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1 Introduction

The purpose of this note is to show that an invariant manifold for a semilinear
stochastic partial differential equation (SPDE){

drt = (Art + α(rt))dt+ σ(rt)dWt + γ(rt−)dXt

r0 = h0
(1.1)

in the spirit of [14] driven by Lévy processes with small jumps necessarily has a certain
amount of flatness, that is, of linear structure.

A result which is related to the findings of our paper has been provided in [9] for the
particular case of Wiener process driven Heath-Jarrow-Morton (HJM, see [10]) interest
rate term structure models, namely that under suitable conditions an invariant manifold
for the HJM equation necessarily is a foliation, that is, a collection of affine spaces.

In this paper, we deal with general SPDEs of the type (1.1) driven by Lévy processes,
and the intuitive statement of our main results (Theorems 2.6 and 2.7) is that the flatness
of an invariant manifold is at least equal to the number of driving sources with small
jumps.

In order to acquaint the reader with the ideas behind these results, let us present the
key concepts and ideas of the proof in an informal way. Denoting by H the state space of
the SPDE (1.1), which we assume to be a separable Hilbert space, and byM be a finite
dimensional submanifold of H, we have the following concepts, which are explained in
more detail in Section 2 and Appendix A:

• We callM invariant for the SPDE (1.1) if for each starting point h0 ∈M the mild
solution to (1.1) with r0 = h0 stays on the manifold.
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Flatness of invariant manifolds for SPDEs driven by Lévy processes

• For a point h0 ∈M the flatness ofM at h0 is the largest integer d such that some
d-dimensional subspace L ⊂ H is contained simultaneously in all tangent spaces of
the manifoldM locally around h0.

• Then, the flatness ofM is defined as the minimum over all these local quantities.

As already indicated, throughout this paper we will assume that M is an invariant
manifold. The volatility γ = (γk)k∈K , where K = {1, . . . , q} with q denoting the dimension
of the Lévy process X, consists of mappings γk : H → H, k ∈ K. In order to exemplify
the ideas behind our result, we assume (for the sake of simplicity) that for each k ∈ K
the Lévy process Xk makes arbitrary small positive jumps. Then, for each h ∈ M the
flatness ofM at h is of the stated size, and the proof is divided into two steps:

• For an arbitrary k ∈ K the volatility γk(h) belongs to the tangent space toM at h.
Indeed, since the manifoldM is invariant, it captures every possible jump of Xk.
Since, in addition, the Lévy process Xk makes arbitrary small positive jumps, this
means that for some ε > 0 we have

h+ xkγ
k(h) ∈M for all xk ∈ [0, ε].

In other words, the line segment {h + xkγ
k(h) : xk ∈ [0, ε]} is contained in the

manifoldM. From an intuitive point of view, it is clear that this implies that γk(h)

belongs to the tangent space toM at h. We refer to Proposition 2.5 for the precise
formulation of this statement and its proof.

• Due to the previous step, the linear space L generated by all γk(h), k ∈ K is
contained in the tangent space to M at h, which provides the desired result
concerning the flatness of the manifold.

The remainder of this note is organized as follows. In Section 2 we provide the general
framework and present our main results. In Section 3 we illustrate our main results by
means of an example; namely we apply our results to the Hull-White extension of the
Vasic̆ek model from interest rate theory. For convenience of the reader, in Appendix A
we provide the crucial definitions and results regarding submanifolds in Hilbert spaces.

2 Flatness of invariant manifolds

In this section, we present our main results concerning the flatness of invariant
manifolds for SPDEs driven by Lévy processes.

