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Sharp lower bounds on the least singular value of a random
matrix without the fourth moment condition*

Pavel Yaskov'

Abstract

We obtain non-asymptotic lower bounds on the least singular value of X;n /+/n, where
Xpn is @ p x n random matrix whose columns are independent copies of an isotropic
random vector X, in R?. We assume that there exist M > 0 and « € (0, 2] such that
P(|(Xp,v)| > t) < M/t*" for all t > 0 and any unit vector v € R”. These bounds
depend on y = p/n, o, M and are asymptotically optimal up to a constant factor.
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1 Introduction

In this paper we obtain sharp lower bounds on the least singular value of a random
matrix with independent heavy-tailed rows.

For precise statements, we need to introduce some notation. Let X,, be an isotropic
random vector in R?, i.e. ]EXpoT = I, for a p x p identity matrix I,,. Let also X,,, be a
p x n random matrix whose columns {X,;}?_, are independent copies of X,. Denote by
sp(n~1/2X] ) the least singular value of the matrix n~'/2X] .

The celebrated Bai-Yin theorem states that, with probability one,

sp(n ™ PX]) =1 -+ ol1)

when n — oo, p = p(n) satisfies p/n — y € (0,1), and the entries of X, are independent
copies of a random variable ¢ with E¢ = 0, E¢2 = 1, and E¢* < oco. In [5], Tikhomirov
extended this result to the case E¢* = co. Several authors have studied non-asymptotic
versions of this theorem, relaxing the independence assumption, and obtained bounds of
the form

sp(n”?X],) > 1= Cy®|logy|’

that hold with large probability for some C,a,b > 0 and all small enough y = p/n. See
papers [2], [3], [4], and [6]. For general isotropic random vectors X, with dependent
entries not having finite fourth moments, the optimal values of a and b are unknown.
Assuming that there exist M > 0 and « € (0, 2] such that

P(|(Xp,v)[ > 1) <

S aa for all t > 0 and any unit (in the [?-norm) vector v € R?, (1.1)
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Sharp lower bounds on the least singular value

we derive the optimal values of a and b in this paper.

The paper is organized as follows. Section 2 contains the main results of the paper.
Section 3 deals with the proofs. An Appendix with proofs of auxiliary results is given in
Section 4.

2 Main results

Our main lower bound is a corollary of Theorem 2.1 in [6]. It is given below.

Theorem 2.1. LetC > 1andn >p > 1. If (1.1) holds for M = C%/? and some o € (0,2],
then, with probability at least 1 — e~ P,

Ko(Cy)™/ @t o e (0,2)
sp(nfl/QX;n) >1-14 Cylog(C/y) a=2 and Cly>e
VCly, a=2and Cly<e

where y = p/n and K, = 1/(a(l — 04/2))2/(2+a).
The next theorem contains our main upper bound for a class of random vectors

X, =nZ, forZ,=(z,...,zp) withii.d. entries {z;}}_, independent of . ~ (2.1)

Theorem 2.2. Let (2.1) hold for each p > 1, where {z; 72, are independent copies of
a random variable z with Ez = 0, Ez%2 = 1, and 1 is a random variable with ]Efr]2 =1.If
there exist a € (0,2] and C' > 0 such that

a/2
P(jn| >t) > e for all large enough t > 0, (2.2)
then, for each small enough y > 0,
1 [ K, (Cy)a/Fe) 0,2
oK) <1 o(1) - ¢ ROV e € (02)
2 |VCylog(Cly), a=2

almost surely as n — oo, where p = p(n) = yn + o(n) and K, is given in Theorem 2.1.

Theorem 2.2 and the next proposition show that, when y is small enough, the lower
bounds in Theorem 2.1 are asymptotically optimal up to a constant factor (equal to 14).

Proposition 2.3. For any given C' > 1/4 and « € (0, 2|, there exists a random variable 7
such that En? = 1, (2.2) holds, and

(Kc)a/z

“ara for allt > 0 and any unit vector v € R?,

P(|(Xp,v)[ > 1) <

where X, = nZ,, Z, is a standard normal vector in R? that is independent of n, and
k > 0 is a universal constant.

The proof of Proposition 2.3 is given at the end of the paper, before the Appendix.

