
Electron. Commun. Probab. 20 (2015), no. 48, 1–10.
DOI: 10.1214/ECP.v20-3644
ISSN: 1083-589X

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

Connectivity of sparse Bluetooth networks

N. Broutin* L. Devroye† G. Lugosi‡

Abstract

Consider a random geometric graph defined on n vertices uniformly distributed in the
d-dimensional unit torus. Two vertices are connected if their distance is less than a “visibility
radius” rn. We consider Bluetooth networks that are locally sparsified random geometric
graphs. Each vertex selects c of its neighbors in the random geometric graph at random and
connects only to the selected points. We show that if the visibility radius is at least of the
order of n−(1−δ)/d for some δ > 0, then a constant value of c is sufficient for the graph to
be connected, with high probability. It suffices to take c ≥

√
(1 + ε)/δ +K for any positive

ε where K is a constant depending on d only. On the other hand, with c ≤
√

(1− ε)/δ, the
graph is disconnected, with high probability.
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1 Introduction and results

Consider the following model of random “Bluetooth networks”. Let X = X1, . . . , Xn be
independent, uniformly distributed random points in [0, 1]d, and denote the set of these points
by X = {X1, . . . , Xn}. Given a positive number rn > 0 (the so-called visibility radius), define
the random geometric graph Gn(rn) with vertex set X in which two vertices Xi and Xj are
connected by an edge if and only if D(Xi, Xj) ≤ rn, where

D(x, y) =

(
d∑
i=1

min(|xi − yi|, 1− |xi − yi|)2
)1/2

is the Euclidean distance on the torus.
It is well known (Penrose [11]) that, for any ε > 0,

lim
n→∞

P (Gn(rn) is connected) =

 0 if rn ≤ (1− ε)
(

logn
nvd

)1/d
1 if rn ≥ (1 + ε)

(
logn
nvd

)1/d
,

where vd is the volume of the Euclidean unit ball in Rd.
Note that in order to guarantee that a random geometric graph is connected (with high

probability), the average degree in the graph needs to be at least of the order of log n, which
makes the graph too dense for some applications. To deal with this issue, one may sparsify
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Connectivity of sparse Bluetooth networks

the graph. This can be done in a distributed way by selecting, for each vertex Xi, randomly,
and independently a subset of cn edges adjacent to Xi, and then considering the subgraph
containing the selected edges only. The selection is done without replacement and if a vertex
has less than cn neighbors in Gn(rn), then we take all of its neighbors. The obtained random
graph model, coined Bluetooth network (or irrigation graph) has been introduced and studied
in Crescenzi et al. [5], Dubhashi et al. [6, 7], Ferraguto et al. [9], and [12].

Formally, the random Bluetooth graph Γn = Γn(rn, cn) is obtained as a random sub-graph of
Gn(rn) as follows. For every vertex Xi ∈ X, we pick randomly, without replacement, cn edges,
each adjacent to Xi in Gn(rn). (If the degree of Xi in Gn is less than cn, all edges adjacent
to Xi are kept in Γn.) We also denote by Γ+

n (rn, cn) the directed graph obtained by placing a
directed edge from Xi to Xj whenever Xj is among the cn selected neighbors of Xi.

We study connectivity of Γn(rn, cn) for large values of n. A property of the graph holds
with high probability (whp) when the probability that the property holds converges to one as
n→∞.

When rn >
√
d/2, the underlying random geometric graph Gn(rn) is the complete graph

and Γn(rn, 2) becomes the “2-out” random subgraph of the complete graph studied in Fenner
and Frieze [8], where it is shown that the graph is connected with high probability. Dubhashi
et al. [6] extended this result by showing that when rn = r > 0 is independent of n, Γn(r, 2)

is connected with high probability. When rn → 0 as n → ∞, Crescenzi et al. [5] proved that
there exist constants γ1, γ2 such that if rn ≥ γ1(log n/n)1/d and cn ≥ γ2 log(1/rn), then Γn(rn, cn)

is connected with high probability. Broutin et al. [3] proved that when rn is just above the
connectivity threshold for the underlying graph Gn(rn), that is, when rn ∼ γ(log n/n)1/d for
some sufficiently large γ, the connectivity threshold for the irrigation graphs is

c?n :=

√
2 log n

log log n
.

