Fractional smoothness of functionals of diffusion processes under a change of measure*

Stefan Geiss ${ }^{\dagger} \quad$ Emmanuel Gobet ${ }^{\ddagger}$

Abstract

Let $v:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ be the solution of the parabolic backward equation $\partial_{t} v+$ $(1 / 2) \sum_{i, j}\left[\sigma \sigma^{\top}\right]_{i, j} \partial_{x_{i}} \partial_{x_{j}} v+\sum_{i} b_{i} \partial_{x_{i}} v+k v=0$ with terminal condition g, where the coefficients are time- and state-dependent, and satisfy certain regularity assumptions. Let $X=\left(X_{t}\right)_{t \in[0, T]}$ be the associated \mathbb{R}^{d}-valued diffusion process on some appropriate $(\Omega, \mathcal{F}, \mathbb{Q})$. For $p \in[2, \infty)$ and a measure $d \mathbb{P}=\lambda_{T} d \mathbb{Q}$, where λ_{T} satisfies the Muckenhoupt condition A_{p}, we relate the behavior of

$$
\left\|g\left(X_{T}\right)-\mathbb{E}_{\mathbb{P}}\left(g\left(X_{T}\right) \mid \mathcal{F}_{t}\right)\right\|_{L_{p}(\mathbb{P})}, \quad\left\|\nabla v\left(t, X_{t}\right)\right\|_{L_{p}(\mathbb{P})}, \quad\left\|D^{2} v\left(t, X_{t}\right)\right\|_{L_{p}(\mathbb{P})}
$$

to each other, where $D^{2} v:=\left(\partial_{x_{i}} \partial_{x_{j}} v\right)_{i, j}$ is the Hessian matrix.
Keywords: Parabolic PDE; Qualitative properties of solutions; Diffusion; Interpolation. AMS MSC 2010: 60H30; 46B70; 35K10.
Submitted to ECP on May 8, 2013, final version accepted on April 23, 2014.
Supersedes arXiv:1210.4572.

1 Introduction

We investigate the quantitative behavior of parabolic partial differential equations with respect to measures on the Wiener space generated by diffusions including a change of measure induced by a Muckenhoupt weight. This type of questions arises from the approximation theory of stochastic integrals and backward stochastic differential equations (BSDEs). The partial differential equation we consider is given by

$$
\begin{equation*}
\mathcal{L} v=0 \quad \text { on } \quad[0, T) \times \mathbb{R}^{d} \quad \text { and } \quad v(T, \cdot)=g \quad \text { on } \quad \mathbb{R}^{d} \tag{1.1}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathcal{L}:=\partial_{t}+\frac{1}{2} \sum_{i, j=1}^{d} a_{i, j}(t, x) \partial_{x_{i}, x_{j}}^{2}+\sum_{i=1}^{d} b_{i}(t, x) \partial_{x_{i}}+k(t, x), \tag{1.2}
\end{equation*}
$$

where $A:=\left(a_{i, j}\right)_{i, j=1}^{d}=\sigma \sigma^{\top}$. It is well known [3] that under regularity conditions on σ, b and k there is a fundamental solution $\Gamma:\{0 \leq t<\tau \leq T\} \times \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow[0, \infty)$ satisfying upper Gaussian bounds

$$
\left|D_{x}^{a} D_{t}^{b} \Gamma(t, x ; \tau, \xi)\right| \leq c(\tau-t)^{-\frac{|a|+2 b}{2}} \gamma_{\tau-t}^{d}((x-\xi) / c) \quad \text { with } \quad \gamma_{s}^{d}(x):=e^{-\frac{|x|^{2}}{2 s}} /(\sqrt{2 \pi s})^{d}
$$

[^0]for a and b up to a certain order. Under growth conditions on g these bounds transfer to estimates for the gradient and the Hessian of the solution to (1.1) obtained by
\[

$$
\begin{equation*}
v(t, x):=\int_{\mathbb{R}^{d}} \Gamma(t, x ; T, \xi) g(\xi) d \xi \tag{1.3}
\end{equation*}
$$

\]

