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Abstract

The classical skew-product decomposition of planar Brownian motion represents
the process in polar coordinates as an autonomously Markovian radial part and an
angular part that is an independent Brownian motion on the unit circle time-changed
according to the radial part. Theorem 4 of [10] gives a broad generalization of this
fact to a setting where there is a diffusion on a manifold X with a distribution that is
equivariant under the smooth action of a Lie group K. Under appropriate conditions,
there is a decomposition into an autonomously Markovian “radial” part that lives
on the space of orbits of K and an “angular” part that is an independent Brownian
motion on the homogeneous space K/M , where M is the isotropy subgroup of a point
of x, that is time-changed with a time-change that is adapted to the filtration of the
radial part. We present two apparent counterexamples to [10, Theorem 4]. In the
first counterexample the angular part is not a time-change of any Brownian motion
on K/M , whereas in the second counterexample the angular part is the time-change
of a Brownian motion on K/M but this Brownian motion is not independent of the
radial part. In both of these examples K/M has dimension 1. The statement and
proof of [10, Theorem 4] remain valid when K/M has dimension greater than 1. Our
examples raise the question of what conditions lead to the usual sort of skew-product
decomposition when K/M has dimension 1 and what conditions lead to there being
no decomposition at all or one in which the angular part is a time-changed Brownian
motion but this Brownian motion is not independent of the radial part.
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1 Introduction

The archetypal skew-product decomposition of a Markov process is the decomposition
of a Brownian motion in the plane (Bt)t≥0 into its radial and angular part

Bt = |Bt| exp(iθt). (1.1)

Here the radial part (|Bt|)t≥0 is a two-dimensional Bessel process and θt = yτt , where
(yt)t≥0 is a one-dimensional Brownian motion that is independent of the radial part
(|Bt|)t≥0 and τ is a time-change that is adapted to the filtration generated by the process

|B|. Specifically, τt =
∫ t
0

1
|Bs|2 ds. See Corollary 18.7 from [8] for more details.
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When do skew-products exist?

The most obvious generalization of this result is obtained in [5]. The process con-
sidered is any time-homogeneous diffusion (xt)t≥0 with state space R3 that satisfies
the additional assumptions that almost surely every path does not pass through the
origin at positive times and that (xt)t≥0 is isotropic in the sense that the law of (xt)t≥0
is equivariant under the group of orthogonal transformations; that is, if we consider a
point (r, θ) ∈ R3 in spherical coordinates, where r ∈ R+ is the radial coordinate and θ is
a point on the unit sphere S2, and if we take k ∈ O(3), the orthogonal group on R3, then

P(r,kθ) (kA) = P(r,θ) (A)

for any Borel set A in path space C(R+,R
3). Here Px(A) is the probability a path

started at x belongs to the Borel set A [5, (2.2)]. Theorem 1.2 of [5] states that we can
decompose (xt)t≥0 as xt = rtθt where the radial motion (rt)t≥0 is a time-homogeneous
Markov process on R+ and the angular process (θt)t≥0 can be written as θt = Bτt ,
with (Bt)t≥0 a spherical Brownian motion independent of the radial part and with the
time-change (τt)t≥0 adapted to the filtration generated by the radial part.

More generally, one can consider a group G acting on Rn and (xt)t≥0 a Markov
process on Rn such that the distribution of (xt)t≥0 satisfies the equivariance condition

Pgx(gA) = Px(A)

for any Borel set A in path space. The existence of a skew-product decomposition for this
setting is explored in [2] when (xt)t≥0 is a Dunkl process and G is the group of distance
preserving transformations of Rn.

The paper [11] investigates the skew-product decomposition of a Brownian motion
on a C∞ Riemannian manifold (M, g) which can be written as a product of a radial
manifold R and an angular manifold Θ, both of which are assumed to be smooth and
connected. Provided the Riemannian metric respects the product structure of the
manifold in a suitable manner, [11, Theorem 4] establishes the existence of a skew-
product decomposition such that the radial motion is a Brownian motion with drift on R
and the angular motion is a time-change of a Brownian motion on Θ that is independent
of the radial motion.

A broadly applicable skew-product decomposition result is obtained in [10] for a
general continuous Markov process (xt)t≥0 with state space a smooth manifold X and
distribution that is equivariant under the smooth action of a Lie group K on X. Here
the decomposition of (xt)t≥0 is into a radial part (yt)t≥0 that is a Markov process on
the submanifold Y which is transversal to the orbits of K and an angular part (zt)t≥0
that is a process on a general K-orbit which can be identified with the homogeneous
space K/M , where M is the isotropy subgroup of K that is assumed to be the same
for all elements x ∈ X. Theorem 4 of [10] asserts that under suitable conditions the
process (xt)t≥0 has the same distribution as (B(at)yt)t≥0, where the radial part (yt)t≥0 is
a diffusion on Y , (Bt)t≥0 is a Brownian motion on K/M that is independent of (xt)t≥0,
and (at)t≥0 a time-change that is adapted to the filtration generated by (yt)t≥0.

