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This paper concerns the number Zn of sites visited up to time n by a random walk Sn

having zero mean and moving on the two dimensional square lattice Z2. Asymptotic
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1 Introduction and main results

This paper is a continuation of the paper [12] by the present author, where the
expectation of the cardinality of the range of a pinned random walk is studied when the
random walk of prescribed length is pinned at a point within a parabola of space-time
variables. In this paper we deal with the case when it is outside a parabola at which the
walk is pinned and compute the asymptotic form of the (conditional) expectation. To this
end we derive a local limit theorem valid outside parabolas by using Cramér transform.

The random number, denoted by Zn, of the distinct sites visited by a random walk in
the first n steps is one of typical characteristics or functionals of the random walk paths.
The expectation of Zn may be regarded as the total heat emitted from a site at the origin
which is kept at the unit temperature. The study of Zn is traced back to Dvoretzky and
Erdös [2] in which the law of large numbers of Zn is obtained for simple random walk.
Nice exposition of their investigation and an extension of it is found in [10]. For the
pinned walk the expectation of Zn is computed by [12], [4]. Corresponding problems
for Brownian sausage have also been investigated (often earlier) (cf. [11], [3] for free
motions and [6], [7], [14] for bridges).

Let Sn = X1 + · · ·+Xn be a random walk on the two-dimensional square lattice Z2

starting at the origin. Here the increments Xj are i.i.d. random variables defined on
some probability space (Ω,F , P ) taking values in Z2. The random walk is supposed to
be irreducible and having zero mean: E[X] = 0. Here and in what follows we write X
for a random variable having the same law as X1.

For λ ∈ R2, put

φ(λ) = logE[eλ·X ]
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The mean number of sites visited

and for µ ∈ R2 let m(µ) be the value of λ determined by

∇φ(λ)
∣∣∣
λ=m(µ)

= µ : (1.1)

m(µ) is well defined if µ is an interior point of the image set ∇φ(Ξ) of

Ξ = {λ : E[ |X|eλ·X ] <∞}.

Since ∇φ(0) = 0, if the interior of Ξ contains the origin, then so does the interior of ∇(Ξ).
Let f0(n) be the probability that the walk returns to the origin for the first time at the
n-th step (n ≥ 1) and define

H(µ) =

∞∑
k=1

f0(k)
(

1− e−kφ(m(µ))
)
.

Let Zn (n = 1, 2, . . .) denote the cardinality of the set of sites visited by the walk up to
time n, namely

Zn = ]{S1, S2, . . . , Sn}.

Let Q be the covariance matrix of X and |Q| be the determinant of Q.

Theorem 1. Suppose that φ(λ) < ∞ in a neighborhood of the origin and let K be a
compact set contained in the interior of Ξ. Then,

H(µ) =
π
√
|Q|

− log |µ|
+O

(
1

(log |µ|)2

)
as |µ| → 0, (1.2)

and, uniformly for x ∈ Z2 satisfying x/n ∈ ∇φ(K) and |x| ≥
√
n,

E
[
Zn

∣∣∣Sn = x
]

= nH(x/n) +O

(
n

(log n) ∨ (log |x/n|)2

)
as n→∞. (1.3)

Example 1. For symmetric simple random walk we have eφ(λ) = 1
2 coshα+ 1

2 coshβ

for λ = (α, β). Given x/n = µ+ o(1), the leading term nH(x/n) in (1.3) may be computed
from

H(µ) = 1−
∞∑
j=1

f0(2j)22j

(coshα+ coshβ)2j
, µ = ∇φ(λ) =

(sinhα, sinhβ)

coshα+ coshβ
.

The derivative of H along a circle centered at the origin directed counter-clockwise is
given by

∇H(µ) · µ⊥ = C0(µ)µ1µ2(µ2
2 − µ2

1),

where µ⊥ = (µ2,−µ1) and C0(µ) is a smooth positive function of µ 6= 0. (See Appendix
(B).)

