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Abstract

Motivated by evaluating the limiting distribution of randomly biased random walks on
trees, we compute the exact value of a negative moment of the maximal drawdown of
the standard Brownian meander.
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1 Introduction

Let (X(t), t ∈ [0, 1]) be a random process. Its maximal drawdown on [0, 1] is defined
by

X#(1) := sup
s∈[0, 1]

[X(s)−X(s)] ,

where X(s) := supu∈[0, s]X(u). There has been some recent research interest on the
study of drawdowns from probabilistic point of view ([7], [8]) as well as applications in
insurance and finance ([1], [2], [3], [10], [12]).

We are interested in the maximal drawdown m#(1) of the standard Brownian meander
(m(t), t ∈ [0, 1]). Our motivation is the presence of the law of m#(1) in the limiting
distribution of randomly biased random walks on supercritical Galton–Watson trees ([4]);
in particular, the value of E( 1

m#(1)
) is the normalizing constant in the density function of

this limiting distribution. The sole aim of the present note is to compute E( 1
m#(1)

), which
turns out to have a nice numerical value.

Let us first recall the definition of the Brownian meander. Let W := (W (t), t ∈ [0, 1])

be a standard Brownian motion, and let g := sup{t ≤ 1 : W (t) = 0} be the last passage
time at 0 before time 1. Since g < 1 a.s., we can define

m(s) :=
|W (g+ s(1− g))|

(1− g)1/2
, s ∈ [0, 1] .

The law of (m(s), s ∈ [0, 1]) is called the law of the standard Brownian meander. For an
account of general properties of the Brownian meander, see Yen and Yor [11].
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The maximal drawdown of the Brownian meander

Theorem 1.1. Let (m(s), s ∈ [0, 1]) be a standard Brownian meander. We have

E
( 1

sups∈[0, 1][m(s)−m(s)]

)
=
(π
2

)1/2
, (1.1)

where m(s) := supu∈[0, s] m(u).

The theorem is proved in Section 2.
We are grateful to an anonymous referee for a careful reading of the manuscript and

for many suggestions for improvements.
N.B. from the first-named coauthors: This note originates from a question we asked

our teacher, Professor Marc Yor (1949–2014), who passed away in January 2014,
during the preparation of this note. He provided us, in November 2012, with the
essential of the material in Section 2.

2 Proof

Let R := (R(t), t ≥ 0) be a three-dimensional Bessel process with R(0) = 0, i.e.,
the Euclidean modulus of a standard three-dimensional Brownian motion. The proof
of Theorem 1.1 relies on an absolute continuity relation between (m(s), s ∈ [0, 1]) and
(R(s), s ∈ [0, 1]), recalled as follows.

Fact 2.1. (Imhof [5]) Let (m(s), s ∈ [0, 1]) be a standard Brownian meander. Let
(R(s), s ∈ [0, 1]) be a three-dimensional Bessel process with R(0) = 0. For any measur-
able and non-negative functional F , we have

E
[
F (m(s), s ∈ [0, 1])

]
=
(π
2

)1/2
E
[ 1

R(1)
F (R(s), s ∈ [0, 1])

]
.

We now proceed to the proof of Theorem 1.1. Let

L := E
( 1

sups∈[0, 1][m(s)−m(s)]

)
.

Write R(t) := supu∈[0, t]R(u) for t ≥ 0. By Fact 2.1,

L =
(π
2

)1/2
E
[ 1

R(1)

1

sups∈[0, 1][R(s)−R(s)]

]
=

(π
2

)1/2 ∫ ∞
0

E
[ 1

R(1)
1{sups∈[0, 1][R(s)−R(s)]< 1

a}

]
da ,

the last equality following from the Fubini–Tonelli theorem. By the scaling property,
E[ 1

R(1) 1{sups∈[0, 1][R(s)−R(s)]< 1
a}
] = E[ a

R(a2) 1{supu∈[0, a2][R(u)−R(u)]<1}] for all a > 0. So by

means of a change of variables b = a2, we obtain:

L =
(π
8

)1/2 ∫ ∞
0

E
[ 1

R(b)
1{supu∈[0, b][R(u)−R(u)]<1}

]
db .

Define, for any random process X,

τX1 := inf{t ≥ 0 : X(t)−X(t) ≥ 1} ,

with X(t) := sups∈[0, t]X(s). For any b > 0, the event {supu∈[0, b][R(u)−R(u)] < 1} means

{τR1 > b}, so

L =
(π
8

)1/2 ∫ ∞
0

E
[ 1

R(b)
1{τR

1 >b}

]
db =

(π
8

)1/2
E
(∫ τR

1

0

1

R(b)
db
)
,
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the second identity following from the Fubini–Tonelli theorem. According to a relation
between Bessel processes of dimensions three and four (Revuz and Yor [9], Proposition
XI.1.11, applied to the parameters p = q = 2 and ν = 1

2 ),

R(t) = U
(1
4

∫ t

0

1

R(b)
db
)
, t ≥ 0 ,

where U := (U(s), s ≥ 0) is a four-dimensional squared Bessel process with U(0) = 0; in
other words, U is the square of the Euclidean modulus of a standard four-dimensional
Brownian motion.

