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Abstract

Motivated by evaluating the limiting distribution of randomly biased random walks on
trees, we compute the exact value of a negative moment of the maximal drawdown of
the standard Brownian meander.
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1 Introduction

Let (X (¢), t € [0, 1]) be a random process. Its maximal drawdown on [0, 1] is defined
by

X#(1) = g}épl][y(S) — X(s)],

where X (s) := Sup,e(o, s) X (u). There has been some recent research interest on the
study of drawdowns from probabilistic point of view ([7], [8]) as well as applications in
insurance and finance ([1], [2], [3], [10], [12]).

We are interested in the maximal drawdown m# (1) of the standard Brownian meander
(m(t), t € [0, 1]). Our motivation is the presence of the law of m#(1) in the limiting
distribution of randomly biased random walks on supercritical Galton-Watson trees ([4]);
in particular, the value of E(m%m) is the normalizing constant in the density function of
this limiting distribution. The sole aim of the present note is to compute E(ﬁ), which
turns out to have a nice numerical value.

Let us first recall the definition of the Brownian meander. Let W := (W (¢), ¢t € [0, 1])
be a standard Brownian motion, and let g := sup{t <1: W (¢) = 0} be the last passage
time at 0 before time 1. Since g < 1 a.s., we can define

(W(g+s(1—9))

m(s) := TELE , se 0, 1].

The law of (m(s), s € [0, 1]) is called the law of the standard Brownian meander. For an
account of general properties of the Brownian meander, see Yen and Yor [11].
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The maximal drawdown of the Brownian meander

Theorem 1.1. Let (m(s), s € [0, 1]) be a standard Brownian meander. We have

m\1/
E(supse[o,u[nlws)—m(sn) -(5)" (b

where m(s) := sup,¢[o, 5 M(w).

The theorem is proved in Section 2.

We are grateful to an anonymous referee for a careful reading of the manuscript and
for many suggestions for improvements.

N.B. from the first-named coauthors: This note originates from a question we asked
our teacher, Professor Marc Yor (1949-2014), who passed away in January 2014,
during the preparation of this note. He provided us, in November 2012, with the
essential of the material in Section 2.

2 Proof

Let R := (R(t),t > 0) be a three-dimensional Bessel process with R(0) = 0, i.e.,
the Euclidean modulus of a standard three-dimensional Brownian motion. The proof
of Theorem 1.1 relies on an absolute continuity relation between (m(s), s € [0, 1]) and
(R(s), s € [0, 1]), recalled as follows.

Fact 2.1. (Imhof [5]) Let (m(s), s € [0, 1]) be a standard Brownian meander. Let
(R(s), s € [0, 1]) be a three-dimensional Bessel process with R(0) = 0. For any measur-
able and non-negative functional F', we have

1

E|F(m(s), s € [0, 1])] - (g)m E[m F(R(s), s € [0, 1])} .

We now proceed to the proof of Theorem 1.1. Let

1
L:=EFE — .
(Supse[o, ylm(s) — m(S)])
Write R(t) := sup,,¢(o, 4 R(u) for t > 0. By Fact 2.1,

1/2 1 1
(5) E[R(l) SUPse(o, 1][§< s) — R(s)]}

(91/2 /000 E {ﬁ Lsup.cp, 1][ﬁ<s>—R<s>]<§}} da

the last equality following from the Fubini-Tonelli theorem. By the scaling property,

L =

E[ R(D) {sum€ 0, 1[R(s)— R(s)]<%}] = E[iR(Zz) 1{Supue[o,az][ﬁ(u)—R(u)kl}] for all a > 0. So by
means of a change of variables b = a2, we obtain:

m\/2 [ 1
L=(3) /o E[R(b) Hsupucio, [ Rl -RGwl <1} | 90

Define, for any random process X,
i o=inf{t >0: X(t) - X(¢) > 1},

with X (t) := sup(o,; X (s). For any b > 0, the event {sup,,c(o 4 R(u) — R(u)] < 1} means
{rf > b}, so

m\l/2 [ aN1/2 5
r=(3) /()E[%l{%b}}db:(g) E(/O %db)v
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the second identity following from the Fubini-Tonelli theorem. According to a relation
between Bessel processes of dimensions three and four (Revuz and Yor [9], Proposition
XI.1.11, applied to the parameters p = ¢ =2 and v = %),