Let (Ω,F , (Ft)t∈R+ ,P) be a filtered probability space with right-continuous filtration.
Let W be a p-dimensional Wiener standard process for some p ∈ N0, and let X be an q-
dimensional Lévy process for some q ∈ N, which we assume to be a purely discontinuous
martingale with canonical representation X = x ∗ (µX − ν) in the sense of [11, Cor.
II.2.38]. Here µX denotes the random measure associated to the jumps of X, which
is a homogeneous Poisson random measure, and ν denotes its compensator, which is
given by ν(dt, dx) = dt⊗ F (dx) with F denoting the Lévy measure of X. We assume that
X1, . . . , Xq are independent, which implies that the Lévy measure F is given by

F (B) =

q∑
k=1

∫
R

1B(xek)F k(dx), B ∈ B(Rq) (2.1)

with e1, . . . , eq denoting the unit vectors in Rq, and with F k denoting the Lévy measure
of Xk for k = 1, . . . , q. We assume that∫

R

(
|x|2 ∨ |x|4

)
F k(dx) <∞ for all k = 1, . . . , q. (2.2)
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Flatness of invariant manifolds for SPDEs driven by Lévy processes

The following definition identifies the set of all indices such that the corresponding Lévy
process makes “small jumps”.

Definition 2.1. We denote by K be the set of all indices k ∈ {1, . . . , q} such that for
some ε > 0 we have [0, ε] ⊂ supp(F k) or [−ε, 0] ⊂ supp(F k).

Let H be a separable Hilbert space and let A : D(A) ⊂ H → H be the infinitesimal
generator of a C0-semigroup (St)t≥0 on H. Furthermore, let α : H → H, σ : H → Hp and
γ : H → Hq be Lipschitz continuous mappings such that σj ∈ C1(H) for all j = 1, . . . , p.
We suppose that the semigroup (St)t≥0 is pseudo-contractive, that is

‖St‖ ≤ eβt, t ≥ 0

for some constant β ∈ R. Then, for each h0 ∈ H there exists a unique mild solution to
the SPDE (1.1), that is, an adapted càdlàg process r = r(h0) such that

rt = Sth0 +

∫ t

0

St−sα(rs)ds+

p∑
j=1

∫ t

0

St−sσ
j(rs)dW

j
s

+

q∑
k=1

∫ t

0

St−sγ
k(rs−)dXk

s , t ∈ R+,

see, for example, [14], [13] or [7]. For what follows, let M be a finite dimensional
C3-submanifold of H, which we assume to be closed as a subset of H. We refer to
Appendix A for details about submanifolds in Hilbert spaces.

Definition 2.2. The submanifold M is called invariant for (1.1) if for all h0 ∈ M we
have r ∈M up to an evanescent set1, where r = r(h0) denotes the mild solution to (1.1)
with r0 = h0.

Remark 2.3. As our first step in order to analyze the flatness of invariant manifolds,
we will write the SPDE (1.1) as the SPDE (2.4) below, and apply [8, Thm. 2.8]. Let us
emphasize those of our previous assumptions, which we have exclusively made for an
application of this result:

• We assume the integrability condition (2.2), which ensures that condition (2.5)
from [8] holds true.

• We assume thatM is a C3-submanifold of H, and that it is closed as a subset of H.
This assumption is also required for the mentioned result from [8].

In the sequel, we also assume that the index set K, which identifies all Lévy processes
with “small jumps”, is nonempty. Otherwise, no statement concerning the flatness ofM
is possible, as the following counterexample shows:

Example 2.4. We consider the SPDE{
drt = γ(rt−)dNt

r0 = h0
(2.3)

on the state space H = R2, which – after rewriting – is of the form (1.1). Here N is a
Poisson process, and the volatility γ : R2 → R2 is given by γ(h) = (1, 0) for all h ∈ R2.
Then the one-dimensional submanifold

M = {(ξ, sin(2πξ)) : ξ ∈ R}

is invariant for (2.3), which follows from [8, Thm. 2.11], but we have flM(h0) = 0 for all
h0 ∈M, showing that the flatness ofM is zero.

1A random set A ⊂ Ω × R+ is called evanescent if the set {ω ∈ Ω : (ω, t) ∈ A for some t ∈ R+} is a
P-nullset, cf. [11, 1.1.10].
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The following result shows that in case of invariance all volatilities associated to Lévy
processes with “small jumps” are tangential to the submanifold.

Proposition 2.5. Suppose that the submanifoldM is invariant for (1.1). Then we have

γk(h) ∈ ThM for all k ∈ K and all h ∈M.