More precisely, for any ε ∈ (0, 1),

lim
n→∞

P (Γn(rn, cn) is connected) =

{
0 if cn ≤ (1− ε)c?n
1 if cn ≥ (1 + ε)c?n.

(1.1)

This result shows that the simple distributed algorithm building the irrigation graph guaran-
tees connectivity with high probability while reducing the average degree to about 2c?n, which is
much less than the average degree of Θ(log n) for the initial random geometric graph. However,
the average degree still grows with n, and therefore Γn(rn, cn) is not genuinely sparse.

main results. The main result of this note is that at the price of increasing the visibility radius to
rn ∼ n−(1−δ)/d for some δ > 0, a constant number of connections per vertex suffices to achieve
connectivity with high probability. Note that with this value of rn, the average degree of the
underlying random geometric graph is of the order of nδ.

The lower bound of Broutin et al. [3] states that for any ε ∈ (0, 1) and λ ∈ [1,∞], if γ > 0 is a

sufficiently large constant, rn ≥ γ
(

logn
n

)1/d
, lognrdn
log logn → λ, and

cn ≤

√
(1− ε)

(
λ

λ− 1/2

)
log n

log nrdn
,

then Γn(rn, cn) contains an isolated (cn + 1)-clique and therefore is disconnected whp.
When rn ∼ n−(1−δ)/d, we have λ =∞ and therefore if cn ≤ b(1− ε)/

√
δc, then the random

graph Γn(rn, cn) is disconnected whp. This bound may seem weak since this value of cn is just
a constant, independent of n. However, we show here that this bound is essentially tight: We
prove that when rn = Ω(n−(1−δ)/d), for some δ > 0, then Γn(rn, cn) is connected whp whenever
cn is larger than a certain constant, which depends on δ and d only. In fact, we show that
as δ becomes small, our upper bound for the constant depends on δ as ((1 + ε)/δ)1/2 + O(1),
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essentially matching the lower bound of Broutin et al. [3] mentioned above (see Theorem 1.2
for the precise statement). To gain intuition to why one can expect a threshold value around
c ≈ δ−1/2, consider the expected number of isolated cliques of size c + 1 in Γn(n−(1−δ)/d, c).
Each vertex in Gn(n−(1−δ)/d) has degree concentrated around vdnδ (where vd is the volume of
the Euclidean ball of radius 1 in Rd) and an easy argument shows that the expected number
of isolated (c + 1)-cliques is of the order of n1−c

2δ. This value is much larger than 1 when
c = ((1− ε)/δ)1/2 but much smaller than 1 when c = ((1 + ε)/δ)1/2. As it often happens in other
random graph models, the last obstacles for connectivity are the smallest possible isolated
components and as soon as isolated (c+ 1)-cliques disappear, the graph becomes connected.
However, our proof of connectivity follows a different path, showing the existence of a path
between any two vertices.

Theorem 1.1. Let δ ∈ (0, 1), γ > 0, and ε ∈ (0, 1) be fixed. Suppose that rn = γnn
−(1−δ)/d

where γn/γ → 1 as n→∞. There exists a constant c, depending on δ and d only, such that the
random Bluetooth graph Γn(rn, c) is connected whp. For x ∈ (0, 1) set

f(x) :=

√
(1 + x2 + 8

√
x+ ε)/(x− 2x2 log2(1/x) .

One may take c = k1 + k2 + k3 + 1, where

k1 =

{
df(δ)e if δ ∈ (0, 1/5)

df(1/5)e if δ ∈ (1/5, 1)
, k2 =

⌈
8(1 + ε)vd(2

√
d)d

(1− ε)

⌉
, k3 = d

√
4(1 + ε)vd/αde

where vd is the volume of the Euclidean ball of radius 1 in Rd and αd = (1− ε)/(2(2
√
d)d).

A straightforward combination of the lower bound and Theorem 1.1 implies the following:

Theorem 1.2. Let c(δ) denote the smallest integer c for which

lim
n→∞

P (Γn(rn, c) is connected) = 1

and let c(δ) denote the largest integer c for which

lim
n→∞

P (Γn(rn, c) is disconnected) = 1

when rn = γnn
−(1−δ)/d with γn ∼ γ as n → ∞. Then, for any ε > 0, we have, for all δ small

enough,
(1− ε)δ−1/2 ≤ c(δ) ≤ c(δ) ≤ (1 + ε)δ−1/2.