R(t)U(i/otsz)db), £>0),

where U := (U(s), s > 0) is a four-dimensional squared Bessel process with U(0) = 0; in
other words, U is the square of the Euclidean modulus of a standard four-dimensional
Brownian motion.

Let us introduce the increasing functional o(t) := 1 [/ ﬁdb, t > 0. We have
R=Uoo, and
= inf{t>0: R(t) - R(t) > 1}
= inf{t>0:U(o(t) - U(a(t)) > 1}

which is 0 =}(7Y). So 7V = o(7{), i.e.,

/ " 1 db = 47V
= T ,
o R() !

which implies that
L=02m)Y2E(HY).

The Laplace transform of 7V is determined by Lehoczky [6], from which, however, it
does not seem obvious to deduce the value of E(7{). Instead of using Lehoczky’s result
directly, we rather apply his method to compute E(r{). By It&’s formula, (U (t) —4t, t > 0)
is a continuous martingale, with quadratic variation 4 f(f U(s)ds; so applying the Dambis-
Dubins-Schwarz theorem (Revuz and Yor [9], Theorem V.1.6) to (U(t) — 4¢t, t > 0) yields
the existence of a standard Brownian motion B = (B(t), ¢t > 0) such that

U(t):2B(/OtU(s)ds)+4t, £>0.

Taking ¢ := 7, we get
i
U(TlU):QB(/ U(s)ds) + 41 .
0

We claim that

]E[B(/Tl U(s)ds)| = 0. 2.1)
0
Then E(r{) = § E[U(r)]; hence

L= (m) 2 B(r) = () BU ). 2.2)

Let us admit (2.1) for the moment, and prove the theorem by computing E[U(7])] using

Lehoczky [6]’s method; in fact, we determine the law of U (7).
Lemma 2.2. The law of U(7V) is given by

P{U(TY) > a} = (a +1)e™ 7, Ya > 0.
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In particular,
E[U (V)] = / (a+1)e " da =2,
0

Since L = (Z)/2E[U(r{)] (see (2.2)), this yields L = (%)'/? as stated in Theorem 1.1.
The rest of the note is devoted to the proof of Lemma 2.2 and (2.1).

Proof of Lemma 2.2. Fix b > 1. We compute the probability P{U (") > b} which, due
to the equality U(7Y) = U(7Y) + 1, coincides with P{U(7Y) > b — 1}. By applying the
strong Markov property at time o := inf{t > 0 : U(t) = 1}, we see that the value
of P{U(7Y) > b} does not change if the squared Bessel process U starts at U(0) = 1.
Indeed, observing that of < 7/, U(of) = 1 and that U(r{’) = sup,¢(,v, ;v U(s), we have

P{U(Y) > b} = ]P{ sup  U(s) > b} =P {TU(Y) > b},
s€lof, 7]
the subscript 1 in IP; indicating the initial value of U. More generally, for z > 0, we write
P,(e) :=P(e|U(0) = z); so P = P,

Letbp =1 < by < --- < b, := b be a subdivision of [1, b] such that max;<;<,(b; —
bi_1) = 0, n — oco. Consider the event {U(7) > b}: since U(0) = 1, this means U hits
position b before time 7; for all i € [1, n — 1] N Z, starting from position b;, U must hit
b;+1 before hitting b; — 1 (caution: not to be confused with b;_;). More precisely, let