Proof. We can write the SPDE (1.1) as{
drt = (Art + α(rt))dt+ σ(rt)dWt +

∫
Rq
δ(rt−, x)(µX(dt, dx)− F (dx)dt)

r0 = h0,
(2.4)

where δ : H ×Rq → H is given by

δ(h, x) =

q∑
k=1

xkγ
k(h), (h, x) ∈ H ×Rq.

In view of (2.2), all assumptions of [8, Thm. 2.8] are fulfilled, and together with (2.1), for
each k = 1, . . . , q we obtain

h+ xkγ
k(h) ∈M for all h ∈M and all xk ∈ supp(F k). (2.5)

Now, let k ∈ K and h0 ∈M be arbitrary, and let {e1, . . . , em} be an orthonormal basis of
Th0
M. According to [5, Lemma 6.1.2] there exists a parametrization φ : V ⊂ Rm → U∩M

around h0 such that

φ(〈e, h〉) = h for all h ∈ U ∩M, (2.6)

where we use the notation 〈e, h〉 := (〈e1, h〉, . . . , 〈em, h〉). In view of Definition 2.1 we may
assume, without loss of generality, that [0, ε] ⊂ supp(F k) for some ε > 0. By (2.5), and
since U is an open neighborhood of h0, we obtain, after reducing ε > 0 if necessary, that

h0 + tγk(h0) ∈ U ∩M for all t ∈ [0, ε]. (2.7)

Setting y0 := 〈e, h0〉, by taking into account (2.7) and (2.6) we get

γk(h0) =
∂

∂xk
(h0 + xkγ

k(h0))|x=0 = lim
t→0

h0 + tγk(h0)− h0
t

= lim
t→0

φ(y0 + t〈e, γk(h0)〉)− φ(y0)

t
= Dφ(y0)〈e, γk(h0)〉 ∈ Th0M,

finishing the proof.

Now, we are ready to present our main results concerning the flatness of invariant
manifolds.

Theorem 2.6. Suppose that the submanifoldM is invariant for (1.1). Suppose there
exists d ∈ N0 such that for each h0 ∈M we have

d ≤ dim
⋂

h∈U∩M

〈γk(h) : k ∈ K〉 (2.8)

for some open neighborhood U ⊂ H of h0.

1. Then, for each h0 ∈M the following statements are true:

(a) We have flM(h0) ≥ d.
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Flatness of invariant manifolds for SPDEs driven by Lévy processes

(b) There exist an open neighborhood U0 ⊂ H of h0, a d-dimensional subspace L ⊂
H and a finite dimensional C3-submanifold N of L⊥ with dimN = dimM− d
such that U0 ∩M = U0 ∩ (N ⊕L).

(c) If d = dimM, thenM is a local affine space generated by L around h0.
(d) If d = dimM− 1, thenM is a local foliation generated by L around h0.

2. If, furthermore, the submanifoldM is connected as a topological subspace of H,
and we have flM(h0) = d for each h0 ∈M, then the following statements are true:

(a) We have flM = d.
(b) There exist a d-dimensional subspace L ⊂ H and a finite dimensional C3-

submanifold N of L⊥ with dimN = dimM− d such thatM = N ⊕L.
(c) If d = dimM, thenM is an affine space generated by L.
(d) If d = dimM− 1, thenM is a foliation generated by L.

Proof. Let h0 ∈M be arbitrary. By assumption, there exists a d-dimensional subspace
Lh0 such that

Lh0 ⊂
⋂

h∈U∩M

〈γk(h) : k ∈ K〉,

and hence, by Proposition 2.5 we obtain

Lh0
⊂ ThM for all h ∈ U ∩M.

Therefore, Proposition A.7 proves the first statement, and the second statement follows
from Proposition A.9.

