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1 Introduction and Main Results

Combinatorial and probabilistic inequalities play an important role in a variety of
areas of mathematics, especially in Banach space theory. In [8] and [9], S. Kwapień and
C. Schütt studied combinatorial expressions involving matrices and obtained inequalities
in terms of the average of the largest entries of the matrix. To be more precise, they
showed that

1

n!

∑
π∈Sn

max
1≤i≤n

|aiπ(i)| '
1

n

n∑
k=1

s(k), (1.1)

where s(k) is the k-th largest entry of the matrix a and Sn the symmetric group. This
estimate seems crucial if one wants to compute the projection constant of symmet-
ric Banach spaces and related invariants. Among other things, the authors obtained
estimates for the positive projection constant of finite dimensional Orlicz spaces and
estimated the order of the projection constant of the Lorentz spaces `n2,1. Also, the
symmetric sublattices of `1(c0) as well as the finite dimensional symmetric subspaces
of `1 were characterized. Further applications and extensions of (1.1) can be found in
[9, 16, 17, 11, 13], just to mention a few.

The main result of this paper is a generalization of (1.1) in the sense that we study
the expected value of averages of higher order statistics of a matrix in a more general
setting described below. Our method of proof is purely probabilistic in nature, whereas
the proof of (1.1) in [8] uses non-trivial combinatorial arguments.

In what follows, given a finite set G, we denote the normalized counting measure on
G by P, i.e.,

P(E) =
|E|
|G|

, E ⊆ G,
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On averages of order statistics

where | · | denotes the cardinality. E will always denote the expectation with respect
to the normalized counting measure. Moreover, for a vector x ∈ Rn with non-negative
entries, we denote its k-th largest entry by

k-max
1≤i≤n

xi.

In particular, 1-max1≤i≤n xi is the maximal value, n-max1≤i≤n xi the minimal value of x.
Our main result is the following:

Theorem 1.1. Let n,N ∈ N and a ∈ Rn×N . Let G be a collection of maps from I =

{1, . . . , n} to J = {1, . . . , N} and CG > 0 be a constant only depending on G. Assume that
for all i ∈ I, j ∈ J and all different pairs (i1, j1), (i2, j2) ∈ I × J

(i) P({g ∈ G : g(i) = j}) = 1/N ,

(ii) P({g ∈ G : g(i1) = j1, g(i2) = j2}) ≤ CG/N2.

Then, for every ` ≤ n,

c

N

`N∑
j=1

s(j) ≤
∫
G

∑̀
k=1

k-max
1≤i≤n

|aig(i)|dP(g) ≤
2

N

`N∑
j=1

s(j), (1.2)

where c = 2−5(1 + 2CG)
−2.

Observe that estimate (1.1) [8, Theorem 1.1] is a special case of our result with the
choice ` = 1 and G = Sn, and that for ` = 1 and G = {1, . . . , n}{1,...,n} we directly obtain
[2, Lemma 7]. Note that in this general setting Emax1≤i≤n |aig(i)| was already studied in
[9]. In a slightly different setting, order statistics were considered also in [2, 3, 4, 5, 6].

We will now present two natural choices for the set G that appear frequently in the
literature (cf. [8, 9, 16, 17, 15, 13, 2, 1, 7, 12]).

Example 1.2. If N = n and G = Sn is the group of permutations of the numbers
{1, . . . , n}, then P(π(i) = j) = 1/n for all 1 ≤ i, j ≤ n. Moreover, for (i1, j1) 6= (i2, j2) we
have P(π(i1) = j1, π(i2) = j2) ≤ 1/[n(n− 1)] ≤ 2/n2. Hence, the assumptions of Theorem
1.1 are satisfied with CG ≤ 2 and thus

1

800

1

n

`n∑
j=1

s(j) ≤ 1

n!

∑
π∈Sn

∑̀
k=1

k-max
1≤i≤n

|aiπ(i)| ≤ 2
1

n

`n∑
j=1

s(j).

Example 1.3. If N = n and G is the set of all mappings from {1, . . . , n} into {1, . . . , n},
then P(g(i) = j) = 1/n for all 1 ≤ i, j ≤ n. Moreover, for (i1, j1) 6= (i2, j2) we have
P(g(i1) = j1, g(i2) = j2) ≤ 1/n2. Hence, the assumptions of Theorem 1.1 are satisfied
with CG = 1 and thus

1

288

1

n

`n∑
j=1

s(j) ≤ 1

nn

∑
g∈G

∑̀
k=1

k-max
1≤i≤n

|aig(i)| ≤ 2
1

n

`n∑
j=1

s(j).

