The mean number of sites visited by a random walk pinned at a distant point

Kôhei Uchiyama*

Abstract

This paper concerns the number Z_{n} of sites visited up to time n by a random walk S_{n} having zero mean and moving on the two dimensional square lattice \mathbb{Z}^{2}. Asymptotic evaluation of the conditional expectation of Z_{n} for large n given that $S_{n}=x$ is carried out under some exponential moment condition. It gives an explicit form of the leading term valid uniformly in $(x, n),|x|<c n$.

Keywords: Range of random walk; pinned random walk; Cramér transform; local central limit theorem.
AMS MSC 2010: Primary 60J65, Secondary $60 J 45$.
Submitted to ECP on December 26, 2014, final version accepted on February 22, 2015.

1 Introduction and main results

This paper is a continuation of the paper [12] by the present author, where the expectation of the cardinality of the range of a pinned random walk is studied when the random walk of prescribed length is pinned at a point within a parabola of space-time variables. In this paper we deal with the case when it is outside a parabola at which the walk is pinned and compute the asymptotic form of the (conditional) expectation. To this end we derive a local limit theorem valid outside parabolas by using Cramér transform.

The random number, denoted by Z_{n}, of the distinct sites visited by a random walk in the first n steps is one of typical characteristics or functionals of the random walk paths. The expectation of Z_{n} may be regarded as the total heat emitted from a site at the origin which is kept at the unit temperature. The study of Z_{n} is traced back to Dvoretzky and Erdös [2] in which the law of large numbers of Z_{n} is obtained for simple random walk. Nice exposition of their investigation and an extension of it is found in [10]. For the pinned walk the expectation of Z_{n} is computed by [12], [4]. Corresponding problems for Brownian sausage have also been investigated (often earlier) (cf. [11], [3] for free motions and [6], [7], [14] for bridges).

Let $S_{n}=X_{1}+\cdots+X_{n}$ be a random walk on the two-dimensional square lattice \mathbb{Z}^{2} starting at the origin. Here the increments X_{j} are i.i.d. random variables defined on some probability space (Ω, \mathcal{F}, P) taking values in \mathbb{Z}^{2}. The random walk is supposed to be irreducible and having zero mean: $E[X]=0$. Here and in what follows we write X for a random variable having the same law as X_{1}.

For $\lambda \in \mathbb{R}^{2}$, put

$$
\phi(\lambda)=\log E\left[e^{\lambda \cdot X}\right]
$$

*Tokyo Institute of Technology, Japan. E-mail: uchiyama@math.titech. ac.jp
and for $\mu \in \mathbb{R}^{2}$ let $m(\mu)$ be the value of λ determined by

$$
\begin{equation*}
\left.\nabla \phi(\lambda)\right|_{\lambda=m(\mu)}=\mu: \tag{1.1}
\end{equation*}
$$

$m(\mu)$ is well defined if μ is an interior point of the image set $\nabla \phi(\Xi)$ of

$$
\Xi=\left\{\lambda: E\left[|X| e^{\lambda \cdot X}\right]<\infty\right\}
$$

Since $\nabla \phi(0)=0$, if the interior of Ξ contains the origin, then so does the interior of $\nabla(\Xi)$. Let $f_{0}(n)$ be the probability that the walk returns to the origin for the first time at the n-th step ($n \geq 1$) and define

$$
H(\mu)=\sum_{k=1}^{\infty} f_{0}(k)\left(1-e^{-k \phi(m(\mu))}\right)
$$

Let $Z_{n}(n=1,2, \ldots)$ denote the cardinality of the set of sites visited by the walk up to time n, namely

$$
Z_{n}=\sharp\left\{S_{1}, S_{2}, \ldots, S_{n}\right\} .
$$

Let Q be the covariance matrix of X and $|Q|$ be the determinant of Q.
Theorem 1. Suppose that $\phi(\lambda)<\infty$ in a neighborhood of the origin and let K be a compact set contained in the interior of Ξ. Then,

$$
\begin{equation*}
H(\mu)=\frac{\pi \sqrt{|Q|}}{-\log |\mu|}+O\left(\frac{1}{(\log |\mu|)^{2}}\right) \quad \text { as } \quad|\mu| \rightarrow 0 \tag{1.2}
\end{equation*}
$$

and, uniformly for $\mathbf{x} \in \mathbb{Z}^{2}$ satisfying $\mathbf{x} / n \in \nabla \phi(K)$ and $|\mathbf{x}| \geq \sqrt{n}$,

$$
\begin{equation*}
E\left[Z_{n} \mid S_{n}=\mathbf{x}\right]=n H(\mathbf{x} / n)+O\left(\frac{n}{(\log n) \vee(\log |\mathbf{x} / n|)^{2}}\right) \quad \text { as } \quad n \rightarrow \infty \tag{1.3}
\end{equation*}
$$