The present paper was motivated by our desire to understand better the structural
features that give rise to skew-product decompositions of diffusions that are equivariant
under the action of a group and what it is about the absence of these features which cause
such a decomposition not to hold. In attempting to do so, we read the paper [10]. We
found an apparent counterexample to the main result, Theorem 4 of that paper in which
there is a decomposition of the process into an autonomously Markov radial process
on Y and an angular part that is a Brownian motion on K/M time-changed according
to the radial process, but this Brownian motion is not, contrary to the claim of [10],
independent of the radial process, see Section 4 for an exposition of the counterexample.
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This seeming contradiction appears because the assumption from [10] that K/M is
irreducible is not strong enough to ensure the nonexistence of a nonzero M -invariant
tangent vector in the special case when, as in our construction, K/M has dimension 1.
It is the nonexistence of such a tangent vector that is used in the proof in [10] to deduce
the independence of the radial process and the Brownian motion. Professor Liao pointed
out to us that [10, Theorem 4] holds under the conditions in [10] for dim(K/M) > 1 and
that result also holds when K/M has dimension 1 if we further assume that there is no
M -invariant tangent vector.

An anonymous referee pointed out an even simpler counterexample to [10, Theorem 4]
which we present in Section 3. Namely, one takes

xt = Θt

(
Ut
Vt

)

where

(
Ut
Vt

)
is a planar Brownian motion and Θt ∈ SO(2) is the matrix that represents

rotation about the origin through an angle t. We show that in this case that there is no
skew-product decomposition for a somewhat different (and perhaps less interesting)
reason: the angular part of (xt)t≥0 cannot be written as a time-changed Brownian motion
on the unit circle in the plane. The apparent contradiction to [10, Theorem 4]is again
due to the irreducibility of K/M being inadequate to ensure the non-existence of an M
invariant tangent vector when K/M has dimension 1.

We present both of these counterexamples here because they illustrate two rather
different ways in which things can go wrong. The latter counterexample shows that under
what look like reasonable conditions one might fail to have a skew-product decomposition
because the angular part can’t be time-changed to be Brownian, whereas the former
counterexample does involve an angular part that is a time-changed Brownian motion,
but it is just that this Brownian motion isn’t independent of the radial process. We hope
that by presenting these two examples we will prompt further investigation into what
general conditions lead to the subtle failure of the usual skew-product decomposition
in the first counterexample and what ones lead to the grosser failure in the second
counterexample.

The outline of the remainder of the paper is the following.
In Section 2 we check that the classical skew-product decomposition of planar Brow-

nian motion fits in the setting from [10], even though the proof of [10, Theorem 4] does
not, as we have noted, apply to ensure the existence of the skew-product decomposition
when, as here, the dimension of K/M is 1.

In Section 3 we describe the counterexample mentioned above of a planar Brownian
motion that is rotated at a constant rate for which the angular part is not a time-changed
Brownian motion on the unit circle in the plane.

In Section 4 we construct the counterexample of a diffusion for which the angular
part is a time-changed Brownian motion on the appropriate homogeneous space, but
this Brownian motion is not independent of the radial part. Here the diffusion (xt)t≥0
has state space the manifold of 2 × 2 matrices that have a positive determinant. This
diffusion can be represented via the well-known QR decomposition as the product of an
autonomously Markov “radial” process (Tt)t≥0 on the manifold of 2× 2 upper-triangular
matrices with positive diagonal entries and a time-changed “angular” process (URt)t≥0,
where (Ut)t≥0 is a Brownian motion on the group SO(2) of 2×2 orthogonal matrices with
determinant one and the time-change (Rt)t≥0 is adapted to the filtration of the radial
process. However, the processes (Ut)t≥0 and (Tt)t≥0 are not independent.

We end this introduction by noting that analogous skew-product decompositions of
superprocesses have been studied in [12, 4, 6]. The continuous Dawson-Watanabe (DW)

ECP 20 (2015), paper 54.
Page 3/14

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v20-4040
http://ecp.ejpecp.org/


When do skew-products exist?

superprocess is a rescaling limit of a system of branching Markov processes while the
Fleming-Viot (FV) superprocess is a rescaling limit of the empirical distribution of a
system of particles undergoing Markovian motion and multinomial resampling. It is
shown in [4] that a FV process is a DW process conditioned to have total mass one. More
generally, it is demonstrated in [12] that the distribution of the DW process conditioned
on the path of its total mass process is equal to the distribution of a time-change of a FV
process that has a suitable underlying time-inhomogeneous Markov motion. The latter
result is extended to measure-valued processes that may have jumps in [6].