Another combinatorial inequality that was obtained in [8, Theorem 1.2] and which
turned out to be crucial to study and characterize symmetric subspaces of L1 (cf. [16,
17, 13]) states that for all 1 ≤ p ≤ ∞

1

n!

∑
π∈Sn

( n∑
i=1

|aiπ(i)|p
)1/p

' 1

n

n∑
k=1

s(k) +
( 1
n

n2∑
k=n+1

s(k)p
)1/p

. (1.3)

In Section 5, we will use Theorem 1.1 to generalize this result and show that the lower
bound in (1.3) can be naturally derived via real interpolation. The upper bound is quite
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On averages of order statistics

easily obtained and we just follow [8]. Please note that averages of order statistics
of matrices naturally appear, as they are strongly related to the K-functional of the
interpolation couple (`1, `∞). Again, two typical choices for the set of maps G are Sn

and {1, . . . , n}{1,...,n}. We will prove the following result:

Theorem 1.4. Let n,N ∈ N, a ∈ Rn×N , and 1 ≤ p < ∞. Let G be a collection of maps
from I = {1, . . . , n} to J = {1, . . . , N} and CG > 0 be a constant only depending on G.
Assume that for all i ∈ I, j ∈ J and all different pairs (i1, j1), (i2, j2) ∈ I × J

(i) P({g ∈ G : g(i) = j}) = 1/N ,

(ii) P({g ∈ G : g(i1) = j1, g(i2) = j2}) ≤ CG/N2.

Then

C

[
1

N

N∑
k=1

s(k) +
( 1

N

nN∑
k=N+1

s(k)p
)1/p]

≤ E
( n∑
i=1

|aig(i)|p
)1/p

≤ 1

N

N∑
k=1

s(k) +
( 1

N

nN∑
k=N+1

s(k)p
)1/p

,

where C > 0 is a constant only depending on CG.

The organization of the paper is as follows. In Section 3, we will prove the lower
estimate in (1.2). This is done by reducing the problem to the case of matrices only
taking values in {0, 1} and showing the estimate for this subclass of matrices. In Section
4, we establish the upper bound in (1.2) by passing from averages of order statistics to
equivalent Orlicz norms and using an extreme point argument. Section 5 contains the
proof of Theorem 1.4.

2 Notation and Preliminaries

Throughout this paper we will use |E| to denote the cardinality of a finite set E. By
Sn we denote the symmetric group on the set {1, . . . , n}. We will denote by bxc and dxe
the largest integer m ≤ x and the smallest integer m ≥ x, respectively.

For an arbitrary matrix a = (aij)
n,N
i,j=1, we denote by (s(k))nNk=1 the decreasing rear-

rangement of (|aij |)n,Ni,j=1. To avoid confusion, in certain cases we write (sa(k))
nN
k=1 to

emphasize the underlying matrix a.
Please recall that the Paley-Zygmund inequality states that for every non-negative

random variable Z and all 0 < θ < 1

P(Z ≥ θ · EZ) ≥ (1− θ)2 (EZ)
2

EZ2
. (2.1)

A convex function M : [0,∞) → [0,∞) is called an Orlicz function if M(0) = 0 and
if M is not constant. Given an Orlicz function M , the Orlicz sequence space `nM is Rn

equipped with the Luxemburg norm

‖x‖M = inf

{
λ > 0 :

n∑
i=1

M

(
|xi|
λ

)
≤ 1

}
.

For example, the classical `p spaces are Orlicz spaces with M(t) = p−1tp. The closed
unit ball of the space `nM will be denoted by BnM . We write ext(BnM ) for the set of extreme
points of BnM and s-conv(M) shall denote the set of points of strict convexity of M . We
will make use of the following characterization of extreme points of BnM :
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On averages of order statistics

Lemma 2.1 ([18], Lemma 1). LetM be an Orlicz function. Then x ∈ ext(BnM ) if and only
if

(i)
∑n
i=1M(|xi|) = 1,

(ii) there exists at most one index i0 ∈ N, 1 ≤ i0 ≤ n such that xi0 6∈ ± s-conv(M).