Interestingly, the threshold is essentially independent of the value of γ and the dimension d.
This phenomenon was also observed in (1.1).

remarks and open questions. Before we conclude this section, we mention a few questions
that might be worth investigating. Theorem 1.2 above finds the correct asymptotics for the
thresholds c(δ), c(δ) when the visibility radius is rn ∼ γn−(1−δ)/d for small δ. One may phrase a
related question as follows: given a fixed a constant c, (a budget, in some sense) can one find a
threshold function r?n = r?n(c) for connectivity? More precisely, r?n should be such that, for any
ε > 0,

lim
n→∞

P (Γn(rn, c) is connected) =

{
0 if rn < (1− ε)r?n
1 if rn > (1 + ε)r?n.

In some sense, Theorem 1.2 gives the asymptotics of the threshold function for c → ∞, but
one would like to know the threshold for fixed values of the budget c. As it was proved in
[3] in the case that rn ∼ γ(n−1 log n)1/d, the main obstacles to connectivity should be isolated
(c+1)-cliques. One could also try to prove that this is indeed the case at a finer level: around the
threshold, the number of isolated (c+ 1)-cliques should be asymptotically Poisson distributed.
Thus, one expects that the probability that Γn(rn, c) is connected should have asymptotics
similar to that of classical random graphs [1, Theorem 7.3] or random geometric graphs [11,
Theorem 13.11], where the isolated vertices are the main obstacle.

Finally, we mention that elsewhere (Broutin et al. [4]) we investigate the birth of the giant
component of Γn(rn, c).
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2 Proof sketch

In the course of the proof, we condition on the location of the points and assume that they are
sufficiently regularly distributed. The probability that this happens is estimated in the following
lemma. Let N(A) =

∑n
i=1 1{Xi∈A} denote the number of points falling in a set A ⊂ [0, 1]d and

let λ denote the Lebesgue measure. Denote by Bx,r = {y ∈ [0, 1]d : D(x, y) < r} the open ball
centered at x ∈ [0, 1]d and by Cx,r = {y : ∀i = 1, . . . , d,min(|xi− yi|, 1−|xi− yi|) ≤ r/2} the cube
of side length r centered at x ∈ [0, 1]d.

Lemma 2.1. Suppose rn ≥ γn−(1−δ)/d for some δ ∈ (0, 1) and γ > 0. Let ε > 0 and denote by
F the event that for all x ∈ [0, 1]d,

N(Bx,rn)

nλ(Bx,rn)
∈ (1− ε, 1 + ε) and

N(Cx,rn/(2
√
d))

nλ(Cx,rn/(2
√
d))
∈ (1− ε, 1 + ε) .

Then there exists a constant θ = θ(δ, ε) > 0 and a positive integer n0 = n0(δ, ε) such that for all
n > n0, P(F ) ≥ 1− exp(−θnrdn).

Proof. The lemma may be proved by standard arguments. It follows, for example, from
inequalities for uniform deviations of empirical measures over vc classes such as Theorem 7 in
[2].

In the rest of the proof, we fix X = {X1, . . . , Xn}, and assume that event F holds. Thus, all
randomness originates from the random choices of the c neighbors of every vertex. We denote
by Pc the probability with respect to the random choice of the neighbors only (i.e., conditional
given the set X). It suffices to show that if F holds, then with high probability (with respect to
Pc), Γ(rn, c) is connected.

sketch of the proof. The general strategy is to prove that, with high probability, from any two
points Xi, Xj , one can find a path that connects Xi to Xj . To do this, most of the work consists
in proving structural properties of the connected component containing a fixed point X1. We
study the random graph by dividing the c neighbors into four disjoint groups of sizes k1, k2, k3,
and 1, thus obtaining four independent sets of edges added in four different phases. The sketch
of the proof of Theorem 1.1 is as follows. We rely on a discretization of the unit cube [0, 1]d into
congruent cubes of side length 1/d2

√
d/rne.

• searching for a dense cube I. (Section 3). In the first phase we start from an arbitrary
vertex, say, X1, and using only k1 choices of each vertex, consider the set of the vertices
of X which may be reached using paths of at most ` ≈ δ2 log2 n edges. We show that if
this growth process succeeds, there exists a cube in the grid partition that contains a
connected component of size at least nmin{δ2,1/25}/3.