Example 1. For symmetric simple random walk we have $e^{\phi(\lambda)}=\frac{1}{2} \cosh \alpha+\frac{1}{2} \cosh \beta$ for $\lambda=(\alpha, \beta)$. Given $\mathbf{x} / n=\mu+o(1)$, the leading term $n H(\mathbf{x} / n)$ in (1.3) may be computed from

$$
H(\mu)=1-\sum_{j=1}^{\infty} \frac{f_{0}(2 j) 2^{2 j}}{(\cosh \alpha+\cosh \beta)^{2 j}}, \quad \mu=\nabla \phi(\lambda)=\frac{(\sinh \alpha, \sinh \beta)}{\cosh \alpha+\cosh \beta}
$$

The derivative of H along a circle centered at the origin directed counter-clockwise is given by

$$
\nabla H(\mu) \cdot \mu^{\perp}=C_{0}(\mu) \mu_{1} \mu_{2}\left(\mu_{2}^{2}-\mu_{1}^{2}\right)
$$

where $\mu^{\perp}=\left(\mu_{2},-\mu_{1}\right)$ and $C_{0}(\mu)$ is a smooth positive function of $\mu \neq 0$. (See Appendix (B).)

We see shortly that the behavior of the probability $P_{0}\left[S_{n}=\mathbf{x}\right]$ differs greatly in different directions of \mathbf{x} as soon as $|\mathbf{x}| / n^{3 / 4}$ gets large even if Q is isotropic. (See Proposition 2 below.) According to Theorem 1.2, in contrast to this, the leading term of $E\left[Z_{n} \mid S_{n}=\mathbf{x}\right]$ as $\mathbf{x} / n \rightarrow 0$ as well as that of $H(\mu)$ as $\mu \rightarrow 0$ is rotation invariant; only when $|\mathbf{x}| / n$ is bounded away from zero, $E\left[Z_{n} \mid S_{n}=\mathbf{x}\right]$ in general becomes dependent on directions of \mathbf{x}.

The case $|\mathbf{x}|=O(\sqrt{n})$ is studied in [12] under certain mild moment conditions. If we assume the rather strong moment condition $E\left[|X|^{4}\right]<\infty$, the result is presented as
follows: for each $a_{\circ}>0$ it holds that uniformly for $|\mathbf{x}|<a_{\circ} \sqrt{n}$, as $n \rightarrow \infty$

$$
\begin{align*}
E\left[Z_{n} \mid S_{n}=\mathbf{x}\right]= & 2 \pi \sqrt{|Q|} n \int_{e^{c_{0}} n}^{\infty} W(u) d u+\frac{4 \sqrt{|Q|} \tilde{x}^{2}}{(\log n)^{2}}\left(\log ^{+} \frac{n}{|x|_{+}^{2}}+O(1)\right) \\
& +\frac{o(1)+b_{3} O(|x|)}{\log n} \tag{1.4}
\end{align*}
$$

where $W(\lambda)=\int_{0}^{\infty}\left([\log t]^{2}+\pi^{2}\right)^{-1} e^{-\lambda t} d t(\lambda>0)$ and $\tilde{x}=Q^{-1 / 2} x$. We have the asymptotic expansion $\int_{\lambda}^{\infty} W(u) d u=(\log \lambda)^{-1}-\gamma(\log \lambda)^{-2}+\left(\gamma^{2}-\frac{1}{6} \pi^{2}\right)(\log \lambda)^{-3}+\cdots \quad(\lambda \rightarrow \infty)$, where $\gamma=0.5772 \ldots$ (Euler's constant).

Brownian analogue of (1.4) is given in [14], the proof being similar but rather more involved than for the random walk case.

Remark 1. By a standard argument we have

$$
1-\sum_{1}^{\infty} e^{-k \lambda} f_{0}(k)=\left(\frac{1}{(2 \pi)^{2}} \int_{[-\pi, \pi]^{2}} \frac{d \theta}{1-e^{-\lambda} E\left[e^{i \theta \cdot X}\right]}\right)^{-1} \quad(\lambda>0)
$$

Substitution from $E\left[e^{i \theta \cdot X}\right]=e^{\phi(i \theta)}$ and $\lambda=\phi(m(\mu))$ therefore yields

$$
\begin{equation*}
\frac{1}{H(\mu)}=\frac{1}{(2 \pi)^{2}} \int_{[-\pi, \pi]^{2}} \frac{d \theta}{1-\exp \{-\phi(m(\mu))+\phi(i \theta)\}} \quad(\mu \neq 0) \tag{1.5}
\end{equation*}
$$

Remark 2. For $d \geq 3$ the results analogous to (1.4) are obtained by the same method. Here only a result of [12] for the case $d=3$ is given:

Suppose $d=3$ and $E\left[|X|^{4}\right]<\infty$. Then uniformly for $|\mathbf{x}|<a_{\circ} \sqrt{n}$, as $n \rightarrow \infty$

$$
E\left[Z_{n} \mid S_{n}=x\right]=q_{0} n+\frac{q_{0}^{2}|\tilde{x}|}{2 \pi \sqrt{|Q|}}+O\left(\frac{1}{1+|x|}\right)+b_{3} O(1)+\frac{o(1)+b_{3} O(|x|)}{\sqrt{n}}
$$

where $q_{0}=P\left[S_{n} \neq 0\right.$ for all $\left.n \geq 1\right]$.
Remark 3. For random walks of continuous time parameter the asymptotic form of the expectation are deduced from those of the embedded discrete time walks by virtue of the well-known purely analytic result as given in [5].

