Electron. Commun. Probab. 20 (2015), no. 58, 1-4.

DOI: 10.1214/ECP.v20-4081

ISSN: 1083-589X

ELECTRONIC COMMUNICATIONS in PROBABILITY

On the result of Doney

Tibor K. Pogány* Saralees Nadarajah[†]

Abstract

Let X denote a spectrally positive stable process of index $\alpha \in (1,2)$ whose Lévy measure has density $cx^{-\alpha-1}$, x>0 and let $S=\sup_{0\leq t\leq 1}X_t$. Doney [4] proved that

the density of S say s behaves as $s(x) \sim cx^{-\alpha-1}$ as $x \to \infty$. The proof given was nearly four pages long. Here, we: i) give a shorter and a more general proof of the same result; ii) derive the first known closed form expressions for s(x) and the corresponding cumulative distribution function; iii) derive the order of the remainder in the asymptotic expansion for s(x).

Keywords: Asymptotic behavior; Stable process; Wright generalized hypergeometric Ψ function. **AMS MSC 2010:** 60F99; 33C99.

Submitted to ECP on January 28, 2015, final version accepted on August 13, 2015.

1 Introduction

Let X denote a spectrally positive stable process of index $\alpha \in (1,2)$ whose Lévy measure has density $cx^{-\alpha-1}$, x>0 and let $S=\sup_{0\leq t\leq 1}X_t$. Let f denote the density of X and S denote the density of S. It is well known that

$$f(x) \sim cx^{-\alpha - 1}$$

and

$$\Pr(S > x) \sim \Pr(X > x) \sim c\alpha^{-1}x^{-\alpha}$$

as $x \to \infty$, see Sato [6], Proposition 4, page 221 and Bertoin [2], equation (14.34), page 88. Doney [4], Theorem 2.3 proved that

$$s(x) \sim cx^{-\alpha - 1} \tag{1.1}$$

as $x \to \infty$. The proof given was nearly four pages long.

The aim of this short note is to: i) provide a shorter proof of (1.1); ii) derive a closed form expression for s(x), thought to be the first such expression for s(x). An expression for s(x) is given in Bernyk [1], but that is an infinite series of terms involving the gamma function, and not a closed form expression. Closed form expressions are preferred for computational purposes and for deriving properties of s(x) like the corresponding

^{*}Faculty of Maritime Studies, University of Rijeka, Croatia. E-mail: poganj@pfri.hr

[†]School of Mathematics, University of Manchester, UK. E-mail: mbbsssn2@manchester.ac.uk

cumulative distribution function $S(x) = \int_0^x s(t)dt$ and moments, among others; iii) give the order of the remainder in the asymptotic expansion of s(x) as $x \to \infty$.

The proof uses the complex parameter Wright generalized hypergeometric function, ${}_{p}\Psi_{q}(\cdot)$, with p numerator and q denominator parameters (Kilbas et~al.~[5], equation (1.9)) defined by the series

$${}_{p}\Psi_{q}\left[\begin{array}{c} (\alpha_{1},A_{1}),\ldots,(\alpha_{p},A_{p})\\ (\beta_{1},B_{1}),\ldots,(\beta_{q},B_{q}) \end{array} \middle| z\right] = \sum_{n=0}^{\infty} \frac{\prod\limits_{j=1}^{p} \Gamma\left(\alpha_{j}+A_{j}n\right)}{\prod\limits_{j=1}^{q} \Gamma\left(\beta_{j}+B_{j}n\right)} \frac{z^{n}}{n!}$$

$$(1.2)$$

for $z \in \mathbb{C}$, where $\alpha_j \in \mathbb{C}$, $\beta_k \in \mathbb{C} \setminus \mathbb{Z}_0^-$, A_j , $B_k \neq 0$, $j = \overline{1,p}$ and $k = \overline{1,q}$. The series converges for bounded values of |z| when $\Delta = 1 + \sum_{j=1}^q B_j - \sum_{j=1}^p A_j > 0$. This function

was originally introduced by Wright [7]. The most complete exposition of the asymptotic behavior of the Wright generalized hypergeometric Ψ function can be found in Braaksma [3], page 327 *et seq.*, Section 12.