In our setting there will be a $\kappa_{g} \in[0,2)$ such that for $0 \leq|a|+2 b \leq 3$ the derivatives $D_{x}^{a} D_{t}^{b} v$ exist in any order, are continuous on $[0, T) \times \mathbb{R}^{d}$, and satisfy

$$
\begin{equation*}
\left|D_{x}^{a} D_{t}^{b} v(t, x)\right| \leq c_{(1.4)}(T-t)^{-\frac{|a|+2 b}{2}} \exp \left(c_{(1.4)}|x|^{\kappa_{g}}\right) \tag{1.4}
\end{equation*}
$$

The point-wise estimates (1.4) serve often as a-priori estimates in stochastic analysis. However, they do not take into account regularities of g. Moreover, moment estimates of $D_{x}^{a} v(t, x)$ appear to be more natural in various situations. To explain this, let $p \in$ $[2, \infty), B=\left(B_{t}\right)_{t \in[0, T]}$ be a d-dimensional $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$-standard Brownian motion under a measure \mathbb{Q}, where the usual assumptions are satisfied, and consider the \mathbb{R}^{d}-valued diffusion

$$
X_{t}=x_{0}+\int_{0}^{t} \sigma\left(s, X_{s}\right) d B_{s}+\int_{0}^{t} b\left(s, X_{s}\right) d s
$$

with σ and b taken from (1.2). To consider L_{p}-time discretizations of the stochastic integrals

$$
K_{T}^{X} g\left(X_{T}\right)=\mathbb{E}\left(K_{T}^{X} g\left(X_{T}\right)\right)+\int_{0}^{T} K_{t}^{X} \nabla v\left(t, X_{t}\right) \sigma\left(t, X_{t}\right) d B_{t} \quad \text { with } \quad K_{t}^{X}:=e^{\int_{0}^{t} k\left(r, X_{r}\right) d r}
$$

it turns out that the behavior of the L_{p}-norm of the Hessian $\left(\partial^{2} v / \partial x_{i} \partial x_{j}\right)\left(t, X_{t}\right)$ determines this approximation; see $[4,6,12]$ for $k=0$. A control of the blow-up of this L_{p}-norm as $t \rightarrow T$ enables the derivation of sharp convergence results. Similarly, the L_{p}-variation of the solution of a BSDE is triggered by the blow-up of the L_{p}-norm of the gradient of an associated semi-linear solution or an appropriate linear parabolic PDE, see [8, 5]. If one analyzes these examples, it turns out that one needs to relate to each other the quantitative behavior of

$$
\left\|g\left(X_{T}\right)-\mathbb{E}\left(g\left(X_{T}\right) \mid \mathcal{F}_{t}\right)\right\|_{L_{p}(\mathbb{Q})}, \quad\left\|\nabla v\left(t, X_{t}\right)\right\|_{L_{p}(\mathbb{Q})}, \quad \text { and } \quad\left\|D^{2} v\left(t, X_{t}\right)\right\|_{L_{p}(\mathbb{Q})}
$$

with $D^{2}=\left(\partial^{2} / \partial x_{i} \partial x_{j}\right)_{i, j=1}^{d}$. In this note we go even one step ahead, by establishing equivalence relations under an equivalent probability measure \mathbb{P} that satisfies a Muckenhoupt condition. This gives considerably more insight into the quantitative behavior of the parabolic PDE and more flexibility in applications: among them, we mention the analysis of discrete-time hedging errors in mathematical finance [10, 9], where option prices are computed under the risk-neutral probability measure \mathbb{Q} and hedging errors are analysed under the historical probability measure \mathbb{P}. An application to quadratic BSDEs is exposed in Remark 3.2(8).
Typically, setting $\mathbb{M}=\mathbb{P}$ or \mathbb{Q}, the terms $\left\|\nabla v\left(t, X_{t}\right)\right\|_{L_{p}(\mathbb{M})}$ and $\left\|D^{2} v\left(t, X_{t}\right)\right\|_{L_{p}(\mathbb{M})}$ blow up as $t \uparrow T$ in case the terminal condition g is not sufficiently smooth. Firstly to measure the rates of these blows up and of the convergence to zero of $\| g\left(X_{T}\right)-$ $\mathbb{E}_{\mathbb{M}}\left(g\left(X_{T}\right) \mid \mathcal{F}_{t}\right) \|_{L_{p}(\mathbb{M})}$, and secondly to establish relations between them in our main Theorem 3.1, we take advantage of the theory of real interpolation that provides for this purpose the functionals $\Phi_{q}(h):=\|h\|_{L_{q}\left([0, T), \frac{d t}{T-t}\right)}$ for a measurable function h : $[0, T) \rightarrow \mathbb{R}$ where $q \in[1, \infty]$.
We proceed as follows: Section 2 introduces the setting and needed tools, in Section 3 we formulate the main Theorem 3.1, and Section 4 contains the proof of Theorem 3.1.