3 Proofs

We will use below the following fact. By definition, sp(nfl/ 2X;n) is the square root of

Ap(n™'X,,X]),), where ), (A) is the least eigenvalue of a p x p matrix A. In addition,
ifa>1-0bforsome a,b >0, then \/a >1—b.

Moreover, if a < 1 — b for some a,b > 0, then v/a < 1 — b/2. Thus, to prove Theorems 2.1
and 2.2 we need to derive appropriate lower and upper bounds only for )\p(n_lXan;n).
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Proof of Theorem 2.1. By Theorem 2.1 in [6], forall a > 0 and y = p/n € (0, 1),

_ Cpla C,(2a)Z
M XX > cyfa) — ) sy 4 VEEOZ,

where Z = Z(p,n,a) is a random variable with EZ = 0 and P(Z < —t) < e /2, ¢ >0,
cp(a) = inf Emin{(X,,v)? a} and C,(a)=supE(X,,v)?min{(X,,v)? a}

with inf and sup taken over all unit vectors v € RP.
Since ]P(Z < —«/Qp) < e7? and y = p/n, we have, with probability at least 1 — e 7,

/\p(n_lxan;n) > cp(a) — M —5ay — 1/2yCp(2a). (3.1)

a
To estimate c¢,(a) and Cp,(a), we will use the following lemma that is proved in the
Appendix.
Lemma 3.1. Let a > 0, X, be an isotropic random vector in R?, and (1.1) hold for some
M >0anda € (0,2]. Ifa € (0,2), then

2M
e a—a/2

cpla) > 1 and C,(a) < (2/a+4/(2 —a))Ma'=/2,

In addition, if « = 2, then

M

cpla) >21— and C,(a) < 2M + M log(a*/M) I(a® > M).

a
First, assume that « € (0,2). Using (1.1) and Lemma 3.1, we get

Cy(a) 4 4 1 M 8Ma—*/?
- >1—-|-= — =1l — .
(@) a e + 2 —a]a/? a2 —a)
Taking
OMy~! 2/(2+a) )
- =K. (M /(2+a)
2] (M5,
we have P
2Ma~® Cp(a)
ay = w2 —a) and cy(a) — pa > 1— 4day.
In addition,
Cp(2a) 2 4 _ 4 4 _ 8Ma~—/?
2a a 2—-« (2) a+2—a “ a2 —a) W

and
20C,(2a) < \/2y(8a2y) = day = 4K (M @)/ Z+e),

Since C' = M?/*, we infer from (3.1) that, with probability at least 1 — e P,

Ap(n 71X X)) > 1 — 13ay = 1 — 13K, (Cy)>/ 2+,
Thus we get the desired lower bounds for « € (0, 2).

Suppose now a = 2. Then M = C*/? = C' > 1 and log(a?/C) < log(a?) for any a > 0.
Lemma 3.1 implies that
_ 3C + Clog(a®)I(a® > O)

>1 .
a a
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Consider two possibilities log(C'/y) > 1 and log(C/y) < 1.
Assuming that log(C'/y) < 1 and taking a = 1/C/y, we have a®> > C, log(a?) < 1, and

a S oa
Additionally, we get 5ay = 5v/C%,
Cp(2a) < 2C + Clog(4a?) < (3+1log4)C < 9C/2 and /2yC,(2a) < 31/Cy.
As a result, we conclude from (3.1) that, with probability at least 1 — e™P,
(X X)) > 1-124/Cy.

Suppose log(C/y) > 1. Set a = 1/(C/y) log(C/y). Then a® > C, \/C/y < a < C/y, and

2 2
3C + Clog(a?) < 3C N C'log(C/y) < 5v/TyToa(CTy).
a Cly a

Similarly, C,(2a) < 2C + C'log(4a?) < 7C/2 + Clog(a®) < (7/2 + 2)C'log(C/y) and

\/2yCy(2a) < 44/Cylog(C/y).
Noting that 5ay = 51/Cylog(C/y), we infer that, with probability at least 1 — e~?,

Ap(n™ ' XpnX,,) 21— 144/Cy.

Thus we have proved the theorem.
O

Proof of Theorem 2.2. We will use the following lemma (for the proof, see the Appendix).
Lemma 3.2. Under the conditions of Theorem 2.2,

)\p(n_lxan;—n) < max{0,sup A(s)} +0o(1) a.s., n— oo, (3.2)
5>0

where p = p(n), p/n — y € (0,1), and A\(s) = —y/s + En?/(1 + sn?).