• searching for a dense cube II. (Section 4). In the second phase we show that by adding k2
new connections to each vertex in the component obtained after the first step, at least
one of the grid cells has a positive fraction of its points in a single connected component.

• propagating the density. (Section 5). Once we have a cell containing a constant proportion
of points belonging to the same connected component, it is rather easy to propagate this
positive density (of a single connected component) to all other cells of the grid by using
k3 new connections per vertex.

• connectivity is unavoidable. (Section 6). The previous phases guarantee that from a single
vertex X1 all three phases succeed with probability 1− o(1/n). So, with high probability,
the connected components of every single vertex Xi, 1 ≤ i ≤ n, reach in every corner of
the space. Then, it is easy to show that with just one additional connection per vertex,
any two such components very likely connect, proving that the entire graph is, in fact,
connected.
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3 First growth process: searching for a dense cube I

Divide [0, 1]d into a grid of congruent cubes of side length 1/d2
√
d/rne. We first prove that a

constant number of edges per vertex suffices to guarantee that there exists a cell that contains
at least a polynomial number of points of X that may be reached from X1.

Lemma 3.1. Suppose X = {X1, . . . , Xn} are such that the event F defined in Lemma 2.1
occurs. Let k1 and rn be defined as in Theorem 1.1. With probability at least 1 − o(1/n),
the connected component of Γ(rn, k1) containing X1 is such that there exists a cell in the
grid partition of [0, 1]d into congruent cubes of side length 1/d2

√
d/rne that contains at least

nmin{δ2,1/25}/3 vertices of the component.

Proof. Let ` < n be a positive integer specified below. Consider A, the set of vertices of X
that can be reached from X1 using a directed path of length at most ` in Γ+

n (rn, k1). Note
that |A| ≤ 1 + k1 + k21 + · · · + k`1. We first show a lower bound on the size of this connected
component:

P(|A| ≤ k12`−1) = o(1/n). (3.1)

To see this, the key property is that with high probability, the number of new points added in
the second generation is at least 2k1. First, the k1 points of the first generation are distinct
for they are sampled without replacement. For the second generation, imagine k21 bins, k1 for
each of the k1 vertices of the first generation, into which we place the points chosen by these
vertices. For these k21 bins to contain only j different points that are also different from the
points of the first generation, there must exist k21 − j bins that contain only points of the j

remaining bins or points from the first generation. There are
(
k21
j

)
ways of choosing these k21 − j

bins and for each such bin, the probability that it contains a point either from the remaining j
bins or from points of the first generation is at most (1 + k1 + k21)/(nrdnvd(1− ε)− 1− k1 − k21)

(since, on the event F , each ball of radius rn contains at least nrdnvd(1− ε) points). Thus, the
probability that the number of distinct points in the second generation that are distinct and do
not belong to the first generation is less than 2k1 is at most

2k1∑
j=0

(
k21
j

)(
1 + k1 + k21

nrdnvd(1− ε)− 1− k1 − k21

)k21−j
.

Similarly, assuming that there are at least 2k1 points in the second generation, the probability
that the number of selected neighbors in the third generation not selected before is less than
4k1 is at most

4k1∑
j=0

(
2k21
j

)(
1 + k1 + k21 + k31

nrdnvd(1− ε)− 1− k1 − k21 − k31

)2k21−j

.

We may continue in this fashion for `− 1 steps, in each step doubling the number of neighbors
with high probability. The probability that the `-th generation has less than 2`−1k1 vertices is at
most

`−1∑
i=1

2i−1k1∑
j=0

(
2i−1k21
j

)(
1 + k1 + · · ·+ ki1

nrdnvd(1− ε)− (1 + k1 + · · ·+ ki1)

)2i−1k21−j

≤
`−1∑
i=1

2i−1k122
i−1k21

(
k`1

nrdnvd(1− ε)− k`1

)2i−1k21−2
ik1

. (3.2)