Theorem 2.6 shows that under condition (2.8) on the volatilities (γk)k∈K invariance
of the submanifold implies the inequality flM(h0) ≥ d concerning its flatness. Roughly
speaking, this means that the flatness of the submanifold is at least equal to the number
of driving sources with small jumps. Furthermore, the submanifold admits locally a
direct sum decomposition into another manifold and a d-dimensional linear space. If
the submanifoldM is connected and we even have equality in flM(h0) ≥ d, then the
direct sum decomposition holds globally. The following Theorem 2.7 presents another
condition, namely (2.9), on the volatilities (γk)k∈K under which such a global direct sum
decomposition of the manifold holds true.

Theorem 2.7. Suppose that the submanifoldM is invariant for (1.1), and let d ∈ N0 be
such that

d ≤ dim
⋂
h∈M

〈γk(h) : k ∈ K〉. (2.9)

Then the following statements are true:

1. We have flM≥ d.
2. There exist a d-dimensional subspace L ⊂ H and a finite dimensional C3-submanifold
N of L⊥ with dimN = dimM− d such thatM = N ⊕L.

3. If d = dimM, thenM is an affine space generated by L.
4. If d = dimM− 1, thenM is a foliation generated by L.

Proof. By assumption, there exists a d-dimensional subspace L such that

L ⊂
⋂
h∈M

〈γk(h) : k ∈ K〉,

and hence, by Proposition 2.5 we obtain

L ⊂ ThM for all h ∈M.

Therefore, Proposition A.8 concludes the proof.
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3 An example: The Lévy driven Hull-White extension of the Vasic̆ek
model

For the sake of illustration of our previous results, we present an example from
mathematical finance, which concerns the modeling of interest rate curves, namely
the Lévy driven Hull-White extension of the Vasic̆ek model, which is an example of the
so-called HJMM (Heath-Jarrow-Morton-Musiela) equation{

drt = ( ddξ rt + αHJM(rt))dt+ γ(rt−)dXt

r0 = h0.
(3.1)

Here the state space is a suitable Hilbert space H consisting of functions h : R+ → R

(see, for example, [5, Sec. 5]), and d
dξ is the differential operator, which is generated

by the translation semigroup on H. We refer, e.g., to [6, 4, 15, 12] for the Lévy driven
HJMM equation. In this section, we assume that the Lévy process is one-dimensional
and has the canonical representation X = W + x ∗ (µX − ν) with a standard Wiener
process W such that for some ε > 0 we have [0, ε] ⊂ supp(F ) or [−ε, 0] ⊂ supp(F ), where
F denotes the Lévy measure of X. For the Hull-White extension of the Vasic̆ek model
the volatility γ : H → H is constant, that is γ(h1) = γ(h2) for all h1, h2 ∈ H. Therefore,
and since H consists of functions mapping R+ to R, we agree to write γ(ξ) instead of
(γ(h))(ξ) for ξ ∈ R+. With this convention, the volatility γ ∈ H is given by

γ(ξ) = ρ · exp(−cξ), ξ ∈ R+

with constants ρ 6= 0 and c ∈ R. The drift αHJM ∈ H is constant as well, and it is given by
the HJM drift condition

αHJM = −γ ·Ψ′
(
−
∫ •
0

γ(ξ)dξ

)
,

where Ψ denotes the cumulant generating function of the Lévy process X. Now, letM be
a two-dimensional submanifold, which is invariant for (3.1). Then, according to Theorem
2.7 the submanifoldM is a foliation generated by L = 〈ξ 7→ exp(−cξ)〉. Consequently,
for the Lévy driven Hull-White extension of the Vasic̆ek model with small jumps, every
invariant manifold must necessarily be a foliation. It is well-known that, conversely, the
Hull-White extension of the Vasic̆ek model admits a two-dimensional realization, that is,
for every h0 ∈ D(d/dξ) there exists a two-dimensional invariant manifold with h0 ∈M,
where the invariant manifolds are foliations generated by L. For the Lévy driven case,
we refer, for example, to [17].

A Finite dimensional submanifolds in Hilbert spaces

In this appendix, we provide the required results about finite dimensional submani-
folds in Hilbert spaces. Let H be a Hilbert space and let k,m ∈ N be positive integers.