For a detailed and thorough introduction to Orlicz spaces we refer the reader to [14]
or [10].

3 The lower bound

In this section we will prove the lower bound in (1.2). We begin by recalling some
notation and assumptions given in Theorem 1.1. Let a ∈ Rn×N , I = {1, . . . , n}, J =

{1, . . . , N}, and G be a collection of maps from I to J . The matrix a will be fixed
throughout the entire section. By P we denote the normalized counting measure on G,
i.e., P(E) = |E|/|G| for E ⊂ G. We assume a uniform distribution of the random variable
g 7→ g(i) for each i ∈ I, i.e.,

P(g(i) = j) =
1

N
, i ∈ I, j ∈ J.

Moreover, we assume for all different pairs (i1, j1), (i2, j2) ∈ I × J that

P(g(i1) = j1, g(i2) = j2) ≤
CG
N2

,

with a constant CG ≥ 1 that depends on G, but not on n or N .
Without loss of generality, we will assume that a has only non-negative entries. It is

enough to show the lower estimate in (1.2) for matrices a that consist of only the `N
largest entries, while all others are equal to zero. This is because if we change any entry
ai0j0 ≤ s(`N + 1) by setting ai0j0 = 0, the left hand side in (1.2) remains the same, while
k-max
1≤i≤n

|aig(i)| does not increase for any g ∈ G.

3.1 The key ingredients

We will now introduce a bijective function h that determines the ordering of the
values of a. The crucial point is that this function does not depend on the actual values of
the matrix, but merely on their relative size. So let h : {1, . . . , nN} → I × J be a bijective
function satisfying

a(h(j)) ≥ a(h(j + 1)), 1 ≤ j ≤ `N,
a(h(j)) = 0, `N + 1 ≤ j ≤ nN.

(3.1)

Observe that there is possibly more than one choice for h, since some of the entries of
the matrix a might have the same value.

For all j ∈ N, 1 ≤ j ≤ nN , define the random variable

Yj : G→ {0, 1}, Yj(g) =

{
1, if h(j) ∈ g,
0, if h(j) /∈ g,

and given m ∈ N, 1 ≤ m ≤ nN , let

Xm : G→ {0, 1, . . . , n}, Xm(g) :=

m∑
j=1

Yj(g) = |h({1, . . . ,m}) ∩ g|,

where we identify g with its graph {(i, g(i)) : i ∈ I}. Xm counts the number of elements
in the path {(i, g(i)) : i ∈ I} that intersect with the positions of the m largest entries of a.
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As we will see in Subsection 3.2, the random variables Xm are strongly related to order
statistics.

In Lemma 3.1, Lemma 3.2, and Lemma 3.3, we investigate crucial properties of the
distribution function of Xm.

Lemma 3.1. For all m ∈ N with 1 ≤ m ≤ nN , we have

P(Xm ≥ 1) ≥ m

N

(
1− CG

m− 1

2N

)
. (3.2)

In particular,

P(XdN/CGe ≥ 1) ≥ 1

2CG
.

Proof. By using the inclusion-exclusion principle, we obtain

P(Xm ≥ 1) = P
( m⋃
j=1

{g ∈ G : Yj(g) = 1}
)
≥

m∑
j=1

P(Yj = 1)−
∑
i<j

P(Yi = 1, Yj = 1)

≥ m

N
− m(m− 1)CG

2N2
=
m

N

(
1− CG

m− 1

2N

)
,

where the latter inequality is a direct consequence of conditions (i) and (ii) in Theorem 1.1.

Lemma 3.2. For all m ∈ N with 1 ≤ m ≤ nN , and all θ ∈ (0, 1), we have

P
(
Xm ≥ θ ·

m

N

)
≥ (1− θ)2 m

N +m · CG
. (3.3)

Proof. The result follows as a consequence of Paley-Zygmund’s inequality (cf. (2.1)).
Therefore, we need to compute EXm and EX2

m. Note that EYj = P(Yj = 1) = 1/N and
thus EXm =

∑m
j=1 Yj = m/N . Moreover, since Yj = Y 2

j , we have

EX2
m =

m∑
i,j=1

EYiYj =

m∑
j=1

EYj +
∑
i6=j

EYiYj ≤
m

N
+ CG

m(m− 1)

N2
,

where the latter inequality is a direct consequence of conditions (i) and (ii) in Theorem
1.1. Inserting those estimates in (2.1), we obtain the result.