Now, we choose ` = `(δ) = bmin{δ2, 1/25} log2 nc, and distinguish two cases depending on the
value of δ.
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(i) Suppose first that δ ∈ (0, 1/5]. In this case, we aim at obtaining a value for k1 that matches
the lower bound. Then, in this range,

log2 k1 ≤ log2

√1 + δ2 + 8
√
δ + ε

δ − 2δ2 log2(1/δ)
+ 1

 ≤ 2 log2(1/δ),

for any ε ∈ (0, 1) and δ ∈ (0, 1/5]. Thus, we have k`1 ≤ nδ
2 log2 k1 ≤ n2δ

2 log2(1/δ). It follows that
the right-hand side in (3.2) above is at most

`−1∑
i=1

2i−1k1

(
21/(1−2/k1)

)2i−1k21(1−2/k1)
(

n2δ
2 log2(1/δ)

γdnn
δvd(1− ε)− n2δ2 log2(1/δ)

)2i−1k21(1−2/k1)

≤
`−1∑
i=1

2i−1k1

(
21/(1−2/k1)

γdnvd(1− 2ε)
n−δ+2δ2 log2(1/δ)

)2i−1k21(1−2/k1)

≤ `2`k1κ
k21
d n
−k21(1−2/k1)(δ−2δ

2 log2(1/δ))

≤ k1κ
k21
d · n

δ2 log2(n) · n−k
2
1(1−2/k1)(δ−2δ

2 log2(1/δ))

for n sufficiently large, where κd = 8/(γdvd(1− 2ε)). Now, by our choice of k1, we have

δ2 − k21(1− 2/k1)(δ − 2δ2 log2(1/δ))

≤ δ2 − (1 + δ2 + 8
√
δ + ε) + 2

√
(1 + δ2 + 8

√
δ + ε)(δ − 2δ2 log2(1/δ))

≤ −1− 8
√
δ − ε+ 2

√
12δ

≤ −1− ε,

hence the probability in (3.2) above is o(1/n) and the bound in (3.1) is proved for δ ∈ (0, 1/5].

(ii) Suppose next that δ ∈ (1/5, 1). In this case, the bound follows trivially from the fact that the
case δ = 1/5 is covered by case (i). Indeed, we have

`−1∑
i=1

2i−1k122
i−1k21

(
k`1

nrdnvd(1− ε)− k`1

)2i−1k21−2
ik1

≤
`−1∑
i=1

2i−1k1

(
4k
`(1/5)
1

nrdnvd(1− ε)− k
`(1/5)
1

)2i−1k21(1−2/k1)

.

It follows that, in this range also, the probability in (3.2) is o(1/n) so that the bound (3.1) is
proved for δ ∈ (1/5, 1).

Thus, we have shown that if n is sufficiently large, then with probability at least 1−o(1/n), A
contains at least k12`−1 ≥ nmin{δ2,1/25}/2 vertices, all within distance `rn ≤ min{δ2, 1/25} log2 n ·
γnn

−(1−δ)/d from X1. In particular, the points of A all fall in grid cells at most drn`e/(rn/(2
√
d))+

1 ≤ 1 + 2`
√
d away from the cell containing X1. Thus, all these vertices fall in a cube of at most

(3 + 4`
√
d)d cells. This implies that there must exist a cell with at least

nmin{δ2,1/25}/2

(3 + 4`
√
d)d

≥ nmin{δ2,1/25}/3

vertices for n large enough.

4 Second growth process: searching for a dense cube II

We now show that we can leverage Lemma 3.1 and obtain, still using a constant number
of extra edges per vertex, a cell that contains a positive density of points of the connected
component containing X1.
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Lemma 4.1. Suppose event F occurs. Let k1, k2, and rn be defined as in Theorem 1.1.
With probability at least 1 − o(1/n), the connected component of Γn(rn, k1 + k2) contain-
ing X1 is such that there exists a cell in the grid partition of [0, 1]d into congruent cubes
of side length 1/d2

√
d/rne that contains at least αdnrdn vertices of the component, where

αd = (1− ε)/(2(2
√
d)d).

By Lemma 3.1 we see that, with probability at least 1 − o(1/n), after k1 connections per
vertex, there exists a grid cell that contains at least nmin{δ2,1/25}/3 vertices of the connected
component containing X1. Next we show that with

k2 =

⌈
8(1 + ε)vd(2

√
d)d

(1− ε)

⌉

new connections, the same cell contains a constant times nrdn vertices in the same connected
component (i.e., a linear fraction of all points in the cell).