Let us introduce the increasing functional σ(t) := 1
4

∫ t
0

1
R(b) db, t ≥ 0. We have

R = U ◦ σ, and

τR1 = inf{t ≥ 0 : R(t)−R(t) ≥ 1}
= inf{t ≥ 0 : U(σ(t))− U(σ(t)) ≥ 1}
= inf{σ−1(s) : s ≥ 0 and U(s)− U(s) ≥ 1}

which is σ−1(τU1 ). So τU1 = σ(τR1 ), i.e.,∫ τR
1

0

1

R(b)
db = 4τU1 ,

which implies that

L = (2π)1/2E(τU1 ) .

The Laplace transform of τU1 is determined by Lehoczky [6], from which, however, it
does not seem obvious to deduce the value of E(τU1 ). Instead of using Lehoczky’s result
directly, we rather apply his method to compute E(τU1 ). By Itô’s formula, (U(t)−4t, t ≥ 0)

is a continuous martingale, with quadratic variation 4
∫ t
0
U(s) ds; so applying the Dambis–

Dubins–Schwarz theorem (Revuz and Yor [9], Theorem V.1.6) to (U(t)− 4t, t ≥ 0) yields
the existence of a standard Brownian motion B = (B(t), t ≥ 0) such that

U(t) = 2B(

∫ t

0

U(s) ds) + 4t , t ≥ 0 .

Taking t := τU1 , we get

U(τU1 ) = 2B(

∫ τU
1

0

U(s) ds) + 4τU1 .

We claim that

E
[
B(

∫ τU
1

0

U(s) ds)
]
= 0 . (2.1)

Then E(τU1 ) = 1
4 E[U(τU1 )]; hence

L = (2π)1/2E(τU1 ) = (
π

8
)1/2E[U(τU1 )] . (2.2)

Let us admit (2.1) for the moment, and prove the theorem by computing E[U(τU1 )] using
Lehoczky [6]’s method; in fact, we determine the law of U(τU1 ).

Lemma 2.2. The law of U(τU1 ) is given by

P{U(τU1 ) > a} = (a+ 1)e−a, ∀a > 0.

ECP 20 (2015), paper 39.
Page 3/6

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v20-3945
http://ecp.ejpecp.org/


The maximal drawdown of the Brownian meander

In particular,

E[U(τU1 )] =

∫ ∞
0

(a+ 1)e−a da = 2.

Since L = (π8 )
1/2E[U(τU1 )] (see (2.2)), this yields L = (π2 )

1/2 as stated in Theorem 1.1.
The rest of the note is devoted to the proof of Lemma 2.2 and (2.1).

Proof of Lemma 2.2. Fix b > 1. We compute the probability P{U(τU1 ) > b} which, due
to the equality U(τU1 ) = U(τU1 ) + 1, coincides with P{U(τU1 ) > b − 1}. By applying the
strong Markov property at time σU0 := inf{t ≥ 0 : U(t) = 1}, we see that the value
of P{U(τU1 ) > b} does not change if the squared Bessel process U starts at U(0) = 1.
Indeed, observing that σU0 ≤ τU1 , U(σU0 ) = 1 and that U(τU1 ) = sups∈[σU

0 , τ
U
1 ] U(s), we have

P{U(τU1 ) > b} = P
{

sup
s∈[σU

0 , τ
U
1 ]

U(s) > b
}
= P1{U(τU1 ) > b} ,

the subscript 1 in P1 indicating the initial value of U . More generally, for x ≥ 0, we write
Px(•) := P(• |U(0) = x); so P = P0.

Let b0 = 1 < b1 < · · · < bn := b be a subdivision of [1, b] such that max1≤i≤n(bi −
bi−1) → 0, n → ∞. Consider the event {U(τU1 ) > b}: since U(0) = 1, this means U hits
position b before time τU1 ; for all i ∈ [1, n− 1] ∩Z, starting from position bi, U must hit
bi+1 before hitting bi − 1 (caution: not to be confused with bi−1). More precisely, let
σUi := inf{t ≥ 0 : U(t) = bi} and let Ui(s) := U(s+ σUi ), s ≥ 0; then

{U(τU1 ) > b} ⊂
n−1⋂
i=1

{Ui hits bi+1 before hitting bi − 1} .

By the strong Markov property, the events {Ui hits bi+1 before hitting bi − 1}, 1 ≤ i ≤
n − 1, are independent (caution : the processes (Ui(s), s ≥ 0), 1 ≤ i ≤ n − 1, are not
independent). Hence

P1{U(τU1 ) > b} ≤
n−1∏
i=1

Pbi{U hits bi+1 before hitting bi − 1} . (2.3)

Conversely, let ε > 0, and if max1≤i≤n(bi − bi−1) < ε, then we also have

P1{U(τU1+ε) > b} ≥
n−1∏
i=1

Pbi{U hits bi+1 before hitting bi − 1} ,

with τU1+ε := inf{t ≥ 0 : U(t)−U(t) ≥ 1+ε}. By scaling, U(τU1+ε) has the same distribution
as (1 + ε)U(τU1 ). So, as long as max1≤i≤n(bi − bi−1) < ε, we have

P1{U(τU1 ) > b} ≤
n−1∏
i=1

Pbi{U hits bi+1 before hitting bi − 1} ≤ P1{U(τU1 ) >
b

1 + ε
} .