For the proof of Theorem 1 we derive a local limit theorem, an asymptotic evaluation of the probability $P\left[S_{n}=\mathbf{x}\right]$, denoted by $q^{n}(\mathbf{x})$, for large n, that is sharp uniformly for the space-time region $\sqrt{n} \leq|\mathbf{x}|<\varepsilon n$ (with some $\varepsilon>0$) (Lemma 3). As a byproduct of it we obtain the following proposition which lucidly exhibits what happens for variables $\sqrt{n}<|x| \ll n$ with n large: if all the third moments vanish, then the ratio of the probabilities $q^{n}(\mathbf{x})$ among directions of \mathbf{x} with the same modulus $|\mathbf{x}|$ can be unbounded as $|\mathbf{x}| / n^{3 / 4}$ gets large; if not, this may occur as $|\mathbf{x}| / n^{2 / 3}$ gets large. This result though not directly used in the proof of Theorem 1 is interesting by itself.
Proposition 2. Uniformly in \mathbf{x}, as $n \rightarrow \infty$ and $|\mathbf{x}| / n \rightarrow 0$,

$$
\begin{aligned}
& q^{n}(\mathbf{x})=\frac{\nu \mathbf{1}\left(q^{n}(\mathbf{x}) \neq 0\right)}{2 \pi n \sigma^{2}} e^{-x \cdot Q^{-1} \mathbf{x} / 2 n}\left(1+O\left(\frac{|\mathbf{x}|+1}{n}\right)\right) \\
& \times \exp \left\{n \kappa_{3}\left(\frac{\mathbf{x}}{n}\right)+n \kappa_{4}\left(\frac{\mathbf{x}}{n}\right)+O\left(\frac{|\mathbf{x}|^{5}}{n^{4}}\right)\right\}
\end{aligned}
$$

where $\kappa_{3}(\mu)=\frac{1}{6} E\left[\left(Q^{-1} X \cdot \mu\right)^{3}\right]$ and κ_{4} is a homogeneous polynomial of degree 4. If all the third moments of X vanish, then

$$
\kappa_{4}(\mu)=-\frac{1}{8}\left[Q^{-1}(\mu)\right]^{2}+\frac{1}{24} E\left[\left(Q^{-1} X \cdot \mu\right)^{4}\right]
$$

Example 2. For the same simple random walk as in Example 1 it follows from Proposition 2 that

$$
q^{n}(\mathbf{x})=\frac{4 e^{-|\mathbf{x}|^{2} / n}}{\pi n}\left(1+O\left(\frac{|\mathbf{x}|+1}{n}\right)\right) \exp \left\{-\frac{|\mathbf{x}|^{4}+4\left(x_{1} x_{2}\right)^{2}}{6 n^{3}}+O\left(\frac{|\mathbf{x}|^{5}}{n^{4}}\right)\right\}
$$

for $\mathbf{x}=\left(x_{1}, x_{2}\right) \in \mathbb{Z}^{2}$ with $n+x_{1}+x_{2}$ even. This formula, however, can be obtained rather directly if one notices that in the frame obtained by rotating the original one by a right angle the two components in the new frame are symmetric simple random walks on $\mathbb{Z} / \sqrt{2}$ that are independent of each other and use an expansion of transition probability of these walks as given in [8] (Section VII.6, problem 14).

2 Proof of Theorem 1

2.1. Proof of (1.2).

The arguments involved in this subsection partly prepares for the proof of (1.3). By definition $\lambda=m(\mu)$ is the inverse function of

$$
\mu=\nabla \phi(\lambda)=\frac{E\left[X e^{X \cdot \lambda}\right]}{E\left[e^{X \cdot \lambda}\right]}=Q \lambda+\frac{1}{2} E\left[(X \cdot \lambda)^{2} X\right]+O\left(|\lambda|^{3}\right),
$$

so that

$$
\begin{equation*}
\lambda=m(\mu)=Q^{-1} \mu-\frac{1}{2} E\left[\left(X \cdot Q^{-1} \mu\right)^{2} Q^{-1} X\right]+O\left(|\mu|^{3}\right) \tag{2.1}
\end{equation*}
$$

The Taylor expansion of ϕ about the origin up to the thid order is given by

$$
\begin{equation*}
\phi(\lambda)=\frac{1}{2} Q(\lambda)+\frac{1}{6} E\left[(X \cdot \lambda)^{3}\right]+O\left(|\lambda|^{4}\right), \tag{2.2}
\end{equation*}
$$

hence for $|\mu|$ small enough,

$$
\begin{equation*}
\phi(m(\mu))=\frac{1}{2} Q^{-1}(\mu)-\frac{1}{3} E\left[\left(Q^{-1} X \cdot \mu\right)^{3}\right]+O\left(|\mu|^{4}\right) . \tag{2.3}
\end{equation*}
$$

Here $Q(\lambda)=\lambda \cdot Q \lambda$, the quadratic form determined by the matrix Q and similarly $Q^{-1}(\mu)=\mu \cdot Q^{-1} \mu$.