We see shortly that the behavior of the probability P0[Sn = x] differs greatly in
different directions of x as soon as |x|/n3/4 gets large even if Q is isotropic. (See
Proposition 2 below.) According to Theorem 1.2, in contrast to this, the leading term
of E[Zn |Sn = x] as x/n→ 0 as well as that of H(µ) as µ→ 0 is rotation invariant; only
when |x|/n is bounded away from zero, E[Zn |Sn = x] in general becomes dependent on
directions of x.

The case |x| = O(
√
n) is studied in [12] under certain mild moment conditions. If

we assume the rather strong moment condition E[|X|4] <∞, the result is presented as
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The mean number of sites visited

follows: for each a◦ > 0 it holds that uniformly for |x| < a◦
√
n, as n→∞

E[Zn|Sn = x] = 2π
√
|Q|n

∫ ∞
ec◦n

W (u)du+
4
√
|Q| x̃2

(log n)2

(
log+ n

|x|2+
+O(1)

)
+
o(1) + b3O(|x|)

log n
, (1.4)

where W (λ) =
∫∞
0

([log t]2 +π2)−1e−λt dt (λ > 0) and x̃ = Q−1/2x. We have the asymptotic
expansion

∫∞
λ
W (u)du = (log λ)−1−γ(log λ)−2+(γ2− 1

6π
2)(log λ)−3+· · · (λ→∞), where

γ = 0.5772 . . . (Euler’s constant).
Brownian analogue of (1.4) is given in [14], the proof being similar but rather more

involved than for the random walk case.

Remark 1. By a standard argument we have

1−
∞∑
1

e−kλf0(k) =

(
1

(2π)2

∫
[−π,π]2

dθ

1− e−λE[eiθ·X ]

)−1
(λ > 0).

Substitution from E[eiθ·X ] = eφ(iθ) and λ = φ(m(µ)) therefore yields

1

H(µ)
=

1

(2π)2

∫
[−π,π]2

dθ

1− exp{−φ(m(µ)) + φ(iθ)}
(µ 6= 0). (1.5)

Remark 2. For d ≥ 3 the results analogous to (1.4) are obtained by the same method.
Here only a result of [12] for the case d = 3 is given:

Suppose d = 3 and E[|X|4] <∞. Then uniformly for |x| < a◦
√
n, as n→∞

E[Zn|Sn = x] = q0n+
q20 |x̃|

2π
√
|Q|

+O

(
1

1 + |x|

)
+ b3O(1) +

o(1) + b3O(|x|)√
n

,

where q0 = P [Sn 6= 0 for all n ≥ 1].

Remark 3. For random walks of continuous time parameter the asymptotic form of
the expectation are deduced from those of the embedded discrete time walks by virtue
of the well-known purely analytic result as given in [5].

For the proof of Theorem 1 we derive a local limit theorem, an asymptotic evaluation
of the probability P [Sn = x], denoted by qn(x), for large n, that is sharp uniformly for
the space-time region

√
n ≤ |x| < εn (with some ε > 0) (Lemma 3). As a byproduct of it

we obtain the following proposition which lucidly exhibits what happens for variables√
n < |x| << n with n large: if all the third moments vanish, then the ratio of the

probabilities qn(x) among directions of x with the same modulus |x| can be unbounded
as |x|/n3/4 gets large; if not, this may occur as |x|/n2/3 gets large. This result though
not directly used in the proof of Theorem 1 is interesting by itself.