2 Setting

Notation. Usually we denote by $|\cdot|$ the Euclidean norm of a vector. Given a matrix C considered as operator $C: \ell_{2}^{n} \rightarrow \ell_{2}^{N}$, the expression $|C|$ stands for the Hilbert-Schmidt norm and C^{\top} for the transposed of C. The L_{p}-norm ($p \in[1, \infty]$) of a random vector $Z: \Omega \rightarrow \mathbb{R}^{n}$ or a random matrix $Z: \Omega \rightarrow \mathbb{R}^{n \times m}$ is denoted by $\|Z\|_{p}=\||Z|\|_{L_{p}}$. As usual, $D_{x}^{a} \varphi$ is the partial derivative of the order of a multi-index a (with length $|a|=\sum_{i}\left|a_{i}\right|$) with respect to x. The Hessian matrix of a function $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is abbreviated by $D^{2} \varphi$ and the gradient (as row vector) by $\nabla \varphi$. In particular, this means that D^{2} and ∇ always refer to the state variable $x \in \mathbb{R}^{d}$. If we mention that a constant depends on b, σ or k, then we implicitly indicate a possible dependence on T and d as well. Finally, letting $h:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{n \times m}$ we use the notation $\|h\|_{\infty}:=\sup _{t, x}|h(t, x)|$.

Parabolic PDE. Our assumptions on the Cauchy problem (1.1)-(1.2) are as follows:
(C1) The functions $\sigma_{i, j}, b_{i}, k$ are bounded and belong to $C_{b}^{0,2}\left([0, T] \times \mathbb{R}^{d}\right)$ and there is some $\gamma \in(0,1]$ such that the functions and their state-derivatives are γ-Hölder continuous with respect to the parabolic metric on each compactum of $[0, T] \times \mathbb{R}^{d}$. Moreover, σ is $1 / 2$-Hölder continuous in t, uniformly in x.
(C2) $\sigma(t, x)$ is an invertible $d \times d$-matrix with $\sup _{t, x}\left|\sigma^{-1}(t, x)\right|<+\infty$.
(C3) The terminal function $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is measurable and exponentially bounded: for some $K_{g} \geq 0$ and $\kappa_{g} \in[0,2)$ we have $|g(x)| \leq K_{g} \exp \left(K_{g}|x|^{\kappa_{g}}\right)$ for all $x \in \mathbb{R}^{d}$.
The condition (C2) implies that the operator \mathcal{L} is uniformly parabolic. Under the above assumptions there exists a fundamental solution:
Proposition 2.1 ([3, Theorem 7, p. 260; Theorem 10, pp. 72-74]). Under the assumptions (C1) and (C2) there exists a fundamental solution $\Gamma(t, x ; \tau, \xi):\{0 \leq t<\tau \leq$ $T\} \times \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow[0, \infty)$ for \mathcal{L} and a constant $c_{(2.1)}>0$ such that for $0 \leq|a|+2 b \leq 3$ the derivatives $D_{x}^{a} D_{t}^{b} \Gamma$ exist in any order, are continuous, and satisfy

$$
\begin{equation*}
\left|D_{x}^{a} D_{t}^{b} \Gamma(t, x ; \tau, \xi)\right| \leq c_{(2.1)}(\tau-t)^{-\frac{|a|+2 b}{2}} \gamma_{\tau-t}^{d}\left(\frac{x-\xi}{c_{(2.1)}}\right) \quad \text { with } \gamma_{s}^{d}(x)=e^{-\frac{|x|^{2}}{2 s}} /(\sqrt{2 \pi s})^{d} \tag{2.1}
\end{equation*}
$$