=inf{t > 0: U(t) = b;} and let U;(s) := U(s + "), s > 0; then

n—1
{U)) > b} C ﬂ {U; hits b;;; before hitting b; — 1} .
i=1
By the strong Markov property, the events {U; hits b;,; before hitting b; — 1}, 1 < i <
n — 1, are independent (caution : the processes (U;(s), s > 0), 1 < i < n — 1, are not
independent). Hence
n—1
P1{T(r{') > b} < [ Py, {U hits b; 11 before hitting b; — 1} . (2.3)
i=1
Conversely, let ¢ > 0, and if max;<;<n(b; — b;—1) < ¢, then we also have
. n—1
P1{U(r{,.) > b} > [ Ps.{U hits b; ;1 before hitting b; — 1},
i=1
with 7/, _ = 1nf{t >0: U(t)—U(t) > 1+¢}. By scaling, U(r{, ) has the same distribution
s (14¢e)U(r7). So, as long as max;j<;<,(b; — bi—1) < €, we have

n—1
b
Py{T({) > b} < [] Pb.{U hits b;11 before hitting b; — 1} < P1{T(r{) > ?}
=1
Since % is a scale function for U, we have
11 1 1
Py, {U hits b;, before hitting b; — 1} = 4——4— =1 "=
b;—1 bi+1 bifl bi+1
If lim, oo maxop<i<n— 1( i1 — ) =0, then for n — oo,
n—1 biibl n_lb'—l
4 = Y —— (i1 —b)+o0(1)
i=1 bi—1  biq1 i=1 v
b
-1
— / r dr
1 T
= b—1-—logb.
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Therefore,

n—1
lim [ ] P».{U hits b;;1 before hitting b; — 1} = e~ "~171080) = pe=(=1).
n—oo
=1
Consequently,
P{U(() > b} =be "D vb>1.
We have already noted that U(7) = U(7Y) — 1. This completes the proof of Lemma 2.2.
O

Proof of (2.1). The Brownian motion B being the Dambis-Dubins-Schwarz Brownian
motion associated with the continuous martingale (U(t) — 4¢, ¢ > 0), it is a (%,),>0-
Brownian motion (Revuz and Yor [9], Theorem V.1.6), where, for r > 0,

and A~! denotes the inverse of A. [We mention that .Z¢(,) is well defined because C(r)
is an (#;);>0-stopping time.] As such,

U

/Tl U(s)ds = A(rY).
0

For all r > 0, {A(r{) > r} = {r{ > C(r)} € Fc() = % (observing that 7/ is an
(Z1)t>0-stopping time), which means that A(r{) is a (%,),>o-stopping time. If A(r{) =
forlu U(s) ds has a finite expectation, then we are entitled to apply the (first) Wald identity
to see that E[B(A(7Y))] = 0 as claimed in (2.1).

It remains to prove that E[A(7Y)] < oco.

Recall that U is the square of the Euclidean modulus of an R*valued Brownian

motion. By considering only the first coordinate of this Brownian motion, say 3, we have

IP{ sup U(s) < al_‘g} < IP{ sup |B(s)| < a(l_‘g)/Q} = IP{ sup |5(s)| < a_£/2};
s€l0, al s€l0, a) s€0,1]

so by the small ball probability for Brownian motion, we obtain:

IP{ sup U(s) < alfg} < exp(—c a),
s€[0, a)
forall a > 1 et all e € (0, 1), with some constant ¢; = ¢1(¢) > 0. On the event
{supsepo, o U(s) > a'¢}, if 7/ > q, then for all i € [1, a'~¢ — 1] N Z, the squared Bessel
process U, starting from ¢, must first hit position 7 4+ 1 before hitting + — 1 (which, for
each 4, can be realized with probability < 1 — ¢,, where ¢; € (0, 1) is a constant that does
not depend on 4, nor on a). Accordingly,’

IP{ sup U(s) >a'~¢, 77 > a} <(1- CQ)L“l_E*1J <exp(—cza'™®),
s€[0, a]

with some constant c3 > 0, uniformly in a > 2. We have thus proved that for all ¢ > 2 and
alle € (0, 1),
P{rY > a} < exp(—cza'™®) + exp(—c; a°).