A sampling of other results involving skew-products can be found in [14, 9, 3, 1].

2 Example 1: Planar Brownian motion

Let (xt)t≥0 be a planar Brownian motion.
Following the notation of [10], we consider the following set-up.

1. Let X = R2 \ {(0, 0)T }.
2. Let K be the Lie group SO(2) of 2× 2 orthogonal matrices with determinant 1. This

group acts on X by A 7→ Q−1A for Q ∈ K and A ∈ X.

3. The quotient of X with respect to the action of K can be identified with the positive
x axis. Note that the orbits of K are just circles centered at the origin.

4. The isotropy subgroup of K for an element x ∈ X is, as usual, the subgroup
{k ∈ K : kx = x}. Since every element of X is an invertible matrix, this subgroup is
always the trivial group consisting of just the identity. In particular, this subgroup
is the same for every y in the interior of Y , as required in [10, pg 168]. We denote
this subgroup by M .

It is straightforward to check that (xt)t≥0 satisfies all the assumptions of [10, The-
orem 4]. We refer the reader to Sections 3 and 4 for details of how to verify these
assumptions in more complicated examples.

Remark 2.1. In this example, dim(K/M) = 1 and there is the skew-product decomposi-
tion (1.1).

3 Example 2: Rotated planar Brownian motion

Write ((Ut, Vt)
T )t≥0 for a planar Brownian started from (x, y)T (where T denotes

transpose, so we are thinking of column vectors). The process (xt)t≥0 :=
(
(x1t , x

2
t )
T
)
t≥0

started from (x, y)T is defined by (
x1t
x2t

)
= Θt

(
Ut
Vt

)
, (3.1)

where Θt is the matrix that represents rotating though an angle t. Thus,

x1t = cos(t)Ut − sin(t)Vt

x2t = sin(t)Ut + cos(t)Vt.
(3.2)

Then,

dx1t = cos(t)dUt − Ut sin(t)dt− sin(t)dVt − Vt cos(t)dt

dx2t = sin(t)dUt + Ut cos(t)dt+ cos(t)dVt − Vt sin(t)dt,

which becomes

dx1t = cos(t)dUt − sin(t)dVt − Ytdt
dx2t = sin(t)dUt + cos(t)dVt +Xtdt.
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If we define martingales (Bt)t≥0 and (Ct)t≥0 by

dBt = cos(t)dUt − sin(t)dVt

and
dCt = sin(t)dUt + cos(t)dVt,

then [B]t = t, [C]t = t and [B,C]t = 0, so the process ((Bt, Ct)
T )t≥0 is a planar Brownian

motion and the process
(
(x1t , x

2
t )
T
)
t≥0 satisfies the SDE

dx1t = dBt − Ytdt
dx2t = dCt +Xtdt.

(3.3)

Following the notation of [10], we consider the following set-up.

1. Let X = R2 \ {(0, 0)T }.
2. Let K be the Lie group SO(2) of 2× 2 orthogonal matrices with determinant 1. This

group acts on X by A 7→ Q−1A for Q ∈ K and A ∈ X.

3. The quotient of X with respect to the action of K can be identified with the positive
x axis. Note that the orbits of K are just circles centered at the origin.

4. The isotropy subgroup of K for an element x ∈ X is, as usual, the subgroup
{k ∈ K : kx = x}. Since every element of X is an invertible matrix, this subgroup is
always the trivial group consisting of just the identity. In particular, this subgroup
is the same for every y in the interior of Y , as required in [10, pg 168]. We denote
this subgroup by M .

5. Let (xt)t≥0 be the X-valued process that is defined in (3.1).

We now check that (xt)t≥0 satisfies all the assumptions of [10, Theorem 4]. These are
as follows:

1. The process (xt)t≥0 is a Feller process with continuous sample paths.

2. The distribution of (xt)t≥0 is equivariant under the action of K. That is, for k ∈ K
the distribution of (kxt)t≥0 when x0 = x∗ is the same as the distribution of (xt)t≥0
when x0 = kx∗ [10, (2)].

3. The set Y is a submanifold of X that is transversal to the action of K [10, (3)].

4. For any y ∈ Y 0 (that is, the relative interior of Y – which in this case is just Y itself)
TyX, the tangent space of X at y, is the direct sum of tangent spaces Ty(Ky)

⊕
TyY

[10, (5)].