For $0 \leq|a|+2 b \leq 3$ Proposition 2.1 implies that the derivatives $D_{x}^{a} D_{t}^{b} v$, with v defined in (1.3), exist in any order, are continuous on $[0, T) \times \mathbb{R}^{d}$ and satisfy

$$
\mathcal{L} v=0 \quad \text { on }[0, T) \times \mathbb{R}^{d} \quad \text { and } \quad\left|D_{x}^{a} D_{t}^{b} v(t, x)\right| \leq c(T-t)^{-\frac{|a|+2 b}{2}} \exp \left(c|x|^{\kappa_{g}}\right)
$$

for $x \in \mathbb{R}^{d}$ and $t \in[0, T)$, where $c>0$ depends at most on $\left(\kappa_{g}, K_{g}, c_{(2.1)}, T\right)$.
Stochastic differential equation. Let $\left(B_{t}\right)_{t \in[0, T]}$ be a d-dimensional standard Brownian motion defined on $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \in[0, T]}, \mathbb{Q}\right)$, where $(\Omega, \mathcal{F}, \mathbb{Q})$ is complete, $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$ is right-continuous, $\mathcal{F}=\mathcal{F}_{T}, \mathcal{F}_{0}$ is generated by the null sets of \mathcal{F} and where all local martingales are continuous. As we work on a closed time-interval we have to explain our understanding of a local martingale: we require that the localizing sequence of stopping times $0 \leq \tau_{1} \leq \tau_{2} \leq \cdots \leq T$ satisfies $\lim _{n} \mathbb{Q}\left(\tau_{n}=T\right)=1$. So we think about the extension of the filtration by \mathcal{F}_{T} to (T, ∞) and that all local martingales $\left(N_{t}\right)_{t \in[0, T]}$ (in our setting) are extended by N_{T} to (T, ∞). This yields the standard notion of a local martingale. We need this implicitly whenever we refer to results about the Muckenhoupt weights $A_{\alpha}(\mathbb{Q})$ from [15]. The process $X=\left(X_{t}\right)_{t \in[0, T]}$ is given as unique strong solution of

$$
X_{t}=x_{0}+\int_{0}^{t} \sigma\left(s, X_{s}\right) d B_{s}+\int_{0}^{t} b\left(s, X_{s}\right) d s
$$

Introducing the standing notation

$$
K_{t}^{X}=e^{\int_{0}^{t} k\left(r, X_{r}\right) d r} \quad \text { and } \quad M_{t}:=K_{t}^{X} v\left(t, X_{t}\right),
$$

Itô's formula implies, for $t \in[0, T)$, that

$$
\begin{equation*}
M_{t}=v\left(0, x_{0}\right)+\int_{0}^{t} K_{s}^{X} \nabla v\left(s, X_{s}\right) \sigma\left(s, X_{s}\right) d B_{s} \tag{2.2}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\lim _{t \rightarrow T} M_{t}=M_{T} \quad \text { and } \quad \lim _{t \rightarrow T} v\left(t, X_{t}\right)=g\left(X_{T}\right) \tag{2.3}
\end{equation*}
$$

almost surely and in any $L_{r}(\mathbb{Q})$ with $r \in[1, \infty)$. Using Proposition 2.1 for $k=0$ we also have $\mathbb{Q}\left(\left|X_{t}-x_{0}\right|>\lambda\right) \leq c \exp \left(-\frac{\lambda^{2}}{c}\right)$ for all $\lambda \geq 0$ and $t \in[0, T]$, where $c=c(\sigma, b)>0$ is independent of $x_{0} \in \mathbb{R}^{d}$. It implies that $g\left(X_{T}\right) \in \bigcap_{r \in[1, \infty)} L_{r}(\mathbb{Q})$ so that Remark 2.6 below applies. We also use