Definition A.1. A nonempty subsetM⊂ H is a m-dimensional Ck-submanifold of H, if
for all h0 ∈M there exist an open neighborhood U ⊂ H of h0, an open subset V ⊂ Rm
and a map φ ∈ Ck(V ;H) such that

1. φ : V → U ∩M is a homeomorphism;

2. Dφ(y) is one to one for all y ∈ V .

The map φ is called a parametrization ofM around h0.

For what follows, letM be a m-dimensional Ck-submanifold of H. For the purpose of
this paper, we require the notion of the flatness ofM, which is defined as follows.
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Definition A.2. For h0 ∈M we define the flatness ofM at h0, denoted by flM(h0), as
the largest integer d ∈ {0, . . . ,m} such that for some d-dimensional subspace L ⊂ H and
some open neighborhood U of h0 we have

L ⊂ ThM for all h ∈ U ∩M.

Definition A.3. We call flM := minh∈M flM(h) the flatness ofM.

Remark A.4. A similar notion, which also measures the amount of flatness of a manifold,
is the rank, which is defined for complete Riemannian manifolds. We refer, for example,
to [3], [2] or [16] for the precise definition.

Definition A.5. Let L ⊂ H be a finite dimensional subspace.

1. M is an affine space generated by L if there exists an element g0 ∈ L⊥ such that
M = g0 ⊕ L.

2. M is a foliation generated by L if there exists a one-dimensional Ck-submanifold
N of L⊥ such thatM = N ⊕L.

Definition A.6. Let L ⊂ H be a finite dimensional subspace, and let h0 ∈M be arbitrary.

1. M is a local affine space generated by L around h0 if there exist an open neighbor-
hood U of h0 and an element g0 ∈ L⊥ such that U ∩M = U ∩ (g0 ⊕ L).

2. M is a local foliation generated by L around h0 if there exist an open neighborhood
U of h0 and a one-dimensional Ck-submanifold N of L⊥ such that U ∩ M =

U ∩ (N ⊕L).

Proposition A.7. Let h0 ∈ M be arbitrary, let L ⊂ H be a subspace and let U ⊂ H be
an open neighborhood of h0 such that

L ⊂ ThM for all h ∈ U ∩M. (A.1)

Then, denoting by h0 = h1 + h2 the direct sum decomposition of h0 according to H =

L⊥ ⊕ L, there exist open neighborhoods U1 ⊂ L⊥ of h1 and U2 ⊂ L of h2 such that
U0 := U1 ⊕ U2 is an open neighborhood of h0 satisfying the following conditions:

1. We have U0 ∩M = U0 ∩ ((U0 ∩M) + L).

2. The subsetN := U1∩ΠL⊥M is a Ck-submanifold of L⊥ with dimN = dimM−dimL,
and we have U0 ∩M = U0 ∩ (N ⊕L).

Proof. Setting p := dimL, there exists an orthonormal basis {e1, . . . , em} of Th0M such
that {e1, . . . , ep} is an orthonormal basis of L. According to [5, Lemma 6.1.2] there exists
a parametrization φ : V ′ ⊂ Rm → U ′ ∩M around h0 with U ′ ⊂ U such that

φ(〈e, h〉) = h for all h ∈ U ′ ∩M, (A.2)

where we use notation 〈e, h〉 := (〈e1, h〉, . . . , 〈em, h〉) ∈ Rm. Since U ′ ⊂ H is an open
neighborhood of h0, there exist open neighborhoods U ′1 ⊂ L⊥ of h1 and U ′2 ⊂ L of h2
such that U ′1 ⊕ U ′2 ⊂ U ′. By (A.2) we have

φ−1(U ′1 ∩M) ⊂ Rm−p and φ−1(U ′2 ∩M) ⊂ Rp (A.3)

with respect to the direct sum decomposition Rm = Rm−p ⊕Rp. Since V ′ is open in Rm,
there are open subsets V1 ⊂ Rm−p and V2 ⊂ Rp such that V0 ⊂ V ′, where V0 := V1 ⊕ V2.
Since φ is a homeomorphism, there exists an open neighborhood U ′0 of h0 such that
φ(V0) = U ′0 ∩M. By (A.3) there exist open neighborhoods U1 ⊂ L⊥ of h1 and Ũ2 ⊂ L of
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h2 such that (U1 ⊕ Ũ2) ∩M = U ′0 ∩M. Setting N := U1 ∩ ΠL⊥M, U2 := Ũ2 ∩ ΠLM and
U0 := U1 ⊕ U2, we have ΠLU0 = U2 and