5. The homogeneous space K/M is irreducible; that is, the action of M on To(K/M)

(the tangent space at the coset o containing the identity) has no nontrivial invariant
subspace [10, pg 177].

These assumptions are verified as follows:

1. This follows from the representation (3.3).

2. Since Θt ∈ SO(2) we have by (3.1) that for any Q ∈ SO(2)

Qxt = QΘt

(
Ut
Vt

)
.

Since QΘt ∈ SO(2) the condition holds because planar Brownian motion is equiv-
ariant under the action of SO(2).

3. This is immediate.
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4. Ty(Ky) = Span
{

(0, 1)T
}

and Ty(Y ) = Span
{

(1, 0)T
}

so that

R2 = TyX = Ty(Ky)⊕ Ty(Y )

5. The tangent space of Ky is one-dimensional so K/M is irreducible.

Consequently, (xt)t≥0 satisfies all the hypotheses of [10, Theorem 4].
Write (Rt)t≥0 for the radial process

Rt := |(x1t , x2t )T | = |(Ut, Vt)T |,

and let (Lt)t≥0 be the angular part of ((Ut, Vt)
T )t≥0. We can think of (Lt)t≥0 as living on

the unit circle in the complex plane. In polar coordinates, we have

xt = (Rt, Lt exp(it)).

By the usual skew-product for planar Brownian motion recalled in (1.1) we have that
Lt = exp(iWTt), where W is a standard Brownian motion on the line independent of R
and T is a time-change defined from R. Therefore

xt = (Rt, exp(i(WTt
+ t))).

Proposition 3.1. The process (xt)t≥0 cannot be written as

xt = (Rt, exp(iZSt
)),

where Z is a Brownian motion (possibly with drift) on the line independent of R and S is
an increasing process adapted to the filtration generated by R.

Proof. If such a representation was possible, then we would have Zt = Z̃t + at for some
constant a ∈ R, where Z̃t is a standard Brownian motion. This would imply that

Z̃ = W

S = T

exp(iaSt) = exp(it).

However, this is not possible: it would mean that

exp(it) = exp(iaTt),

but Tt is certainly not a constant multiple of t for all t ≥ 0.

Remark 3.2. In this example K/M is the unit circle, which has dimension 1, and there is
no skew-product decomposition. The angular part cannot be written as the time-change
of any Brownian motion on the unit circle.

4 Example 3: A matrix valued process

Recall the well-known QR decomposition which says that any square matrix can be
written as the product of an orthogonal matrix and an upper triangular matrix, and that
this decomposition is unique for invertible matrices if we require the diagonal entries in
the upper triangular matrix to be positive (see, for example, [7]). This decomposition is
essentially a special case of the Iwasawa decomposition for semisimple Lie groups.
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In the 2× 2 case, uniqueness also holds for QR decomposition of invertible matrices if
we require the orthogonal matrix to have determinant one and there are simple explicit
formulae for the factors. Indeed, if

A =

(
a b

c d

)
(4.1)

and detA = ad− bc 6= 0, then A = Q̃R̃, where

Q̃ =
1√

a2 + c2

(
a −c
c a

)
∈ SO(2) (4.2)

and

R̃ =

(√
a2 + c2 ab+cd√

a2+c2

0 ad−bc√
a2+c2

)
. (4.3)

In this setting, we consider a 2 × 2 matrix of independent Brownian motions and
time-change it to produce a Markov process with the property that if the determinant is
positive at time 0, then it stays positive at all times. This ensures that uniqueness of the
QR-factorization holds at all times and also that the time-changed process falls into the
setting of [10].

Following the notation of [10], we consider the following set-up.

1. Let X be the manifold of 2× 2 matrices over R with strictly positive determinant
equipped with the topology it inherits as an open subset of R2×2 ∼= R4.

2. Let K be the Lie group SO(2) of 2× 2 orthogonal matrices with determinant 1. This
group acts on X by A 7→ Q−1A for Q ∈ K and A ∈ X.

3. The quotient of X with respect to the action of K can, via the QR decomposition,
be identified with the set Y of upper triangular 2× 2 matrices with strictly positive
diagonal entries.

4. The isotropy subgroup of K for an element x ∈ X is, as usual, the subgroup
{k ∈ K : kx = x}. Since every element of X is an invertible matrix, this subgroup is
always the trivial group consisting of just the identity. In particular, this subgroup
is the same for every y in the interior of Y , as required in [10, pg 168]. We denote
this subgroup by M .