Now we compute $H(\mu)$ by using (1.5). From (2.3) and $\phi(i \theta)=-\frac{1}{2} Q(\theta)+O\left(|\theta|^{3}\right)$ (for θ small) it follows that

$$
1-e^{-\phi(m(\mu))+\phi(i \theta)}=\frac{1}{2}\left[Q^{-1}(\mu)+Q(\theta)\right]+O\left(|\mu|^{3}+|\theta|^{3}\right)
$$

Substitution into (1.5) and a simple computation show

$$
\begin{aligned}
\frac{1}{H(\mu)} & =\frac{2}{(2 \pi)^{2}} \int_{[-\pi, \pi]^{2}} \frac{d \theta}{Q^{-1}(\mu)+Q(\theta)+O\left(|\mu|^{3}+|\theta|^{3}\right)} \\
& =\frac{-1}{2 \pi|Q|^{1 / 2}} \log Q^{-1}(\mu)+O(1)
\end{aligned}
$$

Noting $\log Q^{-1}(\mu)=2 \log |\mu|+O(1)$ we obtain (1.2).

2.2. A local limit theorem.

Let $q(\mathbf{x})$ denote the probability law of the increment of the walk: $q(\mathbf{x})=P[X=\mathbf{x}]$. Let $\mu=\nabla \phi(\lambda)$ with λ in the interior of Ξ and define

$$
q_{\mu}(\mathbf{x})=\frac{1}{E\left[e^{m(\mu) \cdot X}\right]} e^{m(\mu) \cdot \mathbf{x}} q(\mathbf{x})
$$

($m(\mu)$ is defined by (1.1)) so that q_{μ} is a probability on \mathbb{Z}^{2} with the mean

$$
\sum \mathbf{x} q_{\mu}(\mathbf{x})=\nabla \phi(m(\mu))=\mu
$$

Let q^{n} and q_{μ}^{n} be the n-fold convolution of q and q_{μ}, respectively. Then

$$
\begin{equation*}
q^{n}(\mathbf{x}):=P\left[S_{n}=\mathbf{x}\right]=\left(E\left[e^{m(\mu) \cdot X}\right]\right)^{n} e^{-m(\mu) \cdot \mathbf{x}} q_{\mu}^{n}(\mathbf{x}) \tag{2.4}
\end{equation*}
$$

Let Q_{μ} denote the covariance matrix of the probability q_{μ} and $Q_{\mu}^{-1}(\mathbf{x})$ the quadratic form determined by Q_{μ}^{-1}.
Lemma 3. Let K be a compact set contained in the interior of Ξ (as in Theorem 1). Then uniformly for $\mathbf{y} \in \mathbb{Z}^{2}-n \mu$ and for $\mu \in \nabla \phi(K)$, as $n \rightarrow \infty$

$$
q_{\mu}^{n}(n \mu+\mathbf{y})=\frac{\nu \mathbf{1}\left(q^{n}(n \mu+\mathbf{y}) \neq 0\right)}{2 \pi n \sigma_{\mu}^{2}} e^{-Q_{\mu}^{-1}(\mathbf{y}) / 2 n}\left[1+P_{\mu}^{n, N}(\mathbf{y})\right]+O\left(\left[\mathbf{y}^{2} \vee n\right]^{-N / 2}\right)
$$

Here N may be an arbitrary positive integer, ν is the period of the walk $S_{n}, \mathbf{1}(\mathcal{S})$ is 1 or 0 according as the statement \mathcal{S} is true or false, σ_{μ}^{2} denotes the square root of the determinant of Q_{μ} and

$$
P_{\mu}^{n, N}(\mathbf{y})=n^{-1 / 2} P_{1}^{\mu}(\mathbf{y} / \sqrt{n})+\cdots+n^{-N / 2} P_{N}^{\mu}(\mathbf{y} / \sqrt{n})
$$

where P_{j}^{μ} is a polynomial of degree at most $3 j$ determined by the moments of q_{μ}^{n} and odd for odd j.
Proof. This lemma may be a standard result. In fact it is reduced to the usual local central limit theorem as follows. Let $\psi_{\mu}(\theta)$ be the characteristic function of q_{μ} and put $\tilde{\psi}_{\mu}(\theta)=\sum_{\mathbf{x}} q_{\mu}(\mathbf{x}) e^{i \theta \cdot(\mathbf{x}-\mu)}$, so that

$$
\psi_{\mu}(\theta):=\sum_{\mathbf{x}} q_{\mu}(\mathbf{x}) e^{i \theta \cdot \mathbf{x}}=\tilde{\psi}_{\mu}(\theta) e^{i \mu \cdot \theta}
$$

Hence

$$
\begin{align*}
q_{\mu}^{n}(n \mu+\mathbf{y}) & =\frac{1}{(2 \pi)^{2}} \int_{T}\left[\psi_{\mu}(\theta)\right]^{n} e^{-i(n \mu+\mathbf{y}) \cdot \theta} d \theta \\
& =\frac{1}{(2 \pi)^{2}} \int_{T}\left[\tilde{\psi}_{\mu}(\theta)\right]^{n} e^{-i \mathbf{y} \cdot \theta} d \theta \tag{2.5}
\end{align*}
$$

where $T=[-\pi, p i) \times[-\pi, p i)$. Since $\nabla \tilde{\psi}_{\mu}(0)=0$, the Hessian matrix of $\tilde{\psi}_{\mu}$ at zero equals Q_{μ} and $\sum p_{\mu}(\mathbf{x})|\mathbf{x}|^{2 N}<\infty$ for all $N>0$, the usual procedure to derive the local limit theorem (see [9]; also Appendix (A) for the case $\nu>1$ if necessary) shows that the right-most member equals that of the formula of the lemma.