Proposition 2. Uniformly in x, as n→∞ and |x|/n→ 0,

qn(x) =
ν1(qn(x) 6= 0)

2πnσ2
e−x·Q

−1x/2n

(
1 +O

( |x|+ 1

n

))
× exp

{
nκ3

(x
n

)
+ nκ4

(x
n

)
+O

( |x|5
n4

)}
,

where κ3(µ) = 1
6E[(Q−1X · µ)3] and κ4 is a homogeneous polynomial of degree 4. If all

the third moments of X vanish, then

κ4(µ) = − 1

8
[Q−1(µ)]2 +

1

24
E[(Q−1X · µ)4].
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Example 2. For the same simple random walk as in Example 1 it follows from Proposition
2 that

qn(x) =
4e−|x|

2/n

πn

(
1 +O

( |x|+ 1

n

))
exp

{
− |x|

4 + 4(x1x2)2

6n3
+O

( |x|5
n4

)}
for x = (x1, x2) ∈ Z2 with n + x1 + x2 even. This formula, however, can be obtained
rather directly if one notices that in the frame obtained by rotating the original one by a
right angle the two components in the new frame are symmetric simple random walks on
Z/
√

2 that are independent of each other and use an expansion of transition probability
of these walks as given in [8] (Section VII.6, problem 14).

2 Proof of Theorem 1

2.1. Proof of (1.2).

The arguments involved in this subsection partly prepares for the proof of (1.3).
By definition λ = m(µ) is the inverse function of

µ = ∇φ(λ) =
E[XeX·λ]

E[eX·λ]
= Qλ+

1

2
E[(X · λ)2X] +O(|λ|3),

so that

λ = m(µ) = Q−1µ− 1

2
E[(X ·Q−1µ)2Q−1X] +O(|µ|3). (2.1)

The Taylor expansion of φ about the origin up to the thid order is given by

φ(λ) =
1

2
Q(λ) +

1

6
E[(X · λ)3] +O(|λ|4), (2.2)

hence for |µ| small enough,

φ(m(µ)) =
1

2
Q−1(µ)− 1

3
E[(Q−1X · µ)3] +O(|µ|4). (2.3)

Here Q(λ) = λ · Qλ, the quadratic form determined by the matrix Q and similarly
Q−1(µ) = µ ·Q−1µ.

Now we compute H(µ) by using (1.5). From (2.3) and φ(iθ) = − 1
2Q(θ) +O(|θ|3) (for θ

small) it follows that

1− e−φ(m(µ))+φ(iθ) =
1

2
[Q−1(µ) +Q(θ)] +O(|µ|3 + |θ|3).

Substitution into (1.5) and a simple computation show

1

H(µ)
=

2

(2π)2

∫
[−π,π]2

dθ

Q−1(µ) +Q(θ) +O(|µ|3 + |θ|3)

=
−1

2π|Q|1/2
logQ−1(µ) +O(1).

Noting logQ−1(µ) = 2 log |µ|+O(1) we obtain (1.2).

2.2. A local limit theorem.

Let q(x) denote the probability law of the increment of the walk: q(x) = P [X = x].
Let µ = ∇φ(λ) with λ in the interior of Ξ and define

qµ(x) =
1

E[em(µ)·X ]
em(µ)·xq(x)
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(m(µ) is defined by (1.1)) so that qµ is a probability on Z2 with the mean∑
xqµ(x) = ∇φ(m(µ)) = µ.

Let qn and qnµ be the n-fold convolution of q and qµ, respectively. Then

qn(x) := P [Sn = x] = (E[em(µ)·X ] )ne−m(µ)·xqnµ(x). (2.4)

Let Qµ denote the covariance matrix of the probability qµ and Q−1µ (x) the quadratic form
determined by Q−1µ .

Lemma 3. Let K be a compact set contained in the interior of Ξ (as in Theorem 1). Then
uniformly for y ∈ Z2 − nµ and for µ ∈ ∇φ(K), as n→∞

qnµ(nµ+ y) =
ν1(qn(nµ+ y) 6= 0)

2πnσ2
µ

e−Q
−1
µ (y)/2n

[
1 + Pn,Nµ (y)

]
+O

(
[y2 ∨ n]−N/2

)
.