Since 1
x is a scale function for U , we have

Pbi{U hits bi+1 before hitting bi − 1} =
1

bi−1 −
1
bi

1
bi−1 −

1
bi+1

= 1−
1
bi
− 1

bi+1

1
bi−1 −

1
bi+1

.

If limn→∞max0≤i≤n−1(bi+1 − bi) = 0, then for n→∞,

n−1∑
i=1

1
bi
− 1

bi+1

1
bi−1 −

1
bi+1

=

n−1∑
i=1

bi − 1

bi
(bi+1 − bi) + o(1)

→
∫ b

1

r − 1

r
dr

= b− 1− log b .
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Therefore,

lim
n→∞

n−1∏
i=1

Pbi{U hits bi+1 before hitting bi − 1} = e−(b−1−log b) = b e−(b−1) .

Consequently,
P{U(τU1 ) > b} = b e−(b−1), ∀b > 1.

We have already noted that U(τU1 ) = U(τU1 )− 1. This completes the proof of Lemma 2.2.
2

Proof of (2.1). The Brownian motion B being the Dambis–Dubins–Schwarz Brownian
motion associated with the continuous martingale (U(t) − 4t, t ≥ 0), it is a (Gr)r≥0-
Brownian motion (Revuz and Yor [9], Theorem V.1.6), where, for r ≥ 0,

Gr := FC(r), C(r) := A−1(r), A(t) :=

∫ t

0

U(s) ds ,

and A−1 denotes the inverse of A. [We mention that FC(r) is well defined because C(r)
is an (Ft)t≥0-stopping time.] As such,∫ τU

1

0

U(s) ds = A(τU1 ) .

For all r ≥ 0, {A(τU1 ) > r} = {τU1 > C(r)} ∈ FC(r) = Gr (observing that τU1 is an
(Ft)t≥0-stopping time), which means that A(τU1 ) is a (Gr)r≥0-stopping time. If A(τU1 ) =∫ τU

1

0
U(s) ds has a finite expectation, then we are entitled to apply the (first) Wald identity

to see that E[B(A(τU1 ))] = 0 as claimed in (2.1).
It remains to prove that E[A(τU1 )] <∞.
Recall that U is the square of the Euclidean modulus of an R4-valued Brownian

motion. By considering only the first coordinate of this Brownian motion, say β, we have

P
{

sup
s∈[0, a]

U(s) < a1−ε
}
≤ P

{
sup

s∈[0, a]
|β(s)| < a(1−ε)/2

}
= P

{
sup
s∈[0, 1]

|β(s)| < a−ε/2
}
;

so by the small ball probability for Brownian motion, we obtain:

P
{

sup
s∈[0, a]

U(s) < a1−ε
}
≤ exp(−c1 aε) ,

for all a ≥ 1 et all ε ∈ (0, 1), with some constant c1 = c1(ε) > 0. On the event
{sups∈[0, a] U(s) ≥ a1−ε}, if τU1 > a, then for all i ∈ [1, a1−ε − 1] ∩ Z, the squared Bessel
process U , starting from i, must first hit position i + 1 before hitting i − 1 (which, for
each i, can be realized with probability ≤ 1− c2, where c2 ∈ (0, 1) is a constant that does
not depend on i, nor on a). Accordingly,1

P
{

sup
s∈[0, a]

U(s) ≥ a1−ε, τU1 > a
}
≤ (1− c2)ba

1−ε−1c ≤ exp(−c3 a1−ε) ,

with some constant c3 > 0, uniformly in a ≥ 2. We have thus proved that for all a ≥ 2 and
all ε ∈ (0, 1),

P{τU1 > a} ≤ exp(−c3 a1−ε) + exp(−c1 aε).

Taking ε := 1
2 , we see that there exists a constant c4 > 0 such that

P{τU1 > a} ≤ exp(−c4 a1/2), ∀a ≥ 2.

1This is the special case bi := i of the argument we have used to obtain (2.3).
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On the other hand, U being a squared Bessel process, we have, for all a > 0 and all
b ≥ a2,

P{A(a) ≥ b} = P{A(1) ≥ b

a2
} ≤ P

{
sup
s∈[0, 1]

U(s) ≥ b

a2

}
≤ e−c5 b/a

2

,

for some constant c5 > 0. Hence, for b ≥ a2 and a ≥ 2,

P{A(τU1 ) ≥ b} ≤ P{τU1 > a}+ P{A(a) ≥ b} ≤ exp(−c4 a1/2) + e−c5 b/a
2

.

Taking a := b2/5 gives that

P{A(τU1 ) ≥ b} ≤ exp(−c6 b1/5) ,

for some constant c6 > 0 and all b ≥ 4. In particular, E[A(τU1 )] <∞ as desired. 2
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