Define $\Lambda \subset \mathbb{Z}^{2}$ by

$$
\begin{equation*}
\Lambda=\left\{\mathbf{x} \in \mathbb{Z}^{2}: q^{\nu n}(\mathbf{x}) \neq 0 \text { for some } n\right\} \tag{2.6}
\end{equation*}
$$

Plainly Λ is a subgroup of \mathbb{Z}^{2}. Take an $\xi \in \mathbb{Z}^{2}$ with $q(\xi)>0$ and put $\Lambda_{k}=\Lambda+k \xi$, the shift of Λ by $k \xi . \Lambda_{k}$ does not depend on the choice of ξ and is periodic in k of period ν. It holds that $P\left[S_{n} \in \Lambda_{k}\right]>0$ only if $n=k \bmod (\nu)$. In the formula of Lemma 3 the trivial factor $\mathbf{1}\left(q^{n}(n \mu+\mathbf{y}) \neq 0\right)$ may be replaced by $\mathbf{1}\left(n \mu+\mathbf{y} \in \Lambda_{n}\right)$; also, for each $k \in \mathbb{Z}, q_{\mu}^{n}(n \mu+\mathbf{y})$ may be replaced by $q_{\mu}^{n}((n-k) \mu+\mathbf{y})$, hence by $q_{\mu}^{n+k}(n \mu+\mathbf{y})$. Thus we can reformulate Lemma 3 as in the following

Corollary 4. Let K be a compact set contained in the interior of Ξ. Then for each $k \in \mathbb{Z}$, uniformly for $\mathbf{y} \in \mathbb{Z}^{2}-n \mu$ and for $\mu \in \nabla \phi(K)$, as $n \rightarrow \infty$

$$
q_{\mu}^{n+k}(n \mu+\mathbf{y})=\frac{\nu \mathbf{1}\left(n \mu+\mathbf{y} \in \Lambda_{n+k}\right)}{2 \pi n \sigma_{\mu}^{2}} e^{-Q_{\mu}^{-1}(\mathbf{y}) / 2 n}\left[1+P_{\mu}^{n, N}(\mathbf{y})\right]+O\left(\left[\mathbf{y}^{2} \vee n\right]^{-N / 2}\right)
$$

with the same notation as in Lemma 3.

Proof of Proposition 2. In Lemma 3 we take $\mu=\mathbf{x} / n$. It follows that with $\lambda=m(\mu)$

$$
Q_{\mu}=\nabla \log \phi(\lambda)+[\nabla \phi(\lambda) / \phi(\lambda)]^{2}=Q+O(|\mu|)
$$

so that $\sigma_{\mu}^{2}=\sigma^{2}+O(|\mu|)$. In view of (2.4) and Lemma 3 we have only to compute asymptotic form of

$$
E\left[e^{m(\mu) \cdot X}\right]^{n} e^{-m(\mu) \cdot \mathbf{x}}=\exp \{n[\phi(m(\mu))-m(\mu) \cdot \mu]\}
$$

By (2.1) and (2.3)

$$
\phi(m(\mu))-m(\mu) \cdot \mu=-\frac{1}{2} Q^{-1}(\mu)+\frac{1}{6} E\left[\left(Q^{-1} X \cdot \mu\right)^{3}\right]+\kappa_{4}(\mu)+O\left(|\mu|^{5}\right)
$$

for $|\mu|$ small enough, where $\kappa_{4}(\mu)$ is a polynomial of degree 4.
Assume that all the third moments of X vanish. Then, in place of (2.1) and (2.2) we have

$$
\begin{equation*}
\lambda=m(\mu)=Q^{-1} \mu+b(\mu) . \tag{2.7}
\end{equation*}
$$

with $b(\mu)=O\left(|\mu|^{3}\right)$ and

$$
\begin{equation*}
\phi(\lambda)=\frac{1}{2} Q(\lambda)-\frac{1}{8}[Q(\lambda)]^{2}+\frac{1}{24} E\left[(X \cdot \lambda)^{4}\right]+O\left(|\lambda|^{5}\right) \tag{2.8}
\end{equation*}
$$

respectively. Substituting these formulae into $m(\mu) \cdot \mu-\phi(m(\mu))$ we observe that the term involving $b(\mu)$ disappears from the fourth order term by cancellation and hence that

$$
\phi(m(\mu))-m(\mu) \cdot \mu=-\frac{1}{2} Q^{-1}(\mu)-\frac{1}{8}[Q(\lambda)]^{2}+\frac{1}{24} E\left[\left(Q^{-1} X \cdot \mu\right)^{4}\right]+O\left(|\mu|^{5}\right),
$$

in which we find the explicit form of $\kappa_{4}(\mu)$ as presented in the proposition.