Hypergeometric functions are included as in-built functions in most mathematical software packages, so the special function in (1.2) can be easily evaluated by the software packages **Maple**, Matlab and $\mathcal{M}athematica$ using known procedures.

2 Main results

Our main results are Theorems 2.1 and 2.2.

Theorem 2.1 derives a closed form expression for s(x) involving the Wright generalized hypergeometric Ψ function. As an illustration of the use of the Wright generalized hypergeometric Ψ function, Theorem 2.1 also derives a closed form expression for the cumulative distribution function S(x). Of course many other properties of s(x) can be derived in closed form by using the Wright generalized hypergeometric Ψ function. Theorem 2.2 derives the asymptote of s(x) using a known property of the special function. Theorem 2.2 also gives the order of the remainder in the asymptotic expansion.

Theorem 2.1. For all $\alpha \in (1,2)$ and for all x > 0, we have

$$s(x) = \frac{\sin\left(\pi\alpha^{-1}\right)x^{\alpha-2}}{\pi\left(c\Gamma(-\alpha)\right)^{1-\alpha^{-1}}} \Psi_1 \left[\begin{array}{c} \left(1-\alpha^{-1},1\right), \left(1,1\right) \\ \left(\alpha-1,\alpha\right) \end{array} \right| - \frac{x^{\alpha}}{c\Gamma(-\alpha)} \right]$$
(2.1)

and

$$S(x) = \frac{\sin(\pi\alpha^{-1}) x^{\alpha-1}}{\pi \left(c\Gamma(-\alpha)\right)^{1-\alpha^{-1}}} {}_{2}\Psi_{1} \left[\begin{array}{c} \left(1 - \alpha^{-1}, 1\right), (1, 1) \\ (\alpha, \alpha) \end{array} \middle| - \frac{x^{\alpha}}{c\Gamma(-\alpha)} \right]. \tag{2.2}$$

Proof. By Bernyk et al. [1], Theorem 1, page 1779,

$$s(x) = \sum_{n \geq 1} \frac{x^{\alpha n - 2}}{\left(c\Gamma(-\alpha)\right)^{n - \alpha^{-1}} \Gamma(\alpha n - 1)\Gamma\left(-n + 1 - \alpha^{-1}\right)}.$$

By Euler's reflection formula for the gamma function, $\Gamma(z)\Gamma(1-z)=\frac{\pi}{\sin(\pi z)}$, we can write

$$\frac{1}{\Gamma\left(-n+1+\alpha^{-1}\right)} = \frac{1}{\pi} (-1)^{n-1} \sin\left(\pi\alpha^{-1}\right) \Gamma\left(n-\alpha^{-1}\right).$$

So,

$$s(x) = -(c\Gamma(-\alpha))^{\alpha^{-1}} \frac{\sin(\pi\alpha^{-1})}{\pi x^{2}} \sum_{n\geq 1} \frac{\Gamma(n-\alpha^{-1})}{\Gamma(\alpha n-1)} \left[-\frac{x^{\alpha}}{c\Gamma(-\alpha)} \right]^{n}$$

$$= \frac{\sin(\pi\alpha^{-1}) x^{\alpha-2}}{\pi (c\Gamma(-\alpha))^{1-\alpha^{-1}}} \sum_{n\geq 0} \frac{\Gamma(1-\alpha^{-1}+n) \Gamma(1+n)}{\Gamma(\alpha-1+\alpha n) n!} \left[-\frac{x^{\alpha}}{c\Gamma(-\alpha)} \right]^{n}. \quad (2.3)$$

The result in (2.1) follows from (1.2) since $\Delta = \alpha - 1 > 0$. The derivation of (2.2) is only a routine exercise. Namely integrating (2.3) from 0 to x, we obtain

$$S(x) = \frac{\sin(\pi\alpha^{-1})}{\pi(c\Gamma(-\alpha))^{1-\alpha^{-1}}} \sum_{n\geq 0} \frac{\Gamma(1-\alpha^{-1}+n)\Gamma(1+n)}{\Gamma(\alpha-1+\alpha n) n! [-c\Gamma(-\alpha)]^n} \frac{x^{\alpha-1+\alpha n}}{\alpha-1+\alpha n}$$
$$= \frac{\sin(\pi\alpha^{-1}) x^{\alpha-1}}{\pi(c\Gamma(-\alpha))^{1-\alpha^{-1}}} \sum_{n\geq 0} \frac{\Gamma(1-\alpha^{-1}+n)\Gamma(1+n)}{\Gamma(\alpha+\alpha n) n! [c\Gamma(-\alpha)]^n} \left[-\frac{x^{\alpha}}{c\Gamma(-\alpha)}\right]^n,$$

which is actually the asserted Fox-Wright function formula.