5. Let (xt)t≥0 be the X-valued process that satisfies the stochastic differential equa-
tion (SDE)

dxt =

(
dx1,1t dx1,2t
dx2,1t dx2,2t

)
=

(
f(xt) dA

1,1
t f(xt) dA

1,2
t

f(xt) dA
2,1
t f(xt) dA

2,2
t

)
, x0 ∈ X, (4.4)

where A1,1
t , A1,2

t , A2,1
t , and A2,2

t are independent standard one-dimensional Brow-
nian motions, and f(x) := det(x)

tr(x′x)+1 with det and tr denoting the determinant and
the trace. We establish below that (4.4) has a unique strong solution and that this
solution does indeed take values in X.

It follows from the QR decomposition that xt = QtTt, where, in the terminology of
[10], the “angular part” Qt belongs to K and the “radial part” Tt belongs to Y . We will
show that (Tt)t≥0 is an autonomous diffusion on Y and that Qt = URt , where (Ut)t≥0 is
a Brownian motion on K and (Rt)t≥0 is an increasing process adapted to the filtration
generated by (Tt)t≥0. However, we will establish that it is not possible to take the
Brownian motion (Ut)t≥0 to be independent of the process (Tt)t≥0. This will contradict
the claim of [10, Theorem 4] once we have also checked that the conditions of that result
hold.
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Note that if we consider f as a function on the space R2×2 ∼= R4 of all 2× 2 matrices,
then it has bounded partial derivatives, and hence it is globally Lipschitz continuous.
Consequently, if we allow the initial condition in (4.4) to be an arbitrary element of
R2×2, then the resulting SDE has a unique strong solution (see, for example, [13,
Ch 5, Thm 11.2]). Moreover, the resulting process is a Feller process on R2×2 (see, for
example, [13, Ch 5, Thm 22.5]).

We now check that (xt)t≥0 actually takes values in X. That is, we show that if x0 has
positive determinant, then xt also has positive determinant for all t ≥ 0. It follows from
Itô’s Lemma that

[det(x·)]t =

∫ t

0

tr(x′sxs)f
2(xs) ds,

[tr(x′·x·)]t =

∫ t

0

4tr(x′sxs)f
2(xs) ds,

and

[det(x·), tr(x
′
·x·)] =

∫ t

0

4 det(xs)f
2(xs) ds.

Thus, ((det(xt), tr(x
′
txt)))t≥0 is a Markov process and there exist independent standard

one-dimensional Brownian motions (B1
t )t≥0 and (B2

t )t≥0 such that

d det(xt) =
√

tr(x′txt)f(xt) dB
1
t

and

d tr(x′txt) =
4 det(xt)f(xt)√

tr(x′txt)
dB1

t +

√
4tr2(x′txt)− 16 det(xt)2

tr(x′txt)
f(xt) dB

2
t

+ 4f2(xt) dt.

When we substitute for f , the above equations transform into

d det(xt) =
det(xt)

√
tr(x′txt)

tr(x′txt) + 1
dB1

t

and

d tr(x′txt) =
4(det(xt))

2√
tr(x′txt)(tr(x

′x) + 1)
dB1

t +

√
4tr2(x′txt)− 16 det(xt)2

tr(x′txt)

det(xt)

tr(x′txt) + 1
dB2

t

+ 4

(
det(xt)

tr(x′txt) + 1

)2

dt.

In particular, the process (det(xt))t≥0 is the stochastic exponential of the local martingale
(Mt)t≥0, where

Mt =

∫ t

0

√
tr(x′sxs)

tr(x′sxs) + 1
dB1

s .

Since x0 ∈ X, we have det(x0) > 0, and hence

det(xt) = det(x0) exp

(
Mt −M0 −

1

2
[M ]t

)
is strictly positive for all t ≥ 0. This shows that (xt)t≥0 takes values in X.

We now check that (xt)t≥0 satisfies all the assumptions of [10, Theorem 4]. These are
as follows:
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1. The process (xt)t≥0 is a Feller process with continuous sample paths.

2. The distribution of (xt)t≥0 is equivariant under the action of K. That is, for k ∈ K
the distribution of (kxt)t≥0 when x0 = x∗ is the same as the distribution of (xt)t≥0
when x0 = kx∗ [10, (2)].

3. The set Y is a submanifold of X that is transversal to the action of K [10, (3)].

4. For any y ∈ Y 0 (that is, the relative interior of Y – which in this case is just Y itself)
TyX, the tangent space of X at y, is the direct sum of tangent spaces Ty(Ky)

⊕
TyY

[10, (5)].

5. The homogeneous space K/M is irreducible; that is, the action of M on To(K/M)

(the tangent space at the coset o containing the identity) has no nontrivial invariant
subspace [10, pg 177].

The verifications of (1)–(5) proceed as follows:

1. We have already observed that solutions of (4.4) with initial conditions in R2×2

form a Feller process and that this process stays in the open set X if it starts in X,
and so (xt)t≥0 is a Feller process on X.