Taking ¢ := % we see that there exists a constant ¢, > 0 such that

P{rl > a} < exp(—cqal/?), Ya > 2.

LThis is the special case b; := ¢ of the argument we have used to obtain (2.3).
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On the other hand, U being a squared Bessel process, we have, for all ¢« > 0 and all
b>a?,

b
2

P{A(a) 2 b} = P{A(1) > -

b o b/a
<ol 02 ) s

for some constant c¢5 > 0. Hence, for b > a? and a > 2,
P{A(]) > b} < P{r{ > a} + P{A(a) > b} < exp(—csa¥/?) + =P/
Taking a := b%/5 gives that
P{A(r]) 2 b} < exp(—cqb'/%)

for some constant cg > 0 and all b > 4. In particular, E[A(7Y)] < oo as desired. ]

References

[1] Carraro, L., El Karoui, N. and ODbtdj, J. (2012). On Azéma-Yor processes, their optimal
properties and the Bachelier-drawdown equation. Ann. Probab. 40, 372-400. MR-2917776
[2] Cheridito, P, Nikeghbali, A. and Platen, E. (2012). Processes of class sigma, last passage
times, and drawdowns. SIAM J. Financial Math. 3, 280-303. MR-2968035
[3] Cherny, V. and Ob1dj, J. (2013). Portfolio optimisation under non-linear drawdown constraints
in a semimartingale financial model. Finance Stoch. 17, 771-800. MR-3105933
[4] Hu, Y. and Shi, Z. (2015+). The slow regime of randomly biased walks on trees.
arXiv:1501.07700
[5] Imhof, J.-P. (1984). Density factorizations for Brownian motion, meander and the three-
dimensional Bessel process, and applications. J. Appl. Probab. 21, 500-510. MR-0752015
[6] Lehoczky, J.P. (1977). Formulas for stopped diffusion processes with stopping times based on
the maximum. Ann. Probab. 5, 601-607. MR-0458570
[7] Mijatovié, A. and Pistorius, M.R. (2012). On the drawdown of completely asymmetric Lévy
processes. Stoch. Proc. Appl. 122, 3812-3836. MR-2965927
[8] Nikeghbali, A. (2006). A class of remarkable submartingales. Stoch. Proc. Appl. 116, 917-938.
MR-2254665
[9] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion. (Third edition).
Springer, Berlin. MR-1725357
[10] Rieder, U. and Wittlinger, M. (2014). On optimal terminal wealth problems with random
trading times and drawdown constraints. Adv. Appl. Probab. 46, 121-138. MR-3189051
[11] Yen, J.-Y. and Yor, M. (2013). Local Times and Excursion Theory for Brownian Motion. A
Tale of Wiener and It6 Measures. Lecture Notes in Mathematics 2088. Springer, Berlin.
MR-3134857
[12] Zhang, H. and Hadjiliadis, O. (2012). Drawdowns and the speed of market crash. Methodol.
Comput. Appl. Probab. 12, 293-308. MR-2966318

ECP 20 (2015), paper 39. ecp.ejpecp.org
Page 6/6


http://www.ams.org/mathscinet-getitem?mr=2917776
http://www.ams.org/mathscinet-getitem?mr=2968035
http://www.ams.org/mathscinet-getitem?mr=3105933
http://arXiv.org/abs/1501.07700
http://www.ams.org/mathscinet-getitem?mr=0752015
http://www.ams.org/mathscinet-getitem?mr=0458570
http://www.ams.org/mathscinet-getitem?mr=2965927
http://www.ams.org/mathscinet-getitem?mr=2254665
http://www.ams.org/mathscinet-getitem?mr=1725357
http://www.ams.org/mathscinet-getitem?mr=3189051
http://www.ams.org/mathscinet-getitem?mr=3134857
http://www.ams.org/mathscinet-getitem?mr=2966318
http://dx.doi.org/10.1214/ECP.v20-3945
http://ecp.ejpecp.org/

	Introduction
	Proof
	References