We estimate A = \(s) given in Lemma 3.2 as follows. Set ¢ = n?. Since E¢ = 1,

¢ ¢ 5¢?
1+ s 1+ s¢ 1+ s¢

As)+ L =E
S

:1+E( —4):1—E
It follows from the inequality z/(1 + ) > min{z,1}/2, z > 0, and (4.1) that

]El S—EZC Z %EC min{s(,1} = 2%9 [E(s¢ = 1)I(s¢ > 1) + Emin{(s¢)?, 1}].

As a result, for all s > 0, we get the following upper bound

A@)<1—%—;;W@C—UH%>J)+Emmﬂ%fJH. (3.3)

Recall also that, by (2.2) and the definition of ¢ (= n?), there exists t; > 1 such that

a/2

P(¢ >1) for all ¢ > ¢,. (3.4)

2 t1+a/2
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As in the proof of Lemma 3.2 (see the Appendix), we get that
N(s) = (y — h(s))/s?, s>0,

where h(s) = E(s¢)?/(1 + s¢)? is a continuous strictly increasing function on R, with
h(0) = 0 and h(c0) = P(¢ > 0) > 0. Hence, if y < P(¢ > 0), A(s) achieves its maximum in
s=0bwith b= h"1(y).

Let o € (0,2) and take y small enough to make b = h~!(y) < 1/(21/(1=2/2)¢,). Then
1/b >ty and, by (3.4),

) [ee] a/
E(b(fl)I(bC>1):/1 P(bg>t)dt>/1 ( e dt:%(Cb)a/Qb.

t/b)1+a/2

Moreover, (1/b)1=%/2/2 > t:=*/? and, by (3.4),

1 1/b
E min{(b¢)?, 1} :/O P((b¢)* > t)dt = 2b2/0 2P(¢ > 2)dz

1/b ~va/2 1—a/2 _ 4l-a/2
> 21 / O 4z = acerp 1Y) ‘o
o 202 1—a/2
(1/b)'=/2/2 _ (Cb)*/?b
1—a/2  1-a/2°

> 2ca/2b2

By (3.3), A(b) < g(b), where g(b) =1 — y/b — Kb*/? and

C«a/Q 1 1 Oa/2
K=—"—(—+ - .
2 (a/Q 1—a/2> a(l —a/2)

By Young’s inequality,
(673

o 2Fa _2 /b Kba/2 Yy
K2/%)74a — Yy Kb/2)ha < Y <?4K /2
(K*%y) (b) (Kb7) Craja @ty S T

and
A(b) < g(b) <1 — (K> ey)/GFe),

The right-hand side of the last inequality can be made positive for small enough y.
Hence, combining the above bounds with Lemma 3.2, we get the desired upper bound
for A\,(n~'X,,X,,,) when a € (0,2) (see also the beginning of Section 3).

Let now o = 2 and take y small enough to make b = h~!(y) < 1/t2. Since ty > 1, we
have 1/b > t3 > t; and, hence, the same arguments as above yield

c

— (2
ey &t = Y

B¢ - DI0¢> 1) = [ ROcar> [

1/b
Emin{(b¢)?, 1} > 2b2/ = Ob?log(1/b).

to

C 1 1
Zdz = 2CH log — > 2C1% log —
z & bto & Vb

Therefore, it follows from (3.3) that A\(b) < g(b), where

g(s)=1-— g - %(log(l/s) +1), s>0.

Differentiating ¢ yields

| Q

Csl  2y— Cs?log(1/s)

rey— Y
9(s) =3 2 s 252

(log(1/s) +1) +
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If 2y/C is small enough, then g = g(s) has a unique local maximum in s; and a unique
local minimum in sy, where s; < s3, and sy, s are solutions to the equation f(s) = 2y/C
with f(s) = s?log(1/s).
The function f = f(s) is increasing on [0,1/+/¢], decreasing on [1/1/e, o] and has
f(0) = f(1) = 0. Hence, sy > 1/2 and b = h~!(y) < 1/2 when y is small enough. Thus,
Y 031

_y  Cstlog(1/s1) 2y
)\(b) X g(b) <1 $1 2 (IOg(l/Sl) + 1) S1 2s1 ! S1

Let us bound s; from above. Take so = \/(4y/C)/log(C/y). If y is small enough, then
so < 1/4/e as well as

/)= s L uccro s wicr)] - 2+ 2 YOI 2

Therefore, s1 < sg and
2y
Ao <1- 2 <1 o1 \/Cylog(Tly).