Lemma 3.3. For all m ∈ N with 1 ≤ m ≤ nN , we have

P(Xm ≥ 1) ≥ min

{
m

2N
,

1

2CG

}
P(X`N ≥ 1),

and for all k,m ∈ N with 2kN ≤ m ≤ nN

P(Xm ≥ k) ≥
P(X`N ≥ k)
2 + 4CG

. (3.4)

Proof. Let 1 ≤ m ≤ nN . If m ≤ N/CG, Lemma 3.1 implies

P(Xm ≥ 1) ≥ m

2N
≥ m

2N
· P(X`N ≥ 1) = min

{
m

2N
,

1

2CG

}
P(X`N ≥ 1).

On the other hand, if m ≥ N/CG, Lemma 3.1 implies

P(Xm ≥ 1) ≥ P(XdN/CGe ≥ 1) ≥ 1

2CG

≥ 1

2CG
P(X`N ≥ 1) = min

{
m

2N
,

1

2CG

}
P(X`N ≥ 1).
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Now we prove (3.4). Let k ≤ n/2 and m such that 2kN ≤ m ≤ nN . Then Lemma 3.2 with
θ = 1/2 implies

P(Xm ≥ k) ≥ P(X2kN ≥ k) ≥
1

2 + 4CG
≥ 1

2 + 4CG
P(X`N ≥ k).

3.2 Reduction to two valued matrices

We will now reduce the problem of estimating the expected value of averages of order
statistics of general matrices to matrices only taking one value different from zero. To
do so, we need some more definitions.

Let Ah be the collection of all non-negative real n×N matrices b that satisfy

b(h(j)) ≥ b(h(j + 1)), 1 ≤ j ≤ `N,
b(h(j)) = 0, `N + 1 ≤ j ≤ nN.

(3.5)

For every b ∈ Ah, we set

b̃(h(j)) :=
( 1

`N

`N∑
i=1

b(h(i))
)
· 1{1,...,`N}(j), 1 ≤ j ≤ nN,

as the matrix that contains the averaged entries of b. Note that b̃ ∈ Ah. Moreover, we
define

am(h(k)) := 1{1,...,m}(k), 1 ≤ m ≤ nN.

Observe that am ∈ Ah for all 1 ≤ m ≤ nN . For b ∈ Ah and g ∈ G we put

Sk(b)(g) := k-max
1≤i≤n

big(i) and S(b)(g) :=
∑̀
k=1

Sk(b)(g).

Lemma 3.4. Let m ∈ N, 1 ≤ m ≤ `N . Then we have

ES(ãm) ≤ (8 + 16CG) · ES(am).

Proof. Observe that for every integer k with 1 ≤ k ≤ `,

ESk(am) = P(Sk(am) = 1) = P(Xm ≥ k),

ESk(ãm) =
m

`N
· P
(
Sk(ãm) =

m

`N

)
=

m

`N
· P(X`N ≥ k).

As a consequence,

ES(ãm) =
m

`N

∑̀
k=1

P(X`N ≥ k) and ES(am) =
∑̀
k=1

P(Xm ≥ k).

Thus, in order to prove the lemma, it is enough to show that

m

`N

∑̀
k=1

P(X`N ≥ k) ≤ (8 + 16CG) ·
∑̀
k=1

P(Xm ≥ k)

for 1 ≤ m ≤ `N . First, we assume m ≤ 2N . Then, Lemma 3.3 implies

m

`N

∑̀
k=1

P(X`N ≥ k) ≤
m

N
· P(X`N ≥ 1) ≤ 2

N
max{N,m · CG}P(Xm ≥ 1)

≤ 4CG ·
∑̀
k=1

P(Xm ≥ k),
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i.e., the assertion of the lemma for m ≤ 2N .

Now, let m ≥ 2N + 1 and choose the integer t ≥ 1 such that 2tN + 1 ≤ m ≤ 2(t+ 1)N .
The sequence k 7→ P(X`N ≥ k) is decreasing, hence, noting that t ≤ `,

m

`N

∑̀
k=1

P(X`N ≥ k) ≤
m

tN

t∑
k=1

P(X`N ≥ k).