Here N may be an arbitrary positive integer, ν is the period of the walk Sn, 1(S) is 1
or 0 according as the statement S is true or false, σ2

µ denotes the square root of the
determinant of Qµ and

Pn,Nµ (y) = n−1/2Pµ1 (y/
√
n ) + · · ·+ n−N/2PµN (y/

√
n ),

where Pµj is a polynomial of degree at most 3j determined by the moments of qnµ and odd
for odd j.

Proof. This lemma may be a standard result. In fact it is reduced to the usual local
central limit theorem as follows. Let ψµ(θ) be the characteristic function of qµ and put
ψ̃µ(θ) =

∑
x qµ(x)eiθ·(x−µ), so that

ψµ(θ) :=
∑
x

qµ(x)eiθ·x = ψ̃µ(θ)eiµ·θ.

Hence

qnµ(nµ+ y) =
1

(2π)2

∫
T

[ψµ(θ)]ne−i(nµ+y)·θdθ

=
1

(2π)2

∫
T

[ψ̃µ(θ)]ne−iy·θdθ, (2.5)

where T = [−π, pi)× [−π, pi). Since ∇ψ̃µ(0) = 0, the Hessian matrix of ψ̃µ at zero equals
Qµ and

∑
pµ(x)|x|2N < ∞ for all N > 0, the usual procedure to derive the local limit

theorem (see [9]; also Appendix (A) for the case ν > 1 if necessary) shows that the
right-most member equals that of the formula of the lemma.

Define Λ ⊂ Z2 by
Λ = {x ∈ Z2 : qνn(x) 6= 0 for some n}. (2.6)

Plainly Λ is a subgroup of Z2. Take an ξ ∈ Z2 with q(ξ) > 0 and put Λk = Λ + kξ, the shift
of Λ by kξ. Λk does not depend on the choice of ξ and is periodic in k of period ν. It holds
that P [Sn ∈ Λk] > 0 only if n = k mod(ν). In the formula of Lemma 3 the trivial factor
1(qn(nµ+ y) 6= 0) may be replaced by 1(nµ+ y ∈ Λn); also, for each k ∈ Z, qnµ(nµ+ y)

may be replaced by qnµ((n− k)µ+ y), hence by qn+kµ (nµ+ y). Thus we can reformulate
Lemma 3 as in the following

Corollary 4. Let K be a compact set contained in the interior of Ξ. Then for each k ∈ Z,
uniformly for y ∈ Z2 − nµ and for µ ∈ ∇φ(K), as n→∞

qn+kµ (nµ+ y) =
ν1(nµ+ y ∈ Λn+k)

2πnσ2
µ

e−Q
−1
µ (y)/2n

[
1 + Pn,Nµ (y)

]
+O

(
[y2 ∨ n]−N/2

)
,

with the same notation as in Lemma 3.
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Proof of Proposition 2. In Lemma 3 we take µ = x/n. It follows that with λ = m(µ)

Qµ = ∇ log φ(λ) + [∇φ(λ)/φ(λ)]2 = Q+O(|µ|),

so that σ2
µ = σ2 + O(|µ|). In view of (2.4) and Lemma 3 we have only to compute

asymptotic form of

E[em(µ)·X ]ne−m(µ)·x = exp{n[φ(m(µ))−m(µ) · µ]}.

By (2.1) and (2.3)

φ(m(µ))−m(µ) · µ = −1

2
Q−1(µ) +

1

6
E[(Q−1X · µ)3] + κ4(µ) +O(|µ|5)

for |µ| small enough, where κ4(µ) is a polynomial of degree 4.
Assume that all the third moments of X vanish. Then, in place of (2.1) and (2.2) we

have
λ = m(µ) = Q−1µ+ b(µ). (2.7)

with b(µ) = O(|µ|3) and

φ(λ) =
1

2
Q(λ)− 1

8
[Q(λ)]2 +

1

24
E[(X · λ)4] +O(|λ|5), (2.8)

respectively. Substituting these formulae into m(µ) · µ − φ(m(µ)) we observe that the
term involving b(µ) disappears from the fourth order term by cancellation and hence that

φ(m(µ))−m(µ) · µ = −1

2
Q−1(µ)− 1

8
[Q(λ)]2 +

1

24
E[(Q−1X · µ)4] +O(|µ|5),

in which we find the explicit form of κ4(µ) as presented in the proposition.