Consider the cell that contains the largest number of vertices in the connected component
containing X1 after the first k1 connections, and let N0 denote the number of such connected
vertices in this cell. Then we have seen in Section 3 that

P(N0 < nmin{δ2,1/25}/3) = o(1/n)

with respect to the random choices of the first k1 connections. Suppose that the event
N0 ≥ nmin{δ2,1/25}/3 holds.

Now add k2 fresh connections to each of these N0 points, resulting in N1 ≤ k2N0 vertices in
the same grid cell that haven’t been in the connected component of X1 so far. If the number
N1 of new vertices in the cell added to the component is less than 2nmin{δ2,1/25}/3, we declare
failure, otherwise continue by adding k2 new connections to these N1 points. (Note that since
these N1 vertices did not belong to the component of X1 before the first step, we have not
discovered any of their connections and we may use k2 new connections per vertex.) In this
step we add N2 ≤ k2N1 new vertices in the same grid cell. If N2 < 4nmin{δ2,1/25}/3, we declare
failure, otherwise continue. We repeat adding k2 connections to all newly discovered vertices
until the number of connected vertices in the grid cell N0 +N1 + . . .+Ni reaches αdnrdn where
αd = (1− ε)/(2(2

√
d)d) or else for L steps, requiring in every step i = 1, . . . , L that the number

of newly discovered vertices in the same cell be at least 2inmin{δ2,1/25}/3. Here L is chosen such
that

2Lnmin{δ2,1/25}/3 ≤ αdnrdn < 2L+1nmin{δ2,1/25}/3.

To estimate the probability that the process described above fails, observe first that at step i,
the (conditional) probability that a vertex selects a new neighbor in the same cell is at least

2αdnr
d
n −

∑i−1
j=0Ni

(1 + ε)nrdnvd
≥ pd

def
=

αd
(1 + ε)vd

since on the event F , every grid cell has at least (1 − ε)nrdn/(2
√
d)d = 2αdnr

d
n points and the

vertex can reach at most (1 + ε)nrdnvd points. In the inequality we used the fact that the number
of vertices discovered until step i during the process

∑i−1
j=0Ni ≤ (1− ε)nrdn/(2(2

√
d)d) otherwise

the process stops with success before step i.

Thus, after i − 1 successful steps, the expected number of newly discovered vertices at
stage i is at least

EiNi ≥ Ni−1k2pd ≥ 2i−1nmin{δ2,1/25}/3k2pd ≥ 2i+1nmin{δ2,1/25}/3

by the definition of k2, where Ei denotes conditional expectation given the first growth process
and the first i− 1 steps of the second process. Given that the process has not failed up to step
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i− 1, the conditional probability that it fails at step i is thus

Pi
(
Ni < 2inmin{δ2,1/25}/3) ≤ Pi

(
Ni < EiNi − 2inmin{δ2,1/25}/3)

≤ exp

(
−k2Ni−1p2d

8

)
≤ exp

(
−k22i−1nmin{δ2,1/25}/3p2d

8

)
,

where we used the fact that conditionally, Ni has a hypergeometric distribution whose mo-
ment generating function is dominated by that of the corresponding binomial distribution
B(k2Ni−1, pd) (see Hoeffding [10]) and we used simple Chernoff bounding for the binomial
distribution.

Thus, the probability that the process ever fails is bounded by

L∑
i=1

exp

(
−k22i−1nmin{δ2,1/25}/3p2d

8

)
≤ L exp

(
−k2nmin{δ2,1/25}/3p2d

8

)
≤ exp

(
−nmin{δ2,1/25}/4

)
for all sufficiently large n.

5 Third growth process: propagating the density

In this third step we show that, by adding a few more connections, the connected component
containing X1 contains a linear fraction of the points in every cell of the grid partition of [0, 1]d

into cubes of side length 1/d2
√
d/rne. In order to do so, we start from the cell containing

αdnr
d
n vertices in the connected component of Γn(rn, k1 + k2) containing X1, and “grow”

the component cell-by-cell until every cell has the required number of vertices in the same
connected component. We show that a constant number of additional connections per vertex
suffices.

Lemma 5.1. Suppose event F defined in Lemma 2.1 occurs. Let k1, k2, k3, and rn be defined
as in Theorem 1.1. With probability at least 1−o(1/n), the connected component of Γn(rn, k1 +

k2+k3) containing X1 is such that every cell in the grid partition of [0, 1]d into congruent cubes
of side length 1/d2

√
d/rne contains at least 2αdnr

d
n/(3k3) vertices of the component.

