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The mean number of sites visited
by a random walk pinned at a distant point
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Abstract

This paper concerns the number Z,, of sites visited up to time n by a random walk S,
having zero mean and moving on the two dimensional square lattice Z?. Asymptotic
evaluation of the conditional expectation of Z,, for large n given that S, = z is carried
out under some exponential moment condition. It gives an explicit form of the leading
term valid uniformly in (x,n), |z| < cn.
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1 Introduction and main results

This paper is a continuation of the paper [12] by the present author, where the
expectation of the cardinality of the range of a pinned random walk is studied when the
random walk of prescribed length is pinned at a point within a parabola of space-time
variables. In this paper we deal with the case when it is outside a parabola at which the
walk is pinned and compute the asymptotic form of the (conditional) expectation. To this
end we derive a local limit theorem valid outside parabolas by using Cramér transform.

The random number, denoted by Z,,, of the distinct sites visited by a random walk in
the first n steps is one of typical characteristics or functionals of the random walk paths.
The expectation of Z,, may be regarded as the total heat emitted from a site at the origin
which is kept at the unit temperature. The study of Z,, is traced back to Dvoretzky and
Erdos [2] in which the law of large numbers of Z,, is obtained for simple random walk.
Nice exposition of their investigation and an extension of it is found in [10]. For the
pinned walk the expectation of Z,, is computed by [12], [4]. Corresponding problems
for Brownian sausage have also been investigated (often earlier) (cf. [11], [3] for free
motions and [6], [7], [14] for bridges).

Let S, = X; +---+ X, be a random walk on the two-dimensional square lattice Z>
starting at the origin. Here the increments X; are i.i.d. random variables defined on
some probability space ({2, F, P) taking values in Z2. The random walk is supposed to
be irreducible and having zero mean: E[X] = 0. Here and in what follows we write X
for a random variable having the same law as Xj.

For A € R?, put

$(\) = log Ble*]
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and for p € R? let m(p) be the value of A determined by

V() =pu: (1.1)

A=m(u)

m(u) is well defined if i is an interior point of the image set V¢ (Z) of
Z={\: B[|X|e*¥] < 00}

Since V¢(0) = 0, if the interior of = contains the origin, then so does the interior of V(Z).
Let fo(n) be the probability that the walk returns to the origin for the first time at the
n-th step (n > 1) and define

H(p) = i fo(k) (1 _ efk¢(m(u))).
k=1

Let Z, (n =1,2,...) denote the cardinality of the set of sites visited by the walk up to
time n, namely

Z, = #{51,59,...,5,}.
Let @ be the covariance matrix of X and |@Q| be the determinant of Q.

Theorem 1. Suppose that ¢(\) < oo in a neighborhood of the origin and let K be a
compact set contained in the interior of =. Then,

H(p) = /191 +0<( ! ) as |yl =0, (1.2)

—log | log | )2

and, uniformly for x € Z? satisfying x/n € V¢(K) and |x| > v/n,

(logn) V (log [x/nl)?

E [Zn

Sn:x} :nH(x/n)—i—O( ) as n — oo. (1.3)

Example 1. For symmetric simple random walk we have e?*) = % cosha + % cosh 8

for A = (¢, 8). Given x/n = p+o(1), the leading term nH (x/n) in (1.3) may be computed
from

= fo(27)22% sinh v, sinh 3)
- Z h h :V(b()\):(h hp
= (cosh o + cosh 3)2 cosh a + cosh
The derivative of H along a circle centered at the origin directed counter-clockwise is
given by
VH(p) - pt = Co(p)pmpa(pz — pi),

where ut = (us, —p1) and Cy(u) is a smooth positive function of u # 0. (See Appendix
(B).)