2.3. Proof of (1.3).

The proof is based on the identity

$$
\begin{equation*}
E\left[Z_{n} ; S_{n}=\mathbf{x}\right]=n q^{n}(\mathbf{x})-\sum_{k=1}^{n-1} f_{0}(k) q^{n-k}(\mathbf{x})(n-k) \tag{2.9}
\end{equation*}
$$

(cf. [12], Lemma 1.1) as well as Corollary 4. Let $q^{n}(\mathbf{x}) \neq 0$. Remembering $E\left[e^{m(\mu) \cdot X}\right]=$ $e^{\phi(m(\mu))}$ we obtain from (2.4) that

$$
\frac{q^{n-k}(\mathbf{x})(n-k)}{q^{n}(\mathbf{x}) n}=e^{-k \phi(m(\mu))} \frac{q_{\mu}^{n-k}(\mathbf{x})(n-k)}{q_{\mu}^{n}(\mathbf{x}) n}
$$

On writing $\mu:=\mathbf{x} / n$ and $\mathbf{x}=(n-k) \mu+k \mu$, Corollary 4 gives

$$
\begin{aligned}
q_{\mu}^{n-k}(\mathbf{x})(n-k)= & \frac{\nu \mathbf{1}\left(\mathbf{x} \in \Lambda_{n-k}\right)}{2 \pi \sigma_{\mu}^{2}} e^{-Q_{\mu}^{-1}(k \mu) / 2(n-k)}\left[1+P_{\mu}^{n-k, N}(k \mu)\right] \\
& +O\left(\left[|k \mu|^{2} \vee(n-k)\right]^{-N}\right)
\end{aligned}
$$

and

$$
q_{\mu}^{n}(\mathbf{x}) n=\frac{\nu}{2 \pi \sigma_{\mu}^{2}}[1+O(1 / n)]
$$

Let $1 / \sqrt{n} \leq|\mu|$ and $\mu \in \nabla \phi(K)$. Noting that σ_{μ}^{2} is then bounded away from zero for $\mu \in \nabla \phi(K)$ we see

$$
\begin{gather*}
\frac{q^{n-k}(\mathbf{x})(n-k)}{q^{n}(\mathbf{x}) n}=\mathbf{1}\left(\mathbf{x} \in \Lambda_{n-k}\right) e^{-k \phi(m(\mu))} e^{-Q_{\mu}^{-1}(k \mu) / 2(n-k)}[1+O(1 / \sqrt{n})] \\
+O\left(e^{-k \phi(m(\mu))} n^{-N}\right) \tag{2.10}
\end{gather*}
$$

Since $\sum_{k>n^{1 / 3}} f_{0}(k)=O(1 / \log n)$, it follows that

$$
E\left[Z_{n} ; S_{n}=\mathbf{x}\right]=n q^{n}(\mathbf{x})\left[\sum_{k=1}^{n^{1 / 3}} f_{0}(k)\left(1-\mathbf{1}\left(\mathbf{x} \in \Lambda_{n-k}\right) e^{-k \phi(c(\mathbf{x} / n))}\right)+O\left(\frac{1}{\log n}\right)\right]
$$

Under the condition $q^{n}(\mathbf{x}) \neq 0$, it follows from $f_{0}(k) \neq 0$ that $\mathbf{x} \in \Lambda_{n-k}$. Hence

$$
\begin{equation*}
E\left[Z_{n} \mid S_{n}=\mathbf{x}\right]=n \sum_{k=1}^{\infty} f_{0}(k)\left(1-e^{-k \phi(c(\mathbf{x} / n))}\right)+O\left(\frac{n}{\log n}\right) \tag{2.11}
\end{equation*}
$$

We still need to obtain the error bound $O\left(n /|\log \mu|^{2}\right)$ instead of $O(n / \log n)$. To this end, on applying the asymptotic formula

$$
f_{0}(k)=\frac{2 \pi|Q|^{1 / 2}}{k(\log k)^{2}}+O\left(\frac{1}{k(\log k)^{3}}\right)
$$

(cf. [13]) we see, on the one hand, that for $0<\phi<1 / 2$

$$
\begin{equation*}
\sum_{k>\delta / \phi} f_{0}(k) e^{-k \phi}=O\left(\frac{1}{(\log \phi)^{2}}\right) \tag{2.12}
\end{equation*}
$$

where δ is an arbitrarily fixed positive constant, and by using (2.3), on the other hand, we see

$$
\phi(m(\mu))>c|\mu|^{2} \geq c / n
$$

(the second inequality is nothing but our present supposition that $|\mathbf{x}| \geq \sqrt{n}$). As in a similar way to the derivation of (2.11) we deduce from (2.9) with the help of (2.12) as well as of (2.10) that

$$
\frac{E\left[Z_{n} ; S_{n}=\mathbf{x}\right]}{n q^{n}(\mathbf{x})}=\sum_{k=1}^{\infty} f_{0}(k)\left(1-e^{-k \phi(c(\mathbf{x} / n))}\right)+O\left(\frac{1}{(\log |\mu|)^{2}}\right)
$$

if it is true that as $\mu \rightarrow 0$

$$
\begin{equation*}
\sum_{k<c / 2 \phi(m(\mu))} f_{0}(k) e^{-k \phi(m(\mu))}\left(1-e^{-Q^{-1}(k \mu) / 2(n-k)}\right)=O\left(1 /(\log |\mu|)^{2}\right) . \tag{2.13}
\end{equation*}
$$