The right-hand side of the last inequality can be made positive for small enough y.
Hence, combining the above bounds with Lemma 3.2, we get the desired upper bound
for A\,(n~'X,,X,,) in the case with a = 2 (see also the beginning of Section 3). O

Proof of Proposition 2.3. Let ty = (1 +2/a)~! and ¢ = C/t}**/®. If a € (0,2], then

¢=>C inf (142/a)*¥*=4C>1.
a€e(0,2]

Let n = /€(, where ¢ and ¢ are independent random variables,
P=q)=¢ ' and PE=0)=1-¢,

¢ has the Pareto distribution

a/
IP(C >t) _ {(tO/t)lJr 27 t>t0a

1, t <tp.

It is easy to see that IE¢ = 1. Moreover, P(¢ > t) < (to/t)'+*/? for all t > 0 and

IEC:/ P((>t)dt:to+/ (to/t) /2 dt =t +—°:1.
0 to

Hence, En? = E¢EC = 1. In addition, (2.2) holds since, for all large enough ¢ > 0,

1 2 1 231 2 qa/2t(1)+a/2 OO(/2
P(in| > 1) =g 'P(C > 12/q) = ¢ qto/t?) T/ = = — =

We also have

v)| = VECI(Zp, v)| 4 V&C|Z| for all unit vectors v € R?,

where Z ~ N(0, 1) is independent of (&, (), «Z» means equality in law. Hence, if t > 0,

P(\EC|Z] > t) = EP(sC > 1) s—ezz < B(sto/t2) T *I(s > 0)]y—ez» <
E(t0622)1+a/2 _ té+a/2qa/2E‘Z‘2+a B Ca/2E|Z|2+a _ (HC)Q/Q

= $2+a $2+a - $2+a = 424a
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where
K= sup (E|Z|2+O‘)2/°‘.
a€e(0,2]
Let us show that k < co. If Z ~ N(0, 1), then
2+«

2%r(3 J; O‘)
=E|ZPT* = ———=~

fla) = E)Z] N

is a smooth function on [0,2] with f(0) = 1 and, in particular, f/(0) exists and is finite.
The function g(a) = f(a)?/ @ is continuous on (0, 2] and

g(@) = (L+ f'(0)a+o(a))”* — exp{2f'(0)}, a—=0+.

As a result, k = sup{g(«) : « € (0,2]} is finite. This finishes the proof of the proposition.

O
4 Appendix
Proof of Lemma 3.1. If U is a non-negative random variable with kU = 1, then
a o0 o0 M 2M
Emin{U,a}:/ IP(U>t)dt:EU—/ PU >t)dt > 1—/ ——dt=1— ——+,
0 “ “ t1+a/2 aaa/Z

where M = sup{t!T*/2P(U > t) : t > 0}. Putting U = (X,,,v)? for a given unit vector
v € R? and taking the infimum over such v, we obtain the desired lower bound for ¢,(a).
Similarly, we have

EU min{U, a} =aB(U — a)I(U > a) + a*P(U > a) + EUI(U < a)
=aB(U — a)I(U > a) + Emin{U?, a*}
=I + I, (4.1)

where

2

[o ] o0 M 2M o a
Ilza/a P(U>t)dt<0,/a Wdt:7a1 /2’ I2:A P(U2>t)dt

If « € (0,2), then I, can be bounded as follows

2

o® Mdt Ma'~—2/2

I < 1/24a/a .

o ti/2te/ 1/2—a/4

Similarly, if o = 2, then
2
9 @ Mdt 9 9
L <M+1(a®>M) TZM—i-Mlog(a /M)I(a® > M).

M

Thus, we have proved that

2 4/(2 — a))at=e/? 0,2
EU min(0a) < a7 { 2/ Y@= a)a =2, ac(02),
2 +log(a?/M)I(a®> > M), a=2.
Putting U = (X, v)? for a given unit vector v € R? and taking the supremum over such
v, we get the desired upper bound for C,(a).
O
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Proof of Lemma 3.2. We have n~'X,, X, =n"'Z,,T,Z},, where Z,, is a p x n matrix
with i.i.d. entries, T,, is a n X n diagonal matrix whose diagonal entries are independent
copies of ¢ = 7%, and Z,, is independent of T,,.