Then, estimate (3.4) of Lemma 3.3 implies

m

`N

∑̀
k=1

P(X`N ≥ k) ≤
m

tN

t∑
k=1

(2 + 4CG) · P(Xm ≥ k)

≤ (4 + 8CG)(t+ 1)

t

t∑
k=1

P(Xm ≥ k)

≤ (8 + 16CG) ·
∑̀
k=1

P(Xm ≥ k).

Lemma 3.5. We have

ES(ã) ≤ (8 + 16CG) · ES(a).

Proof. Recall that Xj(g) = |h({1, . . . , j}) ∩ g|. Hence, for all b ∈ Ah,

ES(b) =
∑̀
k=1

`N∑
j=1

b(h(j)) · P({g : Xj−1(g) = k − 1, h(j) ∈ g}).

Defining

f(j) :=
∑̀
k=1

P({g : Xj−1(g) = k − 1, h(j) ∈ g}), 1 ≤ j ≤ `N,

we can write

ES(b) =

`N∑
j=1

f(j)b(h(j)).

Since a, ã ∈ Ah, a(h(j)) = sa(j) and ã(h(j)) = (`N)−1
∑`N
i=1 sa(i) for all j ≤ `N , we obtain

ES(a) =

`N∑
j=1

f(j)sa(j) and ES(ã) =

`N∑
j=1

f̃(j)sa(j),

where for all 1 ≤ j ≤ `N

f̃(j) =
1

`N

`N∑
i=1

f(i).

Note that the functions f and f̃ only depend on h, i.e., only on the positions of the entries
in the matrix and not on their values. Since am(h(j)) = 1 for j ≤ m (zero otherwise) and
am, ãm ∈ Ah, we have

ES(am) =

m∑
j=1

f(j) and ES(ãm) =

m∑
j=1

f̃(j).

ECP 20 (2015), paper 27.
Page 7/12

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v20-3992
http://ecp.ejpecp.org/


On averages of order statistics

Now we conclude with C = 8 + 16CG that

CES(a)− ES(ã) = sa(1)[Cf(1)− f̃(1)] +
`N∑
j=2

[Cf(j)− f̃(j)]sa(j)

≥ sa(2)
2∑
j=1

[Cf(j)− f̃(j)] +
`N∑
j=3

[Cf(j)− f̃(j)]sa(j)

where we used Lemma 3.4 for m = 1. Continuing in this fashion and using Lemma 3.4
for m = 2, . . . , `N , we obtain

CES(a)− ES(ã) ≥ 0.

3.3 Conclusion

As we have seen, we can reduce the case of general a to multiples of matrices only
taking values zero and one. Before we finally prove the lower bound in the main theorem,
we will need another simple lemma.

Lemma 3.6. Let b ∈ Ah be an (n×N)-matrix consisting of `N ones and (n− `)N zeros.
Then, for all 1 ≤ k ≤ `/2,

E k-max
1≤i≤n

big(i) ≥
1

2 + 4CG
.

Proof. Let k ≤ `/2. Using Lemma 3.2 with θ = 1/2, we obtain

E k-max
1≤i≤n

big(i) ≥
∫
{g:X2kN (g)≥k}

k-max
1≤i≤n

big(i) dP(g)

= P(X2kN ≥ k) ≥
k

2(1 + 2kCG)
≥ 1

2 + 4CG
.

Proof of the lower bound in Theorem 1.1. By Theorem 3.5 we obtain

E
∑̀
k=1

k-max
1≤i≤n

aig(i) ≥
1

8(1 + 2CG)
E
∑̀
k=1

k-max
1≤i≤n

ãig(i).

Now take b ∈ Ah consisting of `N ones and (n− `)N zeros such that(
1

`N

`N∑
i=1

sa(i)

)
· b = ã.

Then, by Lemma 3.6,

E
∑̀
k=1

k-max
1≤i≤n

ãig(i) =

[
E
∑̀
k=1

k-max
1≤i≤n

big(i)

]
1

`N

`N∑
i=1

sa(i)

≥

E `/2∑
k=1

k-max
1≤i≤n

big(i)

 1

`N

`N∑
i=1

sa(i)

≥ 1

4 + 8CG

1

N

`N∑
j=1

s(j).