We see shortly that the behavior of the probability Fy[S, = x| differs greatly in
different directions of x as soon as |x|/n*/* gets large even if Q is isotropic. (See
Proposition 2 below.) According to Theorem 1.2, in contrast to this, the leading term
of E[Z, | S, = x] as x/n — 0 as well as that of H(u) as 1+ — 0 is rotation invariant; only
when |x|/n is bounded away from zero, E[Z, | S, = x] in general becomes dependent on
directions of x.

The case |x| = O(y/n) is studied in [12] under certain mild moment conditions. If
we assume the rather strong moment condition E[|X|] < oo, the result is presented as
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follows: for each a, > 0 it holds that uniformly for |x| < ao/n, as n — oo

— — > 4\/ ‘Q| 7 + n
E[Z,|S, =x] = 2m/|Q|n econW(u)du—l— (log )2 (log EH +0(1)
logn

where W(A) = [;%([logt]?+n2)~Le=* dt (A > 0) and Z = Q~/22. We have the asymptotic
expansion [, W(u)du = (log \) ' —y(log \) 2+ (72— £72)(log \) 3+--- (XA — 00), where
v =0.5772... (Euler’s constant).

Brownian analogue of (1.4) is given in [14], the proof being similar but rather more
involved than for the random walk case.

Remark 1. By a standard argument we have

o 1 d -
12 ) = ((W /[_”]2 1_6—AE[eeX]> (A>0)

1

Substitution from E[e??X] = ¢?(?) and A\ = ¢(m(p)) therefore yields

1 1 do
m - W /[W’,r]z 1 —exp{—¢(m(u)) + ¢(i0)} (u#0). (1.5)

Remark 2. For d > 3 the results analogous to (1.4) are obtained by the same method.
Here only a result of [12] for the case d = 3 is given:
Suppose d = 3 and E[|X|*] < co. Then uniformly for |x| < a,/n, as n — oo

2 ~
4517 ( 1 ) o(1) + b30(|z|)
E|Z,|S, =z| = + +0 +b30(1) + ,
12| 7= qon 274/|Q] 1+ |z s0) Vvn

where ¢o = P[S,, # 0 for all n > 1].

Remark 3. For random walks of continuous time parameter the asymptotic form of
the expectation are deduced from those of the embedded discrete time walks by virtue
of the well-known purely analytic result as given in [5].

For the proof of Theorem 1 we derive a local limit theorem, an asymptotic evaluation
of the probability P[S,, = x|, denoted by ¢"(x), for large n, that is sharp uniformly for
the space-time region /n < |x| < en (with some ¢ > 0) (Lemma 3). As a byproduct of it
we obtain the following proposition which lucidly exhibits what happens for variables
vn < |z] << n with n large: if all the third moments vanish, then the ratio of the
probabilities ¢"(x) among directions of x with the same modulus |x| can be unbounded
as |x|/n/* gets large; if not, this may occur as |x|/n?/3 gets large. This result though
not directly used in the proof of Theorem 1 is interesting by itself.

Proposition 2. Uniformly in x, as n — oo and |x|/n — 0,

o) = L ZO e (1 o( BLEL))

2mno?
x x |x|5
X exp nﬁg(*) + nm(f) + 0(7) ,
n n n
where r3(p) = $E[(Q7'X - 1)?] and k4 is a homogeneous polynomial of degree 4. If all
the third moments of X vanish, then
1, 1 _
ra(p) = = 2[Q T (W)* + L BIQT'X - ).
8 24
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Example 2. For the same simple random walk as in Example 1 it follows from Proposition

2 that
oy demIl?/m x| +1 x| + 4(a12)° [x°
q <X>m<1+0(n)>e"p{‘w+o<rﬂ)}

for x = (x1,22) € Z? with n + 21 + x5 even. This formula, however, can be obtained
rather directly if one notices that in the frame obtained by rotating the original one by a
right angle the two components in the new frame are symmetric simple random walks on
z/ V2 that are independent of each other and use an expansion of transition probability
of these walks as given in [8] (Section VIIL.6, problem 14).