Since $c / 2 \phi(m(\mu)) \leq n / 2$, the sum on the left-hand side of (2.13) is at most a constant multiple of

$$
\begin{aligned}
\sum_{k<c / 2 \phi(m(\mu))} f_{0}(k) \frac{Q^{-1}(k \mu)}{n} & =\frac{Q^{-1}(\mu)}{n} \sum_{k<c / 2 \phi(m(\mu))} f_{0}(k) k^{2} \\
& \leq\left.\frac{c^{\prime}|\mu|^{2}}{n} \frac{k^{2}}{(\log k)^{2}}\right|_{k=c / 2 \phi(m(\mu))}=O\left(\frac{1}{n(\log |\mu|)^{2}}\right)
\end{aligned}
$$

verifying (2.13) (with a better bound).
Thus we have proved (1.3) and hence Theorem 1.

3 Appendix

(A) In the case when the period ν is larger than 1 the evaluation of the integral in (2.5) is reduced to that for the case $\nu=1$ by consideration of a property of its integrand that reflects the periodicity. By an elementary algebra one can find a point $\eta \in \mathbb{R}^{2}$ that satisfies that for $j=0,1, \ldots, \nu-1$,

$$
\eta \cdot \mathbf{x}-j \nu^{-1} \in \mathbb{Z} \quad \text { if } \quad \mathbf{x} \in \Lambda_{j}
$$

(Λ_{j} is defined shortly after (2.6)). From this relation it follows that

$$
\psi(\theta+2 \pi k \eta)=\psi(\theta) e^{i 2 \pi k / \nu} \quad(k=0, \ldots, \nu-1)
$$

Now consider the expression $q_{\mu}^{n}(x)=(2 \pi)^{-2} \int_{T}[\psi(\theta)]^{n} e^{-i x \cdot \theta} d \theta$. Observe that if $x \in \Lambda_{j}$,

$$
[\psi(\theta+2 \pi k \eta)]^{n} e^{-i x \cdot(\theta+2 \pi k \eta)}=[\psi(\theta)]^{n} e^{-i x \cdot \theta} e^{i 2 \pi(n-j) k / \nu} \quad(k=0, \ldots, \nu-1)
$$

and the right-hand sides equal $[\psi(\theta)]^{n} e^{-i x \cdot \theta}$ for all k if $n-j$ equals zero in $\bmod \nu$, while their sum over k vanishes otherwise. Choosing $\varepsilon>0$ small enough, we may replace $2 \pi \eta$ by a unique $\eta_{k} \in[-1-\varepsilon, 1+\varepsilon]$ such that $\eta_{k}-\eta \in \mathbb{Z}^{2}$ and apply the usual method for evaluation of Fourier integral.
(B) Put $\psi(\lambda)=E\left[e^{\lambda \cdot X}\right]$, so that $\mu=\nabla \phi(\lambda)=E\left[X e^{\lambda \cdot X}\right] / \psi(\lambda)$. At $\lambda=m(\mu)$ we have

$$
\nabla^{2} \phi(\lambda)=E\left[X^{2} e^{\lambda \cdot X}\right] / \psi(\lambda)-\mu^{2}=Q_{\mu},
$$

where μ^{2} is understood to be 2×2 matrix: $\mu^{2}=\left(\mu_{i} \mu_{j}\right)_{1 \leq i, j \leq 2}$, and similarly for X^{2} and ∇^{2}. Since $i d=\nabla m(\mu) \frac{\partial \mu}{\partial \lambda}=\nabla m(\mu) \nabla^{2} \phi(m(\mu))=\nabla m(\mu) Q_{\mu}$, it holds that

$$
\nabla m(\mu)=Q_{\mu}^{-1}
$$

Therefore, from the defining formula of H we have

$$
\nabla H(\mu)=C(\mu) \nabla(\phi \circ m)(\mu)=C(\mu) Q_{\mu}^{-1} \mu,
$$

where

$$
C(\mu)=\sum_{k=1}^{\infty} k f_{0}(k) e^{-k \phi(m(\mu))} .
$$

Let E^{μ} designate the expectation w.r.t. q_{μ}, i.e.,

$$
E^{\mu}[\cdot]=\left[E\left[\cdot e^{\lambda \cdot X}\right] / \psi(\lambda)\right]_{\lambda=m(\mu)}
$$

Then

$$
\begin{aligned}
Q_{\mu}^{-1} \mu & =\frac{1}{\operatorname{det} Q_{\mu}}\left[\begin{array}{cc}
E^{\mu}\left[X_{2}^{2}\right]-\mu_{2}^{2} & \mu_{1} \mu_{2}-E^{\mu}\left[X_{1} X_{2}\right] \\
\mu_{1} \mu_{2}-E^{\mu}\left[X_{1} X_{2}\right] & E^{\mu}\left[X_{1}^{2}\right]-\mu_{1}^{2}
\end{array}\right]\binom{\mu_{1}}{\mu_{2}} \\
& =\frac{1}{\operatorname{det} Q_{\mu}}\left[\begin{array}{c}
\mu_{1} E^{\mu}\left[X_{2}^{2}\right]-\mu_{2} E^{\mu}\left[X_{1} X_{2}\right] \\
\mu_{2} E^{\mu}\left[X_{1}^{2}\right]-\mu_{1} E^{\mu}\left[X_{1} X_{2}\right]
\end{array}\right] .
\end{aligned}
$$