Lemma 2.2 ([7], [8, Proof of Lemma 1.1], [5, Remark 3 in Appendix B]). Assume (C1) and (C2) and let $t \in(0, T], h: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a Borel function satisfying (C3) and Γ_{X} be the transition density of X, i.e. Γ from Proposition 2.1 for $k=0$. Define

$$
H(s, x):=\int_{\mathbb{R}^{d}} \Gamma_{X}(s, x ; t, \xi) h(\xi) d \xi \quad \text { for } \quad(s, x) \in[0, t) \times \mathbb{R}^{d}
$$

For $r \in[0, t)$ and $x \in \mathbb{R}^{d}$ let $\left(Z_{u}\right)_{u \in[r, t]}$ be the diffusion based on (σ, b) starting in x defined on some $\left(M, \mathcal{G},\left(\mathcal{G}_{u}\right)_{u \in[r, t]}, \mu\right)$ equipped with a standard $\left(\mathcal{G}_{u}\right)_{u \in[r, t]}$-Brownian motion, where (M, \mathcal{G}, μ) is complete, $\left(\mathcal{G}_{u}\right)_{u \in[r, t]}$ is right-continuous and \mathcal{G}_{r} is generated by the null sets of \mathcal{G}. Then, for $q \in(1, \infty), s \in[r, t)$, and $i=1,2$ one has a.s. that

$$
\left|\Delta_{i} H\left(s, Z_{s}\right)\right| \leq \kappa_{q}(t-s)^{-\frac{i}{2}}\left[\mathbb{E}\left(\left|h\left(Z_{t}\right)-\mathbb{E}\left(h\left(Z_{t}\right) \mid \mathcal{G}_{s}\right)\right|^{q} \mid \mathcal{G}_{s}\right)\right]^{\frac{1}{q}},
$$

where $\kappa_{q}>0$ depends at most on $(\sigma, b, q), \Delta_{1}:=\nabla$, and $\Delta_{2}:=D^{2}$.

Muckenhoupt weights. The probabilistic Muckenhoupt weights provide a natural way to verify various martingale inequalities after a change of measure, see exemplary $[14,2,15]$. To use these weights we exploit an equivalent measure $\mathbb{P} \sim \mathbb{Q}$ in addition to the given measure \mathbb{Q} and agree about the following standing assumption:
(P) There exists a martingale $Y=\left(Y_{t}\right)_{t \in[0, T]}$ with $Y_{0} \equiv 0$ such that $\lambda_{t}:=\mathcal{E}(Y)_{t}=$ $e^{Y_{t}-\frac{1}{2}\langle Y\rangle_{t}}$ for $t \in[0, T]$ is a martingale and $d \mathbb{P}=\lambda_{T} d \mathbb{Q}$.

Definition 2.3. Assume that condition (P) is satisfied.
(i) For $\alpha \in(1, \infty)$ we let $\lambda \in A_{\alpha}(\mathbb{Q})$ provided that there is a constant $c>0$ such that for all stopping times $\tau: \Omega \rightarrow[0, T]$ one has that $\mathbb{E}_{\mathbb{Q}}\left(\left.\left|\left(\lambda_{\tau} / \lambda_{T}\right)\right|^{\frac{1}{\alpha-1}} \right\rvert\, \mathcal{F}_{\tau}\right) \leq c$ a.s.
(ii) For $\beta \in(1, \infty)$ we let $\lambda \in \mathcal{R} \mathcal{H}_{\beta}(\mathbb{Q})$ provided that there is a constant $c>0$ such that for all stopping times $\tau: \Omega \rightarrow[0, T]$ one has that $\mathbb{E}_{\mathbb{Q}}\left(\left|\lambda_{T}\right|^{\beta} \mid \mathcal{F}_{\tau}\right)^{\frac{1}{\beta}} \leq c \lambda_{\tau}$ a.s.