2 Proof of Theorem 1

2.1. Proof of (1.2).

The arguments involved in this subsection partly prepares for the proof of (1.3).
By definition A = m(u) is the inverse function of

eX~>\
p= oo = EEC - ons T X+ o),
so that 1
A= ml) = Qi — LEIX - QP Q 7 X] + O(ul’). @1

The Taylor expansion of ¢ about the origin up to the thid order is given by
1 1 .
¢(A) = 50\ + E[(X - NI+ O(A), (2.2)

hence for |u| small enough,

Bm(p)) = 507 ) — EIQX - )] + Ol 2.3)

Here Q(\) = X - @)\, the quadratic form determined by the matrix @ and similarly
Q' (W =p Q'
Now we compute H () by using (1.5). From (2.3) and ¢(if) = —1Q(6) + O(|0]?) (for 6
small) it follows that
X 1 ; .
1= e H D O) — 2191 (1) 4+ Q()] + O(lul® +16F).

Substitution into (1.5) and a simple computation show

. a
H(p) (212 Jisrap Q72 w) + Q(O) + O(|uf* +101%)
1

W log Q' (1) + O(1).

Noting log Q! () = 2log |u| + O(1) we obtain (1.2).

2.2. Alocal limit theorem.

Let ¢(x) denote the probability law of the increment of the walk: ¢(x) = P[X = x].
Let u = V¢(A) with ) in the interior of = and define

1

qu(x) = Wem(”)'xﬂx)

ECP 20 (2015), paper 17. ecp.ejpecp.org
Page 4/9


http://dx.doi.org/10.1214/ECP.v20-4027
http://ecp.ejpecp.org/

The mean number of sites visited

(m(p) is defined by (1.1)) so that ¢, is a probability on 72 with the mean

> xaqu(x) = Vo(m(p) = p.
Let ¢" and g;, be the n-fold convolution of ¢ and g,,, respectively. Then
¢"(x) := P[S,, = x] = (E[e"WX])remmm)>gn (x). (2.4)

Let @, denote the covariance matrix of the probability ¢, and Q;l (x) the quadratic form
determined by Q;,*.

Lemma 3. Let K be a compact set contained in the interior of = (as in Theorem 1). Then
uniformly for y € Z? — nu and for u € Vé(K), as n — oo

qﬁ(nu +y) = v1(¢"(np+y) #0) Qi ¥)/2n [1 + P[LL,N(y)] + O([y2 v n]N/2>‘

2
27m0u

Here N may be an arbitrary positive integer, v is the period of the walk S,,, 1(S) is 1
or 0 according as the statement S is true or false, ofb denotes the square root of the
determinant of (), and

PrN(y) =n 2P (y/Vn) + -+ 0 NPy (y /i),

where P;‘ is a polynomial of degree at most 3j determined by the moments of ¢;; and odd
for odd j.

Proof. This lemma may be a standard result. In fact it is reduced to the usual local
central limit theorem as follows. Let ¢, () be the characteristic function of ¢, and put

12’#(9) =, qu(x)e® 1) so that
W(9) = un(x)ew'x — @M((g)em.e.

Hence
Gty = o /[w (O)]" e Y0y
! @2m)2 Jr "
1 - .
- - n_ —iy-0
where T = [—m, pi) x [, pi). Since V4),(0) = 0, the Hessian matrix of ¢/, at zero equals

Qu and Y p,(x)[x[*N < oo for all N > 0, the usual procedure to derive the local limit
theorem (see [9]; also Appendix (A) for the case v > 1 if necessary) shows that the
right-most member equals that of the formula of the lemma. O

Define A C Z? by
A={xeZ?: ¢""(x)# 0 for some n}. (2.6)