2.3. Proof of (1.3).

The proof is based on the identity

E[Zn;Sn = x] = nqn(x)−
n−1∑
k=1

f0(k)qn−k(x)(n− k) (2.9)

(cf. [12], Lemma 1.1) as well as Corollary 4. Let qn(x) 6= 0. Remembering E[em(µ)·X ] =

eφ(m(µ)) we obtain from (2.4) that

qn−k(x)(n− k)

qn(x)n
= e−kφ(m(µ))

qn−kµ (x)(n− k)

qnµ(x)n
.

On writing µ := x/n and x = (n− k)µ+ kµ, Corollary 4 gives

qn−kµ (x)(n− k) =
ν1(x ∈ Λn−k)

2πσ2
µ

e−Q
−1
µ (kµ)/2(n−k)

[
1 + Pn−k,Nµ (kµ)

]
+O([|kµ|2 ∨ (n− k)]−N )

and
qnµ(x)n =

ν

2πσ2
µ

[
1 +O(1/n)

]
.

Let 1/
√
n ≤ |µ| and µ ∈ ∇φ(K). Noting that σ2

µ is then bounded away from zero for
µ ∈ ∇φ(K) we see

qn−k(x)(n− k)

qn(x)n
= 1(x ∈ Λn−k)e−kφ(m(µ))e−Q

−1
µ (kµ)/2(n−k)

[
1 +O(1/

√
n)
]

+O
(
e−kφ(m(µ))n−N

)
. (2.10)
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Since
∑
k>n1/3 f0(k) = O(1/ log n), it follows that

E[Zn;Sn = x] = nqn(x)

[
n1/3∑
k=1

f0(k)
(

1− 1(x ∈ Λn−k)e−kφ(c(x/n))
)

+O

(
1

log n

)]
.

Under the condition qn(x) 6= 0, it follows from f0(k) 6= 0 that x ∈ Λn−k. Hence

E[Zn |Sn = x] = n

∞∑
k=1

f0(k)
(

1− e−kφ(c(x/n))
)

+O

(
n

log n

)
. (2.11)

We still need to obtain the error bound O(n/| logµ|2) instead of O(n/ log n). To this
end, on applying the asymptotic formula

f0(k) =
2π|Q|1/2

k(log k)2
+O

(
1

k(log k)3

)
(cf. [13]) we see, on the one hand, that for 0 < φ < 1/2∑

k>δ/φ

f0(k)e−kφ = O

(
1

(log φ)2

)
, (2.12)

where δ is an arbitrarily fixed positive constant, and by using (2.3), on the other hand,
we see

φ(m(µ)) > c|µ|2 ≥ c/n

(the second inequality is nothing but our present supposition that |x| ≥
√
n). As in a

similar way to the derivation of (2.11) we deduce from (2.9) with the help of (2.12) as
well as of (2.10) that

E[Zn; Sn = x]

nqn(x)
=

∞∑
k=1

f0(k)
(

1− e−kφ(c(x/n))
)

+O

(
1

(log |µ|)2

)
,

if it is true that as µ→ 0∑
k<c/2φ(m(µ))

f0(k)e−kφ(m(µ))(1− e−Q
−1(kµ)/2(n−k)) = O(1/(log |µ|)2). (2.13)

Since c/2φ(m(µ)) ≤ n/2, the sum on the left-hand side of (2.13) is at most a constant
multiple of∑

k<c/2φ(m(µ))

f0(k)
Q−1(kµ)

n
=

Q−1(µ)

n

∑
k<c/2φ(m(µ))

f0(k)k2

≤ c′|µ|2

n

k2

(log k)2

∣∣∣∣
k=c/2φ(m(µ))

= O

(
1

n(log |µ|)2

)
.

verifying (2.13) (with a better bound).
Thus we have proved (1.3) and hence Theorem 1.