2. Suppose that (xt)t≥0 is a solution of (4.4) with x0 = x∗ and (x̂t)t≥0 is a solution of
(4.4) with x̂0 = kx∗ for some k ∈ K. We have to show that if we set x̃t = k−1x̂t,
then (x̃t)t≥0 has the same distribution as (xt)t≥0. Note that det x̃t = det x̂t and
x̃′tx̃t = x̂′tx̂t, so that f(x̃t) = f(x̂t). Thus,

dx̃t = f(x̃t)k
−1
(
dA1,1

t dA1,2
t

dA2,1
t dA2,2

t

)
, x̃0 = x∗.

Now the columns of the matrix (
A1,1
t A1,2

t

A2,1
t A2,2

t

)
are independent standard two-dimensional Brownian motions, and so the same is
true of the columns of the matrix

k−1
(
A1,1
t A1,2

t

A2,1
t A2,2

t

)
by the equivariance of standard two-dimensional Brownian motion under the action
of SO(2). Hence,

k−1
(
A1,1
t A1,2

t

A2,1
t A2,2

t

)
=

(
α1,1
t α1,2

t

α2,1
t α2,2

t

)
,

where (α1,1
t )t≥0, (α1,2

t )t≥0, (α2,1
t )t≥0, and (α2,2

t )t≥0 are independent standard Brow-
nian motions. Since,

dx̃t = f(x̃t)

(
dα1,1

t dα1,2
t

dα2,1
t dα2,2

t

)
, x̃0 = x0,

the existence and uniqueness of strong solutions to (4.4) establishes that the
distributions of (xt)t≥0 and (x̃t)t≥0 are equal.

3. It follows from the existence of the QR decomposition for invertible matrices that
X is the union of the orbits Ky for y ∈ Y , and it follows from the uniqueness of the
decomposition for such matrices that the orbit Ky intersects Y only at y.
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4. Since the tangent space of K = SO(2) at the identity is the vector space of 2× 2

skew-symmetric matrices and the tangent space of Y at the identity is the vector
space of 2 × 2 upper-triangular matrices, we have to show that if W is a fixed
invertible upper-triangular 2× 2 matrix and M is a fixed 2× 2 matrix, then

M = SW + V

for a unique skew-symmetric 2 × 2 matrix S and unique upper-triangular 2 × 2

matrix V . Let

M :=

(
m11 m12

m21 m22

)
and W :=

(
w11 w12

0 w22

)
.

It is immediate that

S =

(
0 −m21

w11
m21

w11
0

)
and

V =

(
m11

m12w11+m21w22

w11

0 m22w11−m21w12

w11

)
.

5. We have already noted that the tangent space of K at the identity is the vector
space of skew-symmetric 2× 2 matrices. This vector space is one-dimensional and
so this condition holds trivially.

We have now shown that (xt)t≥0 satisfies all the hypotheses of [10, Theorem 4].
However, we have the following result.

Proposition 4.1. In the decomposition xt = QtTt the Y -valued process (Tt)t≥0 is Markov
and the K-valued process (Qt)t≥0 may be written as Qt = URt

, where (Ut)t≥0 is a K-
valued Brownian motion and (Rt)t≥0 is an increasing continuous process such that
R0 = 0 and Rt −Rs is σ{Tu : s ≤ u ≤ t}-measurable for 0 ≤ s < t <∞. However, there is
no such representation in which (Tt)t≥0 and (Ut)t≥0 are independent.

Proof. For all t ≥ 0 we have xt = QtTt, where

Qt =
1√

(x11t )2 + (x21t )2

(
x11t −x21t
x21t x11t

)
∈ K

and

Tt =

√(x11t )2 + (x21t )2
x11
t x12

t +x21
t x22

t√
(x11

t )2+(x21
t )2

0 det(xt)√
(x11

t )2+(x21
t )2

 ∈ Y.
Note that det(xt) = det(Tt) and tr(x′txt) = tr(T ′tTt), and so f(xt) = f(Tt). Note also

that the complex-valued process (x11t + ix21t )t≥0 is an isotropic complex local martingale
in the sense of [8, Ch 18], that is

[x11] = [x21]

and
[x22, x21] = 0.

In our case

d[x11]t = d[x21]t = f2(Tt) dt.

By [8, Thm 18.5], (log(x11t + ix21t )t≥0 is a well-defined isotropic complex local martingale
that can be written as

log(x11t + ix21t ) = log
(
T 11
t

)
+ iθt,
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where

d[θ]t = d[log(T 11)]t =
1

(T 11
t )2

d[x11]t =

(
f(Tt)

T 11
t

)2

dt.