φ(V0) = U0 ∩M = N ⊕ U2,

and it follows that

U0 ∩M = U0 ∩ (N ⊕ U2) ⊂ U0 ∩ (N ⊕L). (A.4)

Defining the mappings φ1 := φ|V1
and φ2 := φ|V2

, we obtain:

• φ1 ∈ Ck(V1;L⊥) and φ2 ∈ Ck(V2;L), because φ ∈ Ck(V0;H).

• φ1 : V1 → N and φ2 : V2 → U2 are homeomorphisms, because φ : V0 → N ⊕ U2 is a
homeomorphism.

• For all y1 ∈ V1 and y2 ∈ V2 the mappings Dφ1(y1) and Dφ2(y2) are one to one,
because

Dφ(y1 + y2) = Dφ1(y1) +Dφ2(y2)

is one to one.

Therefore, N is a (m− p)-dimensional submanifold of L⊥ with parametrization φ1, and
U2 is a p-dimensional submanifold of L with parametrization φ2. Furthermore, by (A.2)
there is an isomorphism T : Rp → L such that φ2 = T |V2

, and hence, we have

φ(y1 + y2) = φ1(y1) + Ty2 for all y1 ∈ V1 and y2 ∈ V2.

Now, we will show that

U0 ∩ ((U0 ∩M) + L) ⊂ U0 ∩M. (A.5)

Indeed, let h ∈ U0 ∩M and g ∈ L be such that h + g ∈ U0. Then there exist unique
y1 ∈ V1, y2 ∈ V2 and z2 ∈ Rp such that h = φ1(y1) + Ty2 and g = Tz2, and we obtain

h+ g = φ1(y1) + T (y2 + z2).

Since h + g ∈ U0 and ΠLU0 = U2, we have T (y2 + z2) ∈ U2. Therefore, and since
T : Rp → L is an isomorphism, we obtain y2 + z2 ∈ V2, and hence

h+ g = φ(y1 + (y2 + z2)) ∈ U0 ∩M,

proving (A.5). In order to prove the converse inclusion of (A.4), let h ∈ N and g ∈ L
be such that h + g ∈ U0. There exists f ∈ L such that h + f ∈ U0 ∩M. Thus, we have
h+g = (h+f)+(g−f) ∈ U0∩M+L. Since h+g ∈ U0, by (A.5) we obtain h+g ∈ U0∩M,
completing the proof.

Proposition A.8. Suppose that M is closed as a subset of H, and let L ⊂ H be a
subspace such that

L ⊂ ThM for all h ∈M. (A.6)

Then the following statements are true:

1. We haveM =M+ L.

2. The subset N := ΠL⊥M is a Ck-submanifold of L⊥ with dimN = dimM− dimL,
and we haveM = N ⊕L.
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Proof. In order to proveM + L ⊂ M, let h ∈ M and g ∈ L be arbitrary, and suppose
that h+ g /∈M. We define t ∈ [0, 1] as

t := inf{s ∈ [0, 1] : h+ sg /∈M},

and set h0 := h+ tg. SinceM is closed as a subset of H, we have h0 ∈M, which implies
t < 1. Furthermore, there exists a sequence (sn)n∈N ⊂ (0,∞) with sn → 0 such that
h0 + sng /∈M for all n ∈ N. By Proposition A.7 there exists an open neighborhood U of
h0 such that

U ∩M = U ∩ ((U ∩M) + L),

which contradicts h0 + sng /∈M for all n ∈ N, establishing the first statement.
According to Proposition A.7, the subset N := ΠL⊥M is a Ck-submanifold of L⊥ with

dimN = dimM− dimL. Furthermore, we have M ⊂ N ⊕ L. In order to prove the
converse inclusion N ⊕ L ⊂ M, let h ∈ N and g ∈ L be arbitrary. There exists f ∈ L
such that h+ f ∈ M. Thus, we have h+ g = (h+ f) + (g − f) ∈ M+ L, and we obtain
N ⊕L ⊂M+ L =M, establishing the second statement.