3 Appendix

(A) In the case when the period ν is larger than 1 the evaluation of the integral in
(2.5) is reduced to that for the case ν = 1 by consideration of a property of its integrand
that reflects the periodicity. By an elementary algebra one can find a point η ∈ R2 that
satisfies that for j = 0, 1, . . . , ν − 1,

η · x− jν−1 ∈ Z if x ∈ Λj
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(Λj is defined shortly after (2.6)). From this relation it follows that

ψ(θ + 2πkη) = ψ(θ)ei2πk/ν (k = 0, . . . , ν − 1).

Now consider the expression qnµ(x) = (2π)−2
∫
T

[ψ(θ)]ne−ix·θdθ. Observe that if x ∈ Λj ,

[ψ(θ + 2πkη)]ne−ix·(θ+2πkη) = [ψ(θ)]ne−ix·θei2π(n−j)k/ν (k = 0, . . . , ν − 1)

and the right-hand sides equal [ψ(θ)]ne−ix·θ for all k if n− j equals zero in mod ν, while
their sum over k vanishes otherwise. Choosing ε > 0 small enough, we may replace 2πη

by a unique ηk ∈ [−1 − ε, 1 + ε] such that ηk − η ∈ Z2 and apply the usual method for
evaluation of Fourier integral.

(B) Put ψ(λ) = E[eλ·X ], so that µ = ∇φ(λ) = E[Xeλ·X ]/ψ(λ). At λ = m(µ) we have

∇2φ(λ) = E[X2eλ·X ]/ψ(λ)− µ2 = Qµ,

where µ2 is understood to be 2× 2 matrix: µ2 = (µiµj)1≤i,j≤2, and similarly for X2 and
∇2. Since id = ∇m(µ)∂µ∂λ = ∇m(µ)∇2φ(m(µ)) = ∇m(µ)Qµ, it holds that

∇m(µ) = Q−1µ .

Therefore, from the defining formula of H we have

∇H(µ) = C(µ)∇(φ ◦m)(µ) = C(µ)Q−1µ µ,

where

C(µ) =

∞∑
k=1

kf0(k)e−kφ(m(µ)).

Let Eµ designate the expectation w.r.t. qµ, i.e.,

Eµ[·] =
[
E[· eλ·X ]/ψ(λ)

]
λ=m(µ)

.

Then

Q−1µ µ =
1

detQµ

[
Eµ[X2

2 ]− µ2
2 µ1µ2 − Eµ[X1X2]

µ1µ2 − Eµ[X1X2] Eµ[X2
1 ]− µ2

1

](
µ1

µ2

)
=

1

detQµ

[
µ1E

µ[X2
2 ]− µ2E

µ[X1X2]

µ2E
µ[X2

1 ]− µ1E
µ[X1X2]

]
.

Hence

∇H(µ) · µ⊥ =
1

detQµ
C(µ)

(
µ1µ2E

µ[X2
2 −X2

1 ] + (µ2
1 − µ2

2)Eµ[X1X2].
)
.

For the simple random walk in Example 1, detQµ = (coshα+coshβ)−2, Eµ[X1X2] = 0

and

Eµ[X2
2 −X2

1 ] =
coshβ − coshα

2ψ(m(µ))
=

sinh2 β − sinh2 α

(cosh a+ coshβ)2

= µ2
2 − µ2

1 (λ = m(µ)),

showing the last formula of Example 1 with C0(µ) = C(µ)(coshα+ coshβ)2.
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