Note too that s(x) is entire since $\Delta>0$ and there are no non-negative integer poles. **Theorem 2.2.** For all $\alpha\in(1,2)$, we have $s(x)=cx^{-\alpha-1}+O\left(x^{-\alpha-2}\right)$ as $x\to\infty$.

Proof. The proof is based on Theorem 19 in Braaksma [3], page 330. Adapting its statement, we have

$${}_{2}\Psi_{1}\left[\begin{array}{c|c} \left(1-\alpha^{-1},1\right),\left(1,1\right) \\ \left(\alpha-1,\alpha\right) \end{array} \middle|z\right] = \sum_{p=1,2;n\geq0} \operatorname{Res}\left[\left(-z\right)^{s}\Gamma(-s)\frac{\Gamma\left(1-\alpha^{-1}+s\right)\Gamma(1+s)}{\Gamma\left(\alpha-1+\alpha s\right)};s_{n}^{(p)}\right],$$

where $s_n^{(1)} = -\left(1 - \alpha^{-1} + n\right)$ and $s_n^{(2)} = -(1+n)$, $n \in \mathbb{N}_0$. Since $\operatorname{Res}\left[\Gamma(a+s); -a - n\right] = (-1)^n/n!$, we see

$${}_{2}\Psi_{1}\left[\begin{array}{c} \left(1-\alpha^{-1},1\right),\left(1,1\right) \\ \left(\alpha-1,\alpha\right) \end{array} \middle| z\right] = \frac{-\Gamma\left(\alpha^{-1}-1\right)\Gamma\left(2-\alpha^{-1}\right)}{\Gamma(-\alpha)}(-z)^{-2+\alpha^{-1}} + O\left(z^{-3+\alpha^{-1}}\right) \\ + \frac{\Gamma\left(-\alpha^{-1}-1\right)}{\Gamma\left(-\alpha-1\right)}z^{-2} + O\left(z^{-3}\right) \\ = \frac{-\Gamma\left(\alpha^{-1}-1\right)\Gamma\left(2-\alpha^{-1}\right)}{\Gamma(-\alpha)}(-z)^{-2+\alpha^{-1}} + O\left(z^{-2}\right) (2.4)$$

as $z \to \infty$. Setting $z = -x^{\alpha}/\left[c\Gamma(-\alpha)\right]$ and combining (2.4) and (2.1), we arrive at

$$s(x) = -\frac{c}{\pi} \sin\left(\pi\alpha^{-1}\right) \Gamma\left(\alpha^{-1} - 1\right) \Gamma\left(2 - \alpha^{-1}\right) x^{-\alpha - 1} + O\left(x^{-\alpha - 2}\right).$$

The proof is complete on noting that $-\frac{1}{\pi}\sin\left(\pi\alpha^{-1}\right)\Gamma\left(\alpha^{-1}-1\right)\Gamma\left(2-\alpha^{-1}\right)=1.$

References

- [1] V. Bernyk, R. C. Dalang and G. Peškir, The law of the supremum of a stable Lévy process with no negative jumps, Annals of Probability, (2008), 36, 1777-1789. MR-2440923
- [2] J. Bertoin, Lévy Processes, Cambridge University Press, Cambridge, (1996). MR-1406564
- [3] B. L. J. Braaksma, Asymptotic expansions and continuations for a class of Barnes-integrals, Compositio Mathematica, (1962-1964), 15, 239-241. MR-0167651
- [4] R. A. Doney, A note on the supremum of a stable process, Stochastics, (2008), 80, 151-155.
 MR-2402160

П

On the result of Doney

- [5] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, *Theory and Applications of Fractional Differential Equations*, Elsevier, Amsterdam, (2006). MR-2218073
- [6] K. -I. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge, (1999). MR-1739520
- [7] E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, Journal of the London Mathematical Society, (1935), 10, 286-293.