By the Glivenko-Cantelli theorem, the empirical spectral distribution of T,, converges
a.s. to the distribution of (. By Theorem 4.3 in [1], there is a non-decreasing cadlag

function F' = F(\), A € R, such that F(A\) =0 for A <0, F(o0) < 1, and

1 p
]P( lim — Z I(Agn < A) = F(/\)) =1 for all continuity points A of F, (4.2)
n— oo p
k=1
where p = p(n) = yn + o(n) and {A\x,},_, is the set of eigenvalues of p~'X,,,X,. The
Stieltjes transform

f(z):/M, ceCt = {weC: 3> 0, (4.3)
]RA—Z

of F' can be defined explicitly as a unique solution in C* to the equation

Fo = (o= 2ot ) " o eau -
2)=—(2z—-E B or, equivalently, z = —

; T+ 1 E———. (4.4)

RIS TS
fz) y 1+ f(2)¢
Define

Sea={A>20: G(A+¢)>G(\—¢) foranysmall enoughe >0}

for a non-decreasing cadlag function G = G()), A € R. In other words, S¢ is the set of
points of increase of G. Obviously, S is a closed set. Using (4.2) and setting G = F as
well as

a=inf{A>0: X e Sp},

we conclude that a € S and

Ap(n 71X, X ) = %Ap(p—lxpnxgn) <ay+o(l) as. (4.5)
when n — co.
Consider the function L1 ¢
=—+-FE
z(s) S + R e

defined for s € D, where D consists of all s € R\ {0} with —s™! ¢ S¢ for G(A) = P(¢ < \),
A € R. This function differs from A = \(s) given in Lemma 3.2 by the factor y, i.e.
A(s) = yz(s) for all s > 0. Therefore, to finish the proof, we only need to show that

a = max{0, sup z(s)}.
5>0
Let us show that a = 0 when z(s) < 0 for all s > 0. The latter can be reformulated as
follows: if a > 0, then there is s > 0 satisfying z(s) > 0. Suppose a > 0. Then a/2 € R\ Sr
and F(a/2) = 0. Hence,

f(a/2) = /R )\F_(da)\/)Q >0 and 81_i>151+f(a/2 +ie) = f(a/2) > 0.

Taking z = a/2 + ic in (4.4) and tending ¢ to zero, we get a/2 = z(s) > 0 for s = f(a/2).
Assume further that there is s > 0 satisfying z(s) > 0 or, equivalently,

5¢
1+s¢

g(s) =E > y.
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The function g = g(s) is continuous and strictly increasing on R.. It changes from zero
to P(¢ > 0) when s changes from zero to infinity. The same can be said about

o (50)°
h(s) _E(l—i—s()?'

Hence, y < P(¢ > 0) and there is b = b(y) > 0 that solves h(b) = y. By the Lebesgue
dominated convergence theorem,

LI S SO et U C)
Ty (L+sQ? ys?

for any s > 0.

Therefore, b is a strict global maximum point of z = z(s) on {s : s > 0}.

The rest of the proof is based on Lemma 6.1 in [1] which states that 2/(s) > 0 and
s € Dif s = f(\) for some A € R\ Sp. Moreover, {z(s): s € D, 2/(s) >0} CR\ Sr.

We will now prove that a < z(b). Suppose the contrary, i.e. a > z(b). By definition,
F(A\) =0forall A <a. Set zg = z(b). Then 2z € R\ Sp,

o= fen) = [ 12 >0,

and, by the above lemma, 2’(sg) > 0. Taking z = 2o + ic in (4.4) and tending ¢ to zero,
we arrive at z(b) = z0 = 2(f(z0)) = 2(sp). Since z'(sg) > 0 and sy > 0, we get the
contradiction to the fact that b is a strict global maximum point of z = z(s) on {s : s > 0}.
Let us finally prove that a > z(b). The function z = z(s) is continuous and strictly
increasing on the set (0,b) with z(0+) = —oc and z(b—) = z(b). By the above lemma,

2((0,8)) = (=00, 2(b)) € R\ S

Thus, z(b) < a. This finishes the proof. O
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