The class $A_{\alpha}(\mathbb{Q})$ represents the probabilistic variant of the Muckenhoupt condition and $\mathcal{R H}$ stands for reverse Hölder inequality. Next we need

Definition 2.4. A martingale $Z=\left(Z_{t}\right)_{t \in[0, T]}$ is called BMO-martingale if $Z_{0} \equiv 0$ and there is a $c>0$ with $\mathbb{E}_{\mathbb{Q}}\left(\left|Z_{T}-Z_{\tau}\right|^{2} \mid \mathcal{F}_{\tau}\right) \leq c^{2}$ a.s. for all stopping times $\tau: \Omega \rightarrow[0, T]$.

It is known [15, Theorem 2.3] that $\left(e^{Z_{t}-\frac{1}{2}\langle Z\rangle_{t}}\right)_{t \in[0, T]}$ is a martingale for $Z \in \mathrm{BMO}$.

Proposition 2.5 ([15, Theorems 2.4 and 3.4]). Under (P) the following is equivalent:

$$
Y \in \mathrm{BMO}, \quad \mathcal{E}(Y) \in \bigcup_{\alpha \in(1, \infty)} A_{\alpha}(\mathbb{Q}), \quad \text { and } \quad \mathcal{E}(Y) \in \bigcup_{\beta \in(1, \infty)} \mathcal{R} \mathcal{H}_{\beta}(\mathbb{Q})
$$

Remark 2.6. Under the assertions of Proposition 2.5 we have $\lambda_{T} \in L_{\beta}(\mathbb{Q})$ and $1 / \lambda_{T} \in$ $L_{\alpha^{\prime}}(\mathbb{P})$ with $1=(1 / \alpha)+\left(1 / \alpha^{\prime}\right)$ so that $\bigcap_{r \in[1, \infty)} L_{r}(\mathbb{Q})=\bigcap_{r \in[1, \infty)} L_{r}(\mathbb{P})$.

Proposition 2.7 ([15, Theorems 2.3 and 3.19]). Let Y be a BMO-martingale so that (P) is satisfied. For all $p \in(0, \infty)$ there is a $b_{p}(\mathbb{P})>0$ such that for all \mathbb{Q}-martingales N with $N_{0} \equiv 0$ and $N_{t}^{*}:=\sup _{s \in[0, t]}\left|N_{s}\right|$ one has that

$$
\left(1 / b_{p}(\mathbb{P})\right)\left\|N_{T}^{*}\right\|_{L_{p}(\mathbb{P})} \leq\left\|\sqrt{\langle N\rangle_{T}}\right\|_{L_{p}(\mathbb{P})} \leq b_{p}(\mathbb{P})\left\|N_{T}^{*}\right\|_{L_{p}(\mathbb{P})}
$$

Lastly, we will often use the notation $\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{t}} U=\mathbb{E}_{\mathbb{Q}}\left(U \mid \mathcal{F}_{t}\right)$ and similarly $\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}} U$.

3 The result

In the following $\theta \in(0,1]$ will be the main parameter of the fractional smoothness. As fine-tuning parameter we use $q \in[2, \infty]$ and define

$$
\Phi_{q}(h):=\|h\|_{L_{q}\left([0, T), \frac{d t}{T-t}\right)}
$$

for a measurable function $h:[0, T) \rightarrow \mathbb{R}$. The main result of the paper is:
Theorem 3.1. Let $p \in[2, \infty)$ and $\lambda \in A_{p}(\mathbb{Q})$, and assume that (C 1$)$, (C 2) and (P) are satisfied. Then, for $\theta \in(0,1), q \in[2, \infty]$, a measurable function $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ satisfying (C3) and for $d \mathbb{P}=\lambda_{T} d \mathbb{Q}$ the following assertions are equivalent:

$$
\begin{aligned}
& \left(\mathrm{i}_{\theta}\right) \Phi_{q}\left((T-t)^{-\frac{\theta}{2}}\left\|g\left(X_{T}\right)-\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}} g\left(X_{T}\right)\right\|_{L_{p}(\mathbb{P})}\right)<+\infty \\
& \left(\mathrm{ii}_{\theta}\right) \Phi_{q}\left((T-t)^{\frac{1-\theta}{2}}\left\|\nabla v\left(t, X_{t}\right)\right\|_{L_{p}(\mathbb{P})}\right)<+\infty \\
& \text { (iii } \left.{ }_{\theta}\right) \Phi_{q}\left((T-t)^{\frac{2-\theta}{2}}\left\|D^{2} v\left(t, X_{t}\right)\right\|_{L_{p}(\mathbb{P})}\right)<+\infty
\end{aligned}
$$