By the classical result of Dambis, Dubins and Schwarz (see, for example, [8, Thm 18.4]),
there exists a standard complex Brownian motion (B̃t+iBt)t≥0 such that log(x11t +ix21t ) =

B̃Rt
+ iBRt

, where

Rt =

∫ t

0

(
f(Ts)

T 11
s

)2

ds, t ≥ 0.

So, θt = BRt
and log(T 11

t ) = B̃Rt
. Hence,

x11t + ix21t√
(x11t )2 + (x21t )2

= (cos(θt) + i sin(θt))

and

Qt =

(
cos(BRt

) − sin(BRt
)

sin(BRt
) cos(BRt

)

)
.

Consequently, Qt = URt
, where

Ut =

(
cos(Bt) − sin(Bt)

sin(Bt) cos(Bt)

)
,

and (Bt)t≥0 is a standard one-dimensional Brownian motion.

Note that (Ut)t≥0 is certainly a Brownian motion on K = SO(2), and so we have
uniquely identified the K-valued Brownian motion (Ut)t≥0 and the increasing process
(Rt)t≥0 that appear in the claimed decomposition of (xt)t≥0.

To complete the proof, it suffices to suppose that (Ut)t≥0 is independent of (Tt)t≥0 and
obtain a contradiction. An application of Itô’s Lemma shows that the entries of (Ut)t≥0
satisfy the system of SDEs

dU1,1
t = −U2,1

t dBt −
1

2
U1,1
t dt

dU2,1
t = U1,1

t dBt −
1

2
U2,1
t dt

dU1,2
t = −U1,1

t dBt +
1

2
U2,1
t dt = −dU2,1

t

dU2,2
t = −U2,1

t dBt −
1

2
U1,1
t dt = dU1,1

t .

We apply Proposition 4.2 below to each of the four SDEs in the system describing
(Ut)t≥0, with, in the notation of that result, (ζt, Ht,Kt) being the respective triples
(U1,1

t , U2,1
t , U1,1

t ), (U2,1
t , U1,1

t , U2,1
t ), (U1,2

t , U1,1
t , U2,1

t ), and (U2,2
t , U2,1

t , U1,1
t ). In each of the

four applications, we let

• (Ft)t≥0 be the filtration generated by (Ut)t≥0,

• (Gt)t≥0 be the filtration generated by (Tt)t≥0,

• βt = Bt,

• ρt = Rt,

• Jt =
(
f(Tt)
T 11
t

)2
,

• γt = Wt =
∫ t
0

√
1
R′s
dBRs

.
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Let Ht = Fρt ∨ Gt, t ≥ 0, as in the Proposition 4.2. It follows by the assumed
independence of (Ut)t≥0 and (Tt)t≥0, part (iii) of Proposition 4.2, and equation (4.5) that
the entries of the time-changed process Qt = URt

satisfy the system of SDEs

dQ1,1
t = −Q2,1

t

√
R′t dWt −

1

2
Q1,1
t R′t dt = −Q2,1

t

f(Tt)

T 11
t

dWt −
1

2
Q1,1
t

(
f(Tt)

T 11
t

)2

dt

dQ2,1
t = Q1,1

t

√
R′t dWt −

1

2
Q2,1
t R′t dt = Q1,1

t

f(Tt)

T 11
t

dWt −
1

2
Q2,1
t

(
f(Tt)

T 11
t

)2

dt

dQ1,2
t = −dQ2,1

t = Q1,1
t

√
R′t dWt −

1

2
Q2,1
t R′t dt = Q1,1

t

f(Tt)

T 11
t

dWt −
1

2
Q2,1
t

(
f(Tt)

T 11
t

)2

dt

dQ2,2
t = dQ1,1

t = −Q2,1
t

√
R′t dWt −

1

2
Q1,1
t R′t = −Q2,1

t

f(Tt)

T 11
t

dWt −
1

2
Q1,1
t

(
f(Tt)

T 11
t

)2

dt.

Set

dw1
t =

x11t√
(x11t )2 + (x21t )2

dA11
t +

x21t√
(x11t )2 + (x21t )2

dA21
t

dw2
t =

−x21t√
(x11t )2 + (x21t )2

dA11
t +

x11t√
(x11t )2 + (x21t )2

dA21
t

dw3
t =

x11t√
(x11t )2 + (x21t )2

dA12
t +

x21t√
(x11t )2 + (x21t )2

dA22
t

dw4
t =

−x21t√
(x11t )2 + (x21t )2

dA12
t +

x11t√
(x11t )2 + (x21t )2

dA22
t .