Combining the above estimates, we obtain

E
∑̀
k=1

k-max
1≤i≤n

aig(i) ≥
1

32(1 + 2CG)2
1

N

`N∑
j=1

s(j). (3.6)
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4 The upper bound

We will now prove the upper bound of Theorem 1.1 via an extreme point argument.
To do so, we first use the fact that the average of the j ≤ nN largest entries of a matrix
a ∈ Rn×N is equivalent to an Orlicz norm ‖a‖Mj (cf. Lemma 4.1). Then, since the
expected value of the average of order statistics defines a norm on Rn×N as well, it is
enough to prove the upper bound in Theorem 1.1 for the extreme points of BnMj

.
Recall that, for a vector (xi)

n
i=1 ∈ Rn, we denote the decreasing rearrangement of

(|xi|)ni=1 by (x∗i )
n
i=1. We start with the approximation of sums of decreasing rearrange-

ments of vectors x ∈ Rn by equivalent Orlicz norms.
The following result is due to C. Schütt (private communication) and follows by direct

computation. With his permission we include it here.

Lemma 4.1. Let j ∈ N, 1 ≤ j ≤ n. Then, for all x ∈ Rn, we have

1

2

j∑
i=1

x∗i ≤ ‖x‖Mj
≤

j∑
i=1

x∗i ,

where

Mj(t) :=

{
0, 0 ≤ t ≤ 1/j,

t− 1/j, 1/j < t.
(4.1)

We are now able to prove the upper bound of Theorem 1.1.

Proposition 4.2. Let a ∈ Rn×N . Then, for all ` ≤ n,

E
∑̀
k=1

k-max
1≤i≤n

aig(i) ≤
2

N
‖a‖M`N

. (4.2)

Proof. It is sufficient to show (4.2) for all a ∈ ext(BnNM`
). Therefore, by Lemma 2.1 (2),

we only need to consider matrices a ∈ Rn×N that are of the form

aij :=

{
1
`N , (i, j) 6= (i0, j0),

1 + 1
`N , (i, j) = (i0, j0)

(4.3)

for some index pair (i0, j0) ∈ I × J or satisfy aij =
1
`N for all i = 1, . . . , n, j = 1, . . . , N .

However, the latter choice of a does not satisfy condition (1) in Lemma 2.1, since in that
case

∑nN
i=1M`N (sa(i)) = 0. So the extreme points of BnNM`N

with positive entries are given
by (4.3). Now, let a be such a point in BnNM`N

. Then

E
∑̀
k=1

k-max
1≤i≤n

aig(i)

=

∫
{g:g(i0)=j0}

∑̀
k=1

k-max
1≤i≤n

aig(i) dP(g) +

∫
{g:g(i0)6=j0}

∑̀
k=1

k-max
1≤i≤n

aig(i) dP(g) =
2

N
.

On the other hand, we also have
∑`N
j=1 s(j) = 2. Therefore,

E
∑̀
k=1

k-max
1≤i≤n

aig(i) =
1

N

`N∑
j=1

s(j),

The result follows, since by Lemma 4.1

`N∑
j=1

s(j) ≤ 2‖a‖M`N
.
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Proof of Theorem 1.1. Combining Lemma 4.1 and Proposition 4.2, we get

E
∑̀
k=1

k-max
1≤i≤n

aig(i) ≤
2

N

`N∑
i=1

s(i), (4.4)

which is the upper estimate in Theorem 1.1. Inequalities (3.6) and (4.4) together
complete the proof.

5 An application of Theorem 1.1

We now present an application and use Theorem 1.1 to prove Theorem 1.4. The
proof uses real interpolation and is, what we find, a natural approach to combinatorial
inequalities such as (1.3) that were obtained in [8]. Please notice that [8, Theorem 1.2]
is a special case of Theorem 1.4 when G = Sn.

Let us first recall some basic notions from interpolation theory. A pair (X0, X1) of
Banach spaces is called a compatible couple if there is some Hausdorff topological space
H, in which each of X0 and X1 is continuously embedded. For example, (L1, L∞) is
a compatible couple, since L1 and L∞ are continuously embedded into the space of
measurable functions that are finite almost everywhere. Of course, any pair (X,Y ) for
which one of the spaces is continuously embedded in the other is a compatible couple.

For a compatible couple (X0, X1) (with corresponding Hausdorff space H), we equip
X0 +X1 with the norm

‖x‖X0+X1 := inf
x=x0+x1

(
‖x0‖X0 + ‖x1‖X1

)
, (5.1)

under which this space becomes a Banach space. This definition is independent of the
particular space H.