As explained in the introduction, the blow-up of $\left\|\nabla v\left(t, X_{t}\right)\right\|_{L_{p}(\mathbb{P})}$ and $\left\|D^{2} v\left(t, X_{t}\right)\right\|_{L_{p}(\mathbb{P})}$ as $t \rightarrow T$ is used in $[4,6,12]$ to study approximation properties of stochastic integrals and in $[8,5]$ to study the L_{p}-variation of the solutions of BSDEs. To illustrate Theorem 3.1 by two special cases, we again let $\Delta_{1}=\nabla$ and $\Delta_{2}=D^{2}$.

For $q=\infty$ we obtain the equivalence of
(i) $\left\|g\left(X_{T}\right)-\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}} g\left(X_{T}\right)\right\|_{L_{p}(\mathbb{P})} \leq c_{1}(T-t)^{\frac{\theta}{2}}$ for all $t \in[0, T)$, and
(ii) $\left\|\Delta_{i} v\left(t, X_{t}\right)\right\|_{L_{p}(\mathbb{P})} \leq c_{2}(T-t)^{\frac{\theta-i}{2}}$ for all $t \in[0, T)$.

For $\underline{q=p}$ we use $\langle M\rangle_{t}=\int_{0}^{t}\left|K_{s}^{X} \nabla v\left(s, X_{s}\right) \sigma\left(s, X_{s}\right)\right|^{2} d s$ to get an equivalence of moments of path-wise fractional integrals obtained by Riemann-Liouville operators:

$$
\begin{aligned}
& \mathbb{E}_{\mathbb{P}} \int_{0}^{T}(T-t)^{-p \frac{\theta}{2}-1}\left|g\left(X_{T}\right)-\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}} g\left(X_{T}\right)\right|^{p} d t<\infty \\
& \Longleftrightarrow \mathbb{E}_{\mathbb{P}} \int_{0}^{T}(T-t)^{p \frac{i-\theta}{2}-1}\left|\Delta_{i} v\left(t, X_{t}\right)\right|^{p} d t<\infty
\end{aligned}
$$

$$
\Longleftrightarrow \mathbb{E}_{\mathbb{P}} \int_{0}^{T}(T-t)^{\frac{p}{2}(1-\theta)-1}\left|\frac{d}{d t}\langle M\rangle_{t}\right|^{\frac{p}{2}} d t<\infty .
$$

Note that for $p=2 /(1-\theta)$ the exponent of the weight in the last integral vanishes so that the quadratic intensity of M to the power $p / 2$ is weighted uniformly on $[0, T)$.

Remark 3.2. (1) Often (i_{θ}) is reasonable easy to check in applications, so that one point of the paper is, that we derive the sharp controls $\left(\mathrm{ii}_{\theta}\right)$-($\left.\mathrm{ii} i_{\theta}\right)$ on the derivatives. Examples of functions g that satisfy $\left(i_{\theta}\right)$ are given in [4, 6, 11, 5]. For example, assume that $d=1$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function of bounded variation (say $g(x)=$ $\chi_{[K, \infty)}(x)$ for some $K \in \mathbb{R}$). Applying (4.1), we get $\left\|g\left(X_{T}\right)-\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}} g\left(X_{T}\right)\right\|_{L_{p}(\mathbb{P})} \leq$ $2\left\|g\left(X_{T}\right)-g\left(X_{t}\right)\right\|_{L_{p}(\mathbb{P})}$ and [1, Theorem 2.4] yields upper bounds for the last expression.
(2) For $X=B, \mathbb{P}=\mathbb{Q}, T=1$ and $k=0$ the conditions of Theorem 3.1 are equivalent to g belonging to the Malliavin Besov space $B_{p, q}^{\theta}$ on \mathbb{R}^{d} weighted by the standard Gaussian measure (see [12]). The case $