Hence

$$
\nabla H(\mu) \cdot \mu^{\perp}=\frac{1}{\operatorname{det} Q_{\mu}} C(\mu)\left(\mu_{1} \mu_{2} E^{\mu}\left[X_{2}^{2}-X_{1}^{2}\right]+\left(\mu_{1}^{2}-\mu_{2}^{2}\right) E^{\mu}\left[X_{1} X_{2}\right] .\right)
$$

For the simple random walk in Example 1, $\operatorname{det} Q_{\mu}=(\cosh \alpha+\cosh \beta)^{-2}, E^{\mu}\left[X_{1} X_{2}\right]=0$ and

$$
\begin{aligned}
E^{\mu}\left[X_{2}^{2}-X_{1}^{2}\right]=\frac{\cosh \beta-\cosh \alpha}{2 \psi(m(\mu))} & =\frac{\sinh ^{2} \beta-\sinh ^{2} \alpha}{(\cosh a+\cosh \beta)^{2}} \\
& =\mu_{2}^{2}-\mu_{1}^{2} \quad(\lambda=m(\mu))
\end{aligned}
$$

showing the last formula of Example 1 with $C_{0}(\mu)=C(\mu)(\cosh \alpha+\cosh \beta)^{2}$.

References

[1] M. van den Berg and E. Bolthausen, On the expected volume of the Wiener sausage for a Brownian bridge, Math. Z. 224 (1997) 33-48. MR-1427702
[2] A. Dvoretzky and P. Erdös, Some problems on random walk in space. Proc. Second Berkeley Symp. Math. Statist. Probab., Berkeley, Univ. C. P. (1951)353-367. MR-0047272
[3] J.F. Le Gall, Sur une conjecture de M. Kac, Probab. Th. Rel. Fields 78 (1988) 389-402. MR-0949180
[4] Y. Hamana, A remark on the range of three dimensional pinned random walks, Kumamoto J. Math., Vol. 19 (2006) 83-98. MR-2211634
[5] J. F. C. Kingman, Continuous time Markov processes, Proc. London Math. Soc., 13 (1963), 593-604. MR-0154334
[6] I. McGillivray, The spectral shift function for planar obstacle scattering at low energy, Math. Nachr. 286 (2013), 1208-1239. MR-3092282
[7] I. McGillivray, Large time volume of the pinned Wiener sausage to second order. Math. Nachr. 284 (2011), 142-165. MR-2790877
[8] W. Feller, An Introduction to Probability Theory and Its Applications, vol. 1.
[9] B.V. Gnedenko and A.N. Kolmogorov, Limit distributions for sums of independent random variables (translated from Russian), Addison-Wesley, Reading 1954 MR-0062975
[10] F. Spitzer, Principles of Random Walk, Van Nostrand, Princeton, 1964. MR-0171290
[11] F. Spitzer, Some theorems concerning 2-dimensional Brownian motion, TAMS. 87 (1958), 187-197. MR-0104296
[12] K. Uchiyama, The mean number of sites visited by a pinned random walk, Math. Zeit. 261 (2009), 277-295. MR-2457300
[13] K. Uchiyama, The first hitting time of a single point for random walks. Elect. J. Probab. 16, no. 71, 1160-2000 (2011). MR-2851052
[14] K. Uchiyama, The expected area of Wiener sausage swept by a disk. Stoch. Proc. Appl. 123 191-211 (2013). MR-2988115

Electronic Journal of Probability Electronic Communications in Probability

Advantages of publishing in EJP-ECP

- Very high standards
- Free for authors, free for readers
- Quick publication (no backlog)

Economical model of EJP-ECP

- Low cost, based on free software (OJS ${ }^{1}$)
- Non profit, sponsored by $\mathrm{IMS}^{2}, \mathrm{BS}^{3}, \mathrm{PKP}^{4}$
- Purely electronic and secure (LOCKSS ${ }^{5}$)

Help keep the journal free and vigorous

- Donate to the IMS open access fund ${ }^{6}$ (click here to donate!)
- Submit your best articles to EJP-ECP
- Choose EJP-ECP over for-profit journals

[^0]
[^0]: ${ }^{1}$ OJS: Open Journal Systems http://pkp.sfu.ca/ojs/
 ${ }^{2}$ IMS: Institute of Mathematical Statistics http://www.imstat.org/
 ${ }^{3}$ BS: Bernoulli Society http://www.bernoulli-society.org/
 ${ }^{4}$ PK: Public Knowledge Project http://pkp.sfu.ca/
 ${ }^{5}$ LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
 ${ }^{6}$ IMS Open Access Fund: http://www.imstat.org/publications/open.htm