Plainly A is a subgroup of Z2. Take an ¢ € Z? with ¢(¢) > 0 and put Ay = A + k&, the shift
of A by k£. A does not depend on the choice of £ and is periodic in & of period v. It holds
that P[S,, € Ax] > 0 only if n = k mod(v). In the formula of Lemma 3 the trivial factor
1(¢"(np +y) # 0) may be replaced by 1(nu +y € A,); also, for each k € Z, q;;(nu +y)
may be replaced by ¢;;((n — k)i +y), hence by qZ”“(mL +y). Thus we can reformulate
Lemma 3 as in the following

Corollary 4. Let K be a compact set contained in the interior of =. Then for each k € Z,
uniformly for y € Z? — nu and for y € Vé(K), asn — oo
vi(np+y € Apyr) _

ntk = Qu'(¥)/2n|1 L pn.N } Ol w2 v nl—N/2

with the same notation as in Lemma 3.
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Proof of Proposition 2. In Lemma 3 we take u = x/n. It follows that with A = m(u)
Qu = Vlog¢(N) + [Vo(N)/6(N)]* = Q + O(|ul),

so that aﬁ = 02 4+ O(|u|). In view of (2.4) and Lemma 3 we have only to compute
asymptotic form of

E[em(u)'X]ne—m(H)‘x = eXp{’n[(ﬁ(m(lJz)) - m(M) : ,u]}

By (2.1) and (2.3)
Sm(p)) — mlp) = —5 Q7 () + SBIQ X -]+ ma(30) + Ol

for |u| small enough, where x4(u) is a polynomial of degree 4.
Assume that all the third moments of X vanish. Then, in place of (2.1) and (2.2) we
have

A=m(p) =Q '+ b(u). (2.7)
with b(p) = O(|u|®) and
B0) = 300 — SRV + 5 BI(X - X +O(AP), 2.8

respectively. Substituting these formulae into m(u) - 1 — ¢(m(u)) we observe that the
term involving b(u) disappears from the fourth order term by cancellation and hence that

1 . 1 1 _
om(p) = m() - p == 5Q (1) = SIQP + 53 EIQ X - )] + O(luf),
in which we find the explicit form of x4(u) as presented in the proposition. O
2.3. Proof of (1.3).
The proof is based on the identity
n—1
E[Z,; S, = x| =nq"(x) — Z fo(k)g"*(x)(n — k) (2.9)
k=1

(cf. [12], Lemma 1.1) as well as Corollary 4. Let ¢"(x) # 0. Remembering E[em(“)'x] =
e?(m(1) we obtain from (2.4) that

¢" " (x)(n — k) — o kb(m(u) g " (x)(n — k)
q"(x)n qr(x)n

On writing p := x/n and x = (n — k)u + ku, Corollary 4 gives

n— V].(X S An—k) -1 e .
Q/L k(x)(nfk) - Te Qu (k“)/Q( k) |:1+Pu k,N(klu)i|

+O([[kpl* Vv (n = k) ~Y)
and y

2mo?

4, (x)n =

[1 + 0(1/71)].

Let 1/y/n < |u| and p € V¢(K). Noting that o7, is then bounded away from zero for
€ Vo(K) we see

n—k _ 1
CTXMR) e A e R0 o=@ k) /2 [1 +0(1/vn)
7" (x)n
+0 (e_k¢(m("))n_N>. (2.10)
ECP 20 (2015), paper 17. ecp.ejpecp.org
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Since ) .. ,.1/5 fo(k) = O(1/logn), it follows that

/3

1
— ] — _ —ko(c(x/n))
E[Z,; S, = x| = ng" l E folk (1 1(xeA,_i)e ) +O<10gn)]'

Under the condition ¢"(x) # 0, it follows from fy(k) # 0 that x € A,,_;. Hence

_ _ - _ —ko(c(x/n)
E[Z7,,|Sn_x]_n;f0(k)(1 e )+O<10gn>. (2.11)

We still need to obtain the error bound O(n/|log 1|?) instead of O(n/logn). To this
end, on applying the asymptotic formula

21r|Q|/? 1
k = — O .
fo(k) Kogk)? T O\ k(log k)3
(cf. [13]) we see, on the one hand, that for 0 < ¢ < 1/2