The processes (wit)t≥0 are local martingales with [wit, w
j
t ]t = δijt, and thus they are

independent standard Brownian motions. An application of Itô’s Lemma shows that
(Tt)t≥0 is a diffusion satisfying the following system of SDEs.

dT 11
t = f(Tt) dw

1
t +

f2(Tt)

T 11
t

dt

dT 12
t =

T 22
t f(Tt)

T 11
t

dw2
t + f(Tt)dw

3
t −

T 12
t f2(Tt)

2(T 11
t )2

dt

dT 22
t =

T 12
t f(Tt)

T 11
t

dw2
t + f(Tt)dw

4
t −

T 22
t f2(Tt)

2(T 11
t )2

dt.

The assumed independence of the processes (Ut)t≥0 and (Tt)t≥0 and part (iv) of
Proposition 4.2 give that [Qi,j , T k,l] ≡ 0 for all i, j, k and l. It follows from Itô’s Lemma
that

d(QtTt)
1,1 = dNt +

Q1,1
t f2(Tt)

T 1,1
t

(
1− 1

2T 1,1
t

)
dt,

where (Nt)t≥0 is a continuous local martingale for the filtration (Ht)t≥0. This, however,
is not possible because (QtTt)

1,1 = x1,1t and the process (x1,1t )t≥0 is a continuous local
martingale for the filtration (Ht)t≥0.

We required the following proposition that collects together some simple facts about
time-changes.
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Proposition 4.2. Consider two filtrations (Ft)t≥0 and (Gt)t≥0 on an underlying probabil-
ity space (Ω,F ,P). Set F∞ =

∨
t≥0 Ft and G∞ =

∨
t≥0 Gt. Assume that the sub-σ-fields

F∞ and G∞ are independent. Suppose that

ζt = ζ0 +

∫ t

0

Hs dβs +

∫ t

0

Ks ds,

where ζ0 is F0-measurable, the integrands (Ht)t≥0 and (Kt)t≥0 are (Ft)t≥0-adapted, and

(βt)t≥0 is an (Ft)t≥0-Brownian motion. Suppose further that ρt =
∫ t
0
Js ds, where (Jt)t≥0

is a nonnegative, (Gt)t≥0-adapted process such that ρt is finite for all t ≥ 0 almost surely.
For t ≥ 0 put

Fρt = σ{Ls∧ρt : s ≥ 0 and L is (Ft)t≥0-optional}.

Set Ht = Fρt ∨ Gt, t ≥ 0. Then the following hold.

(i) The process (βρt)t≥0 is a continuous local martingale for the filtration (Ht)t≥0 with
quadratic variation [βρ· ]t = ρt.

(ii) The process (γt)t≥0, where

γt =

∫ t

0

√
1

Js
dβρs ,

is a Brownian motion for the filtration (Ht)t≥0.

(iii) If ξt = ζρt , t ≥ 0, then

ξt = ξ0 +

∫ t

0

Hρs

√
Js dγs +

∫ t

0

KρsJs ds.

(iv) If (ηt)t≥0 is a continuous local martingale for the filtration (Gt)t≥0, then (ηt)t≥0 is
also a continuous local martingale for the filtration (Ht)t≥0 and [η, γ] ≡ 0.

Remark 4.3. In this example K/M = SO(2) has dimension 1 and there is a type of
skew-product decomposition. The angular part can indeed be written as a time-change
depending on the radial part of a Brownian motion on SO(2). However, we cannot take
this Brownian motion to be independent of the radial part.

5 Open problem

The apparent counterexamples to [10, Theorem 4] arise in Sections 3 and 4 because
K/M is one-dimensional and hence trivially irreducible. When K/M has dimension
greater than 1, irreducibility implies the nonexistence of a nonzero M -invariant tangent
vector and it is this latter property that is actually used in the proof of [10, Theorem 4].
In the examples in Sections 2, 3 and 4 the group M is the trivial group consisting of just
the identity and there certainly are nonzero M -invariant tangent vector.

Therefore, in view of the three examples we presented and Remarks 2.1, 3.2, 4.3 we
propose the following open problem.

Question 5.1. Suppose that (xt)t≥0 is a continuous Markov process with state space
a smooth manifold X and distribution that is equivariant under the smooth action of a
Lie group K on X so that we can decompose (xt)t≥0 into a radial part (yt)t≥0 that is a
Markov process on the submanifold Y which is transversal to the orbits of K and an
angular part (zt)t≥0 that is a process on the homogeneous space K/M . Suppose further
that dim(K/M) = 1.

1. When can we write zt = Bat where (Bt)t≥0 is a Brownian motion on K/M and
(at)t≥0 is a time-change that is adapted to the filtration generated by (yt)t≥0.

2. Under which conditions can we take the Brownian motion (Bt)t≥0 to be independent
of (xt)t≥0?
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