Proposition A.9. Suppose that the submanifoldM is connected as a topological sub-
space of H, and let d ∈ N0 be such that flM(h0) = d for each h0 ∈M. Then there exist
a subspace L ⊂ H with dimL = d and a finite dimensional Ck-submanifold N of L⊥ with
dimN = m− d such thatM = N ⊕L.

Proof. For each h0 ∈ M there exist a d-dimensional subspace Lh0
⊂ H and an open

neighborhood Uh0
of h0 such that

Lh0
⊂ ThM for all h ∈ Uh0

∩M. (A.7)

We will show that

Lg0 = Lh0 for all g0, h0 ∈M. (A.8)

Let g0, h0 ∈ M be arbitrary. Since the submanifold M is locally path-connected and
connected, it is even path-connected, see, for example, [1, Prop. 1.6.7]. Thus, there
exists a continuous function f : I →M with f(0) = g0 and f(1) = h0, where I = [0, 1].
Since the graph f(I) ⊂ M is compact, there exist an integer n ∈ N and elements
g1, . . . , gn ∈ f(I) with gn = h0 such that

f(I) = f(I) ∩
( n⋃
k=0

Ugk

)
.

We define an integer e ∈ {1, . . . , n}, elements 0 = t0 < . . . < te ≤ 1 and pairwise
different π(0), . . . , π(e) ∈ {0, . . . , n} with π(0) = 0, π(e) = n and f(tk) ∈

⋃k
i=0 Ugπ(i)

,

f(tk) /∈
⋃k−1
i=0 Ugπ(i)

for k = 0, . . . , e inductively as follows:

• We set t0 := 0 and π(0) := 0.

• For the induction step k → k + 1 let k ∈ {0, . . . , n− 1} be arbitrary.

– If f(tk) ∈ Uh0 , then we set e := k.
– Otherwise, we define tk+1 ∈ [tk, 1] as

tk+1 := inf

{
t ∈ [tk, 1] : f(t) /∈

k⋃
i=0

Ugπ(i)

}
. (A.9)
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By the continuity of f we have

tk+1 > tk and f(tk+1) /∈
k⋃
i=0

Ugπ(i)
.

Thus, there exists an index l ∈ {1, . . . , n} with l /∈ {π(1), . . . , π(k)} such that
f(tk+1) ∈ Ugl . We set π(k + 1) := l.

Now, by induction we prove that

Lgπ(0)
= Lgπ(k)

for all k = 0, . . . , e. (A.10)

For the induction step k → k + 1, by the definition (A.9) of tk+1 we have

f(s) ∈
k⋃
i=0

Ugπ(i)
for all s ∈ [tk, tk+1).

Moreover, by the continuity of f there exists δ > 0 with tk < tk+1 − δ such that

f(s) ∈ Ugπ(k+1)
for all s ∈ (tk+1 − δ, tk+1].

Therefore, we obtain

f(s) ∈
k⋃
i=0

(
Ugπ(i)

∩ Ugπ(k+1)

)
for all s ∈ (tk+1 − δ, tk+1).

Hence, there exist i ∈ {0, . . . , k} and s ∈ (tk+1 − δ, tk+1) such that U := Ugπ(i)
∩Ugπ(k+1)

is
an open neighborhood of f(s). By (A.7) we obtain

Lgπ(i)
+ Lgπ(k+1)

⊂ ThM for all h ∈ U ∩M.

Since flM(f(s)) = d, we deduce that Lgπ(i)
= Lgπ(k+1)

, which completes the induction
step, and establishes (A.10), whence we arrive at (A.8). Therefore, and by (A.7) there
exists a d-dimensional subspace L such that (A.6) is fulfilled. Consequently, applying
Proposition A.8 finishes the proof.
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