The K-functional is constructed from the expression (5.1) by introducing a positive
weighting factor t > 0, as follows: let (X0, X1) be a compatible couple. The K-functional
is defined for each f ∈ X0 +X1 and t > 0 by

K(f, t) = K(f, t;X0, X1) := inf
f=f0+f1

(‖f0‖X0
+ t‖f1‖X1

),

where the infimum extends over all representations f = f0 + f1 of f with f0 ∈ X0 and
f1 ∈ X1.

Now, let (X0, X1) be a compatible couple and suppose 0 < θ < 1, 1 ≤ q < ∞ or
0 ≤ θ ≤ 1 and q = ∞. The space (X0, X1)θ,q consists of all f ∈ X0 +X1 for which the
functional

‖f‖θ,q :=

{(∫∞
0

[
t−θK(f, t;X0, X1)

]q dt
t

)1/q
, 0 < θ < 1, 1 ≤ q <∞,

supt>0 t
−θK(f, t;X0, X1), 0 ≤ θ ≤ 1, q =∞,

is finite.

Proof of Theorem 1.4

The proof of the upper bound is the same as in [8, Theorem 1.2] so we just present a
proof of the lower bound. Let 1 ≤ p <∞, θ = 1− 1/p and recall that

‖a‖θ,p =
(∫ ∞

0

[
t−θK

(
a, t;L

|G|
1 (`n1 ), L

|G|
1 (`n∞)

)]p dt
t

)1/p

.

Observe that

K
(
a, t;L

|G|
1 (`n1 ), L

|G|
1 (`n∞)

)
=

∫
G

K
(
a(g), t; `n1 , `

n
∞
)
dP(g). (5.2)
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This in combination with the triangle inequality for integrals yields

‖a‖θ,p =
(∫ ∞

0

[

∫
G

t−θK
(
a(g), t; `n1 , `

n
∞)
)
dP(g)]p

dt

t

)1/p

≤
∫
G

(∫ ∞
0

[
t−θK

(
a(g), t; `n1 , `

n
∞)
)]p dt

t

)1/p

dP(g)

=

∫
G

‖a(g)‖`np dP(g).

Therefore, we have

‖a‖
L

|G|
1 (`np )

≥ ‖a‖θ,p,

for all a : G→ Rn, a(g)(i) = aig(i). Now we compute the K-functional of the interpolation

couple (L
|G|
1 (`n1 ), L

|G|
1 (`n∞)) using (5.2). Observe that

K(a(g), t; `n1 , `
n
∞) =

∫ btc
0

(a(g))∗(s) ds+

∫ t

btc
(a(g))∗(s) ds

=

btc∑
k=1

k-max |a(g)|+ (t− btc) · dte-max |a(g)|.

Then, using (5.2), we obtain

‖a‖p
1− 1

p ,p
=

∫ ∞
0

t−p
(∫

G

K(a(g), t; `n1 , `
n
∞) dP(g)

)p
dt

=

∫ ∞
0

t−p
(∫

G

btc∑
k=1

k-max |a(g)|+ (t− btc) · dte-max |a(g)|) dP(g)
)p

dt

≥
∫ 1

0

(
Ea(g)∗(1)

)p
dt+

∫ n+1

1

t−p
(
E

btc∑
k=1

a(g)∗(k)
)p

dt

≥ c1
[(
Ea(g)∗(1)

)p
+

n∑
`=1

(
E
1

`

∑̀
k=1

a(g)∗(k)
)p]

,

where c1 is a positive absolute constant. By Theorem 1.1, we get

[
Ea(g)∗(1)

]p
+

n∑
`=1

(
E
1

`

∑̀
k=1

a(g)∗(k)
)p
≥ c2

[( 1

N

N∑
j=1

s(j)
)p

+

n∑
`=1

( 1

`N

`N∑
j=1

s(j)
)p]

≥ c2
[( 1

N

N∑
j=1

s(j)
)p

+

n∑
`=1

1

N

(`+1)N∑
j=`N+1

s(j)p
]

= c2

[( 1

N

N∑
j=1

s(j)
)p

+
1

N

nN∑
`=N+1

s(`)p
]
,

where c2 is a positive constant only depending on CG. Taking the p-th root concludes the
proof.
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