Proof. Suppose the event described in Lemma 4.1 holds so that there exists a cell with αdnrdn
vertices in the connected component of X1. Label this cell by 1. Next label all the cells from 1 to
d2
√
d/rned in such a way that cells i and i+ 1 are adjacent (i.e., they share a d− 1-dimensional

face), for all i = 1, . . . , d2
√
d/rned − 1. Note that the size of the cells was chosen such that for

any x in cell i the ball B(x, r) contains entirely cell i+ 1. In particular, every point in cell i+ 1

is a potential neighbor of a point in cell i.

Let k3 = d
√

4(1 + ε)vd/αde and consider the following process. Select, arbitrarily,

M :=

⌊
2αdnr

d
n

3k3

⌋
of the already connected vertices in cell 1 and select, one-by-one, k3 new neighbors for each
until M newly connected vertices have been found in cell 2. Declare failure if the number
of newly connected vertices in cell 2 is less than M after revealing all possible k3M new
connections. Otherwise continue and select k3 new neighbors of the new vertices in cell 2.
Visit all cells in a sequential fashion, always stopping the selection when M new vertices are
connected in the next cell. If the process succeeds, then X1 is connected to at least M points
in every cell, which is a positive proportion.
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To analyze the probability of failure, note that for each new connection, the probability of
discovering a new vertex in cell i+ 1 by a vertex in cell i is at least

2αdnr
d
n − k3M

(1 + ε)vdnrdn

since (assuming the event F ) there are at least 2αdnr
d
n vertices in cell i+ 1, at most (1 + ε)vdnr

d
n

within radius rn of the point whose neighbors we select, and we discard at most k3M points
cell i+ 1 that may have been already be chosen by other vertices in cell i.

Thus, the expected number of newly discovered vertices in cell i+ 1, conditionally on the
fact that the process has not failed earlier, is at least

k3αdnr
d
n ·

2αdnr
d
n − k3M

(1 + ε)vdnrdn
≥ k3αdnrdn

αd
(1 + ε)vd

≥ 2M ,

for all n large enough, where the last inequality follows from our choice of k3. Thus, the
probability of failure in step i is, by a similar argument as in the proof of Lemma 4.1, bounded
by e−ηdnr

d
n , where

ηd =
α3
d

12k3(1 + ε)2v2d
.

Hence, the probability that the process ever fails in any step is o(1/n) and this completes the
proof.

6 Final step: proof of Theorem 1.1

With a giant component densely populating every cell of the grid, it is now easy to show that
with at most one extra connection, the entire graph becomes connected, with high probability.
The argument is as follows.

Start by growing the component of X1 as in the growth processes described above. Then,
with k1+k2+k3 connections per vertex, the component has the property described in Lemma 5.1,
with probability 1 − o(1/n). Now consider points X2, X3, . . . , Xn, one-by-one. If X2 does not
belong to the connected component of X1, then grow the same process starting from X2 until
the component of X2 hits the one of X1. If the two components do not connect, then this new
component also satisfies the property of Lemma 5.1, with probability 1 − o(1/n). (Note that
until the two components meet, all connections are new in the sense that they have not been
revealed in the first process, and therefore these events hold independently.) Now we may
continue, taking every Xi, i = 3, . . . , n. If Xi does not belong to any of the previously grown
components, then we grow a new component starting from Xi until it hits one of the previous
ones, or else until the component has at least 2αdnr

d
n/(3k3) vertices in every cell of the grid. By

the union bound, with probability 1− o(1), every vertex is contained in such a giant component.

If there is more than one connected component at the end of the process, then we add one
more connection to every vertex not belonging to the component of X1. Note that each such
component has at least (1− ε)n/(3k3) vertices and for every vertex, the probability that it hits
the component of X1 is at least η := 2αd/(3k3vd(1 + ε)): indeed, on the event F , every ball of
radius rdn contains at most nrdnvd(1 + ε) points, while it fully contains a cell with 2αdnr

d
n/(3k3)

points of the connected component of X1. As a consequence the probability that all new
connections miss the component of X1 is at most η(1−ε)n/(3k3). Thus, by the union bound,
with high probability, all components connect to the first one and the entire graph becomes
connected. This concludes the proof of Theorem 1.1.
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