B 1
2 Jolb)e™? =0 <<1og¢>2>’ (212

k>6/¢

where 0 is an arbitrarily fixed positive constant, and by using (2.3), on the other hand,
we see

p(m(p)) > clpl* > ¢/n
(the second inequality is nothing but our present supposition that |x| > /n). Asin a

similar way to the derivation of (2.11) we deduce from (2.9) with the help of (2.12) as
well as of (2.10) that

E[Z; Sn = X] — —k 1
=S e o L)
nrg = 2 o )+ 0 oz
if it is true that as 4 — 0

ST folk)e FmE (1 QT 2R — O(1/(log [u])?). (2.13)
k<c/2¢(m(u))

Since ¢/2¢(m(p)) < n/2, the sum on the left-hand side of (2.13) is at most a constant
multiple of

Z fo(k)Q_l(kM) _ Q' (n) Z folk)k?

n n
k<c/2¢(m(p)) k<ec/2¢(m(p))

K2 O( ! )

n  (logk)? k=c/2¢(m(p)) n(log|ul)? )

verifying (2.13) (with a better bound).
Thus we have proved (1.3) and hence Theorem 1.

3 Appendix

(A) In the case when the period v is larger than 1 the evaluation of the integral in
(2.5) is reduced to that for the case v = 1 by consideration of a property of its integrand
that reflects the periodicity. By an elementary algebra one can find a point € R? that
satisfies that for j = 0,1,...,v —1,

- .
n-x—jv - eZ if xel;
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(A; is defined shortly after (2.6)). From this relation it follows that
W(0 + 21kn) = (0)e™"  (k=0,...,v—1).
Now consider the expression ¢ (z) = (2) =2 [,.[1(8)]"e~**?df. Observe that if z € A,
[1h(0 + 27kn)]me ™t OF2mhn) — [y(g)|nemi@Oei2r(n=Dk/v (L =0, . v —1)

and the right-hand sides equal [1/(#)]"e~** for all k if n — j equals zero in mod v, while
their sum over k vanishes otherwise. Choosing £ > 0 small enough, we may replace 277
by a unique 7, € [-1 —¢,1 + €] such that 7, — 7 € Z? and apply the usual method for
evaluation of Fourier integral.

(B) Put¢)(\) = E[e*X], so that u = Vo(\) = E[XeMX]/y(N). At A = m(u) we have

V2o(A) = E[X*eM ] Y(N) — 1 = Qy,

where 12 is understood to be 2 x 2 matrix: u? = (p;45)1<i j<2, and similarly for X2 and
V2. Since id = Vm(u) 9% = Vm(u)V2¢(m(n)) = Vm(u)Q,, it holds that

m(p) = Q"

Therefore, from the defining formula of i we have

VH(p) = C(n) V(¢ om)(u) = C(1)Q,," 1,
where

Z kfo —k¢(m(#

Let £ designate the expectation w.r.t. ¢,, i.e.,

B[] = B[ X fu()]

A=m(u)’

Then

Qlu = { BUXE =g g — BM[X01Xo] ] ( i )

w det Q,, | pap2 — EF[X1X5] EMXT] - H2
_ 1t { i EF[X3] — po B [X1 X }
det Qp | p2E*[XT] — 1 B*[ X1 Xo]
Hence
1 '
VH(p) pt = C(u) (umE’ (X3 — X7+ (1f - u%)E“[Xlel).
det Q,

For the simple random walk in Example 1, det @,, = (cosh a+ cosh 3) 2, E#[X;X3] =0
and

cosh 8 — cosh « sinh? 8 — sinh® a
FH[X2 - X =
X2 il= 2¢p(m(p)) (cosh a + cosh 3)2

ph—pi (A =m(pw),

showing the last formula of Example 1 with Cy(u) = C(u)(cosh a + cosh 3)2.
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