · · ·+ γk,ni,j (s, t) = −(s+ t)

k

n
+

2n

σ2
B

(
k

n

)
=

2n

σ2
B

(
k

n

)
(1− f+

k,n(s+ t))

≥ 2n

σ2
B

(
k

n

)
(1− ᾱ) > 0,

where Assumptions (E1) and (E2) yield B( kn ) > 0; similarly, for all k ∈ {i+ 1, . . . , n},

γk,ni,j (s, t) + · · ·+ γn,ni,j (s, t) = −(s+ t)
n− k + 1

n
+ t− 2n

σ2
B

(
k − 1

n

)
= −2n

σ2
B

(
k − 1

n

)
(1− f+

k−1,n(t)− f−k−1,n(s))

≤ −2n

σ2
B

(
k − 1

n

)
(1− ᾱ) < 0,
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which ensures that J−,ni,j (s, t) and J+,n
i,j (s, t) are finite. By successive integrations, we

obtain

J−,ni,j (s, t) =

i−1∏
k=1

1

γ1,n
i,j (s, t) + · · ·+ γk,ni,j (s, t)

, J+,n
i,j (s, t) =

n∏
k=i+1

−1

γn,ni,j (s, t) + · · ·+ γk,ni,j (s, t)
,

which finally gives the expression

n!
√
n

nZn

i−1∏
k=1

1
−(s+t)k

n + 2n
σ2B( kn )

j−1∏
k=i

1
−tk+s(n−k)

n + 2n
σ2B( kn )

n−1∏
k=j

1
(s+t)(n−k)

n + 2n
σ2B( kn )

for Jni,j(s, t) if i < j, and

n!
√
n

nZn

j−1∏
k=1

1
−(s+t)k

n + 2n
σ2B( kn )

i−1∏
k=j

1
−sk+t(n−k)

n + 2n
σ2B( kn )

n−1∏
k=i

1
(s+t)(n−k)

n + 2n
σ2B( kn )

if i > j.
To complete the proof, we remark that

L2,n
∞ (0, 0) = 1 =

n!
√
n

nZn

n−1∏
k=1

1
2n
σ2B( kn )

,

which allows us to get rid of the constant term n!
√
n

nZn
and to obtain the expected expression

of Jni,j(s, t) in Proposition 2.2, for (s, t) ∈ V2.

3 Convergence of the Laplace transforms

This section is dedicated to the proof of the following result.

Proposition 3.1. Under the assumptions of Proposition 2.2, for all (s, t) ∈ V2,

lim
n→+∞

L2,n
∞ (s, t) = L∞(s)L∞(t).

We proceed in two steps: first, we prove that, for all t ∈ V, the Laplace transform
L1,n
∞ (t) = L2,n

∞ (t, 0) of P 1,n
∞ converges to L∞(t). Second, we check that, for (s, t) ∈ V2, the

difference between L2,n
∞ (s, t) and the product L1,n

∞ (s)L1,n
∞ (t) vanishes. These two steps

are addressed in the respective Subsections 3.2 and 3.3. The preliminary Subsection 3.1
gathers useful elementary results.

3.1 Elementary inequalities

We shall use the following inequalities, which are elementary consequences of the
Taylor-Lagrange inequality.

(TL1) For all α ∈ [0, 1), for all x ∈ [−α,+∞), | log(1 + x) − x| ≤ κ(α)x2, where κ(α) :=
1

2(1−α)2 .

(TL2) For all x, y ∈ R, | exp(x)− exp(y)| ≤ exp(y) (|x− y|+ |R(x− y)|), where the function
R : z 7→ exp(z) − 1 − z is such that, for all C ∈ [0,+∞), for all z ∈ [−C,C],
|R(z)| ≤ 1

2 exp(C)z2.

We also recall that, for all C ∈ [0,+∞),

lim
n→+∞

(
1− C

n

)−n
= exp(C). (3.1)
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3.2 Convergence of L1,n
∞ (t)

Let us fix t ∈ V. By the results of Section 2, there exists n0 ≥ 2 such that, for all
n ≥ n0, the Laplace transform L1,n

∞ (t) = L2,n
∞ (t, 0) of p1,n

∞ is finite and writes

L1,n
∞ (t) =

1

n

n∑
i=1

Ini (t), Ini (t) :=

i−1∏
k=1

1

1− tσ2

2n
k/n

B(k/n)

n−1∏
k=i

1

1 + tσ
2

2n
1−k/n
B(k/n)

.

Let us briefly explain the heuristics of the proof. For u ∈ (0, 1) and i ' nu,

log Ini (t) = −
i−1∑
k=1

log

(
1− t σ

2

2n

k/n

B(k/n)

)
−
n−1∑
k=i

log

(
1 + t

σ2

2n

1− k/n
B(k/n)

)

' tσ2

2n

n−1∑
k=1

1{k/n≤u}
k/n

B(k/n)
+ 1{k/n≥u}

1− k/n
B(k/n)

,

and by a Riemann sum argument, the right-hand side converges to tΦ(u). We deduce
that

L1,n
∞ (t) =

1

n

n∑
i=1

Ini (t) ' 1

n

n∑
i=1

exp

(
tΦ

(
i

n

))
,

which now converges to L∞(t) thanks to a second Riemann sum argument.
To make the whole argument rigorous, we first write

|L1,n
∞ (t)− L∞(t)| ≤

n∑
i=1

∫ i
n

u= i−1
n

|Ini (t)− exp(tΦ(u))|du. (3.2)

Let ε > 0 and δ ∈ (0, 1/2) be given by Lemma 2.3 for the pair (t, 0) ∈ V2. We split the sum
appearing in the right-hand side of (3.2) into boundary terms, corresponding to i ≤ nδ
and i ≥ n(1 − δ), and a central term, corresponding to nδ < i < n(1 − δ). These terms
are addressed separately, in the respective §3.2.1 and §3.2.2.

3.2.1 Boundary terms

For all n ≥ n0,

∑
i≤nδ

∫ i
n

u= i−1
n

|Ini (t)− exp(tΦ(u))|du ≤ 1

n

bnδc∑
i=1

Ini (t) +

∫ δ

u=0

exp(tΦ(u))du.

It is an easy consequence of the result of Subsection 2.1 that the integral in the right-hand
side above vanishes with δ. The purpose of this paragraph is to show that

lim
δ↓0

lim sup
n→+∞

1

n

bnδc∑
i=1

Ini (t) = 0. (3.3)

Let us first assume that t ≥ 0. Then, for all i ≤ nδ,
n−1∏
k=i

1

1 + tσ
2

2n
1−k/n
B(k/n)

≤ 1.

We now use the fact that, if i ≤ nδ, then for all k ∈ {1, . . . , i− 1}, k/n
B(k/n) ≤

1
b(0)−ε , to write

i−1∏
k=1

1

1− tσ2

2n
k/n

B(k/n)

≤
(

1− tσ2

2n(b(0)− ε)

)−(i−1)

≤
(

1− tσ2

2n(b(0)− ε)

)−n
,
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as soon as n is large enough to ensure that tσ2/(2n(b(0)− ε)) < 1. Using (3.1), we deduce
that

lim sup
n→+∞

1

n

bnδc∑
i=1

Ini (t) ≤ δ exp

(
tσ2

2(b(0)− ε)

)
,

and (3.3) easily follows.
Let us now assume that t < 0. Then, for i ≤ nδ, we still have the rough bound

i−1∏
k=1

1

1− tσ2

2n
k/n

B(k/n)

≤ 1,

but we need to be more careful as far as the product

n−1∏
i=k

1

1 + tσ
2

2n
1−k/n
B(k/n)

=

n−1∏
i=k

1

1− f−k,n(t)

is concerned. On the one hand,

log

 n−1∏
k=bnδc+1

1

1− f−k,n(t)

 = −
n−1∑

k=bnδc+1

log
(

1− f−k,n(t)
)
,

and combining Lemma 2.3 with the inequality (TL1) yields

−
n−1∑

k=bnδc+1

log
(

1− f−k,n(t)
)
≤

n−1∑
k=bnδc+1

(
f−k,n(t) + κ(ᾱ)

(
f−k,n(t)

)2
)
.

Since the definition of f−k,n(t) yields

n−1∑
k=bnδc+1

f−k,n(t) = − tσ
2

2n

n−1∑
k=1

1{k/n>δ}
1− k/n
B(k/n)

while (2.4) implies
n−1∑

k=bnδc+1

(
f−k,n(t)

)2

≤ 1

n

(
tσ2

2m+(δ)

)2

,

we deduce that

lim
n→+∞

log

 n−1∏
k=bnδc+1

1

1− f−k,n(t)

 = − tσ
2

2

∫ 1

v=δ

1− v
B(v)

dv.

On the other hand, (2.4) gives

bnδc∏
k=i

1

1− f−k,n(t)
≤
bnδc∏
k=i

1

1− α/k
,

where α := α−(t) < 1. Using (TL1) again, we write

log

bnδc∏
k=i

1

1− α/k

 = −
bnδc∑
k=i

log
(

1− α

k

)
≤
bnδc∑
k=i

(
α

k
+ κ(α)

α2

k2

)

≤ α
bnδc∑
k=i

1

k
+ κ(α)α2π

2

6

≤ α (1 + log(nδ)− log(i)) + κ(α)α2π
2

6
,

ECP 20 (2015), paper 60.
Page 14/20

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v20-4063
http://ecp.ejpecp.org/


Chaoticity of the stationary distribution of rank-based interacting diffusions

so that
bnδc∏
k=i

1

1− f−k,n(t)
≤ K(α)δα

1

(i/n)α
,

where K(α) := exp(α+ κ(α)α2π2/6). Since

lim
n→+∞

1

n

bnδc∑
i=1

1

(i/n)α
=

∫ δ

v=0

dv

vα
=

δ1−α

1− α
,

we conclude that

lim sup
n→+∞

1

n

bnδc∑
i=1

Ini (t) ≤ K(α)

1− α
δ exp

(
− tσ

2

2

∫ 1

v=δ

1− v
B(v)

dv

)
=: M(δ).

To obtain (3.3), we now have to check that M(δ) vanishes with δ. To this aim, we fix
0 < η < b(0) ∧ (−b(1)) such that t ∈ Vη. Since the diverging integral

∫ 1

v=δ
1−v
B(v)dv is

equivalent to − log(δ)/b(0) when δ vanishes, we deduce that, for δ small enough, we have∫ 1

v=δ

1− v
B(v)

dv ≤ − log δ

b(0)− η
,

so that

exp

(
− tσ

2

2

∫ 1

v=δ

1− v
B(v)

dv

)
≤ δ−β , with β :=

−tσ2

2(b(0)− η)
∈ (0, 1).

As a conclusion, M(δ) is of order δ1−β when δ is small, whence (3.3).
The boundary term corresponding to i ≥ n(1 − δ) can be handled by symmetric

arguments.

3.2.2 Central term

We now prove that

lim
δ↓0

lim sup
n→+∞

bn(1−δ)c−1∑
i=bnδc+1

∫ i
n

u= i−1
n

|Ini (t)− exp(tΦ(u))|du = 0. (3.4)

To this aim we fix i ∈ {bnδc+ 1, . . . , bn(1− δ)c − 1} and u ∈ [ i−1
n , in ]. By (TL2),

|Ini (t)− exp(tΦ(u))| ≤ exp(tΦ(u))(|∆|+ |R(∆)|),

where ∆ := ∆1 + ∆2, with

∆1 := −
i−1∑
k=1

log

(
1− tσ2

2n

k/n

B(k/n)

)
− tσ2

2

∫ u

v=0

v

B(v)
dv,

∆2 := −
n−1∑
k=i

log

(
1 +

tσ2

2n

1− k/n
B(k/n)

)
+
tσ2

2

∫ u

v=0

1− v
B(v)

dv.

For all k ∈ {1, . . . , i − 1}, we deduce from Lemma 2.3, the inequality (TL1) and the
estimate (2.3) that

|∆1| ≤

∣∣∣∣∣
i−1∑
k=1

tσ2

2n

k/n

B(k/n)
− tσ2

2

∫ u

v=0

v

B(v)
dv

∣∣∣∣∣+
κ(ᾱ)

n

(
tσ2

2m−(δ)

)2

≤ |t|σ
2

2

i−1∑
k=1

∫ k
n

v= k−1
n

∣∣∣∣ k/n

B(k/n)
− v

B(v)

∣∣∣∣dv +
|t|σ2

2

∫ u

v= i−1
n

v

B(v)
dv +

κ(ᾱ)

n

(
tσ2

2m−(δ)

)2

.
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Chaoticity of the stationary distribution of rank-based interacting diffusions

Using the uniform continuity of v/B(v) on [0, 1− δ], we deduce that for n large enough,
for all k ∈ {1, . . . , bn(1− δ)c − 1},

∀v ∈
[
k − 1

n
,
k

n

]
,

∣∣∣∣ k/n

B(k/n)
− v

B(v)

∣∣∣∣ ≤ δ.
As a consequence,

|∆1| ≤
|t|σ2

2
δ +

1

n

(
|t|σ2

2m−(δ)
+ κ(ᾱ)

(
tσ2

2m−(δ)

)2
)

=: M1(n, δ),

and we note that M1(n, δ) does not depend on i ∈ {bnδc + 1, . . . , bn(1 − δ)c − 1} and
satisfies

lim
δ↓0

lim sup
n→+∞

M1(n, δ) = 0.

We similarly construct M2(n, δ) satisfying the same conditions as M1(n, δ) and such that
|∆2| ≤ M2(n, δ) for n large enough. As a consequence, for δ > 0 small enough and n

large enough, we have |∆1|+ |∆2| ≤ 1, so that (TL2) yields

|Ini (t)− exp(tΦ(u))| ≤ exp(tΦ(u))(M1(n, δ) +M2(n, δ) +
exp(1)

2
(M1(n, δ) +M2(n, δ))2),

and finally

bn(1−δ)c−1∑
i=bnδc+1

∫ i
n

u= i−1
n

|Ini (t)− exp(tΦ(u))|du

≤
(
M1(n, δ) +M2(n, δ) +

exp(1)

2
(M1(n, δ) +M2(n, δ))2

)∫ 1

u=0

exp(tΦ(u))du,

which completes the proof of (3.4).

3.3 Convergence of L2,n
∞ (s, t)− L1,n

∞ (s)L1,n
∞ (t)

Let n0 ≥ 2 be given by Lemma 2.3. Then for all n ≥ n0,

|L2,n
∞ (s, t)− L1,n

∞ (s)L1,n
∞ (t)| =

∣∣∣∣∣∣ 1

n(n− 1)

n∑
i=1

∑
j 6=i

Jni,j(s, t)−
1

n2

n∑
i=1

n∑
j=1

Ini (s)Inj (t)

∣∣∣∣∣∣
≤ 1

n(n− 1)

n∑
i=1

∑
j 6=i

|Jni,j(s, t)− Ini (s)Inj (t)|

+
1

n(n− 1)

n∑
i=1

Ini (s)Ini (t) +
1

n− 1
L1,n
∞ (s)L1,n

∞ (t).

By the results of Subsection 3.2, the last term in the right-hand side above vanishes
when n grows to infinity. The diagonal term 1

n(n−1)

∑n
i=1 I

n
i (s)Ini (t) is addressed in §3.3.1,

and the main term 1
n(n−1)

∑n
i=1

∑
j 6=i |Jni,j(s, t)− Ini (s)Inj (t)| is addressed in §3.3.2.

3.3.1 Diagonal term

In this paragraph, we prove that

lim
n→+∞

1

n(n− 1)

n∑
i=1

Ini (s)Ini (t) = 0. (3.5)
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To this aim, we write, for all i ∈ {1, . . . , n},

Ini (s)Ini (t) =

i−1∏
k=1

1

1− sσ2

2n
k/n

B(k/n)

1

1− tσ2

2n
k/n

B(k/n)

n−1∏
k=i

1

1 + sσ2

2n
1−k/n
B(k/n)

1

1 + tσ2

2n
1−k/n
B(k/n)

,

and note that if st ≥ 0, then Ini (s)Ini (t) ≤ Ini (s+ t), so that (3.5) follows from the results
of Subsection 3.2. On the other hand, if st < 0, say s < 0 < t, then

Ini (s)Ini (t) ≤
i−1∏
k=1

1

1− tσ2

2n
k/n

B(k/n)

n−1∏
k=i

1

1 + sσ2

2n
1−k/n
B(k/n)

.

Let us fix ε > 0 and δ ∈ (0, 1/2) as in §2.2.1. Arguing as in §3.2.1, we obtain

lim sup
n→+∞

1

n

bnδc∑
i=1

i−1∏
k=1

1

1− tσ2

2n
k/n

B(k/n)

n−1∏
k=i

1

1 + sσ2

2n
1−k/n
B(k/n)

≤ exp

(
tσ2

2(b(0)− ε)

)
M(δ) < +∞,

and the same arguments apply to the sum for i ≥ n(1− δ). On the other hand, combining
the estimates (2.3), (2.4) with (3.1) yields

lim sup
n→+∞

bn(1−δ)c−1∑
i=bnδc+1

i−1∏
k=1

1

1− tσ2

2n
k/n

B(k/n)

n−1∏
k=i

1

1 + sσ2

2n
1−k/n
B(k/n)

≤ exp

(
tσ2

2m−(δ)
− sσ2

2m+(δ)

)
.

We deduce that

lim sup
n→+∞

1

n

n∑
i=1

Ini (s)Ini (t) < +∞,

whence (3.5).

3.3.2 Main term

In this paragraph, we finally check that

lim
n→+∞

1

n(n− 1)

n∑
i=1

∑
j 6=i

|Jni,j(s, t)− Ini (s)Inj (t)| = 0. (3.6)

By (TL2), we have, for all i, j ∈ {1, . . . , n} such that i 6= j,

|Jni,j(s, t)− Ini (s)Inj (t)| ≤ Ini (s)Inj (t)
(
|ρni,j(s, t)|+ |R(ρni,j(s, t))|

)
,

where
ρni,j(s, t) := log(Jni,j(s, t))− log(Ini (s)Inj (t)).

Remark that ρni,j(s, t) writes as a sum, for k ∈ {1, . . . , n− 1}, of terms of the form

log(1− f±k,n(s)− f±k,n(t))− log(1− f±k,n(s))− log(1− f±k,n(t)),

where Lemma 2.3 ensures that each term f±k,n(s), f±k,n(t) and f±k,n(s) + f±k,n(t) is lower
than ᾱ < 1. As a consequence, (TL1) yields

| log(1− f±k,n(s)− f±k,n(t))− log(1− f±k,n(s))− log(1− f±k,n(t))|

≤ κ(ᾱ)((f±k,n(s) + f±k,n(t))2 + (f±k,n(s))2 + (f±k,n(t))2)

≤ 3κ(ᾱ)((f±k,n(s))2 + (f±k,n(t))2),
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hence |ρni,j(s, t)| ≤ 3κ(ᾱ){Fni (s) + Fnj (t)}, where

Fni (s) :=

i−1∑
k=1

(
f−k,n(s)

)2

+

n−1∑
k=i

(
f+
k,n(s)

)2

=

i−1∑
k=1

(
sσ2

2n

k/n

B(k/n)

)2

+

n−1∑
k=i

(
sσ2

2n

1− k/n
B(k/n)

)2

.

We deduce from the estimates (2.3) and (2.4) that

Fni (s) ≤ 1

n

((
sσ2

2m−(δ)2

)2

+

(
sσ2

2m+(δ)2

)2
)

+
π2

6

((
|s|σ2

2(b(0)− ε)

)2

1{i≤nδ} +

(
|s|σ2

2(−b(1)− ε)

)2

1{i≥n(1−δ)}

)
,

so that that there exist a nonnegative and finite constant M(δ), that depends on δ, and a
nonnegative and finite constant C, that does not depend on δ, such that

|ρni,j(s, t)| ≤
M(δ)

n
+ C

(
1{i≤nδ} + 1{i≥n(1−δ)} + 1{j≤nδ} + 1{j≥n(1−δ)}

)
.

For n large enough, the right-hand side above is lower that 3C, so that (TL2) yields

|R(ρni,j(s, t))| ≤
exp(3C)

2

{
M(δ)

n
+ C

(
1{i≤nδ} + 1{i≥n(1−δ)} + 1{j≤nδ} + 1{j≥n(1−δ)}

)}2

≤ 3

2
exp(3C)

{
M(δ)2

n2
+ C2

(
1{i≤nδ} + 1{i≥n(1−δ)}

)2
+ C2

(
1{j≤nδ} + 1{j≥n(1−δ)}

)2}
=

3

2
exp(3C)

{
M(δ)2

n2
+ C2

(
1{i≤nδ} + 1{i≥n(1−δ)} + 1{j≤nδ} + 1{j≥n(1−δ)}

)}
.

As a consequence, there exist a nonnegative and finite constant M ′(δ), that depends on
δ, and a nonnegative and finite constant C ′, that does not depend on δ, such that, for n
large enough, for all i 6= j in {1, . . . , n},

|Jni,j(s, t)− Ini (s)Inj (t)|

≤ Ini (s)Inj (t)

{
M ′(δ)

n
+ C ′

(
1{i≤nδ} + 1{i≥n(1−δ)} + 1{j≤nδ} + 1{j≥n(1−δ)}

)}
.

(3.7)

To complete the proof of (3.6), we now check that

lim
δ↓0

lim sup
n→+∞

1

n(n− 1)

n∑
i=1

∑
j 6=i

Ini (s)Inj (t) {· · · } = 0,

where {· · · } refers to the braced term in the right-hand side of (3.7). Note that, on
account of the results of §3.3.1, it is equivalent to show that

lim
δ↓0

lim sup
n→+∞

1

n2

n∑
i=1

n∑
j=1

Ini (s)Inj (t) {· · · } = 0.

On the one hand,

1

n2

n∑
i=1

n∑
j=1

Ini (s)Inj (t)
M ′(δ)

n
=
M ′(δ)

n
L1,n
∞ (s)L1,n

∞ (t)

vanishes when n grows to infinity. On the other hand,

lim sup
n→+∞

1

n2

n∑
i=1

n∑
j=1

Ini (s)Inj (t)C ′1{i≤nδ} = C ′L∞(t) lim sup
n→+∞

1

n

bnδc∑
i=1

Ini (s),

and it was proved in §3.2.1 that the last term in the right-hand side vanishes with δ.
Addressing the other boundary terms similarly, we obtain (3.6) and thereby complete
the proof of Proposition 3.1.
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4 Proof of Theorem 1.5

This last section contains the proof of Theorem 1.5.

Proof of Theorem 1.5. Since V2 is an open subset of R2 containing (0, 0), Proposition 3.1
implies the weak convergence of P 2,n

∞ to the product measure (P∞)⊗2. According to the
proof of [20, Proposition 2.2, p. 177], this is enough to ensure the P∞-chaoticity of the
sequence (Pn∞)n≥1.

Let us now establish the convergence in Wasserstein distance and fix k ≥ 1, q ∈
[1,+∞). Following Remark 1.6 and [22, Theorem 6.9], to prove that P k,n∞ converges to
(P∞)⊗k in Wasserstein distance of order q, it suffices to check that

lim
n→+∞

E[|Xn
1 |q + · · ·+ |Xn

k |q] = E[|X1|q + · · ·+ |Xk|q],

where, for all n ≥ 1, (Xn
1 , . . . , X

n
n ) is distributed according to P k,n∞ , while (X1, . . . , Xn) is

distributed according to (P∞)⊗k. Using the linearity of the expectation and the symmetry
of Pn∞, we deduce that it is enough to check this result for k = 1. Then we already know
that Xn

1 converges in distribution to X1, and we now check that the sequence of random
variables (|Xn

1 |q)n≥1 is uniformly integrable, which implies the convergence of E[|Xn
1 |q]

and completes the proof.
To check the uniform integrability of the sequence (|Xn

1 |q)n≥1, we fix r > q and
prove that the sequence (E[|Xn

1 |r])n≥1 is bounded. To this aim, we fix ρ > 0 such
that −ρ ∈ V and ρ ∈ V. Then, there exists M ≥ 0 such that, for all x ∈ R, |x|r ≤
M + (exp(−ρx) + exp(ρx)), so that, for all n ≥ 1,

E[|Xn
1 |r] ≤M + L2,n

∞ (−ρ, 0) + L2,n
∞ (ρ, 0),

and we deduce from Proposition 3.1 that the right-hand side converges to a finite value
when n grows to infinity, which implies that the left-hand side is uniformly bounded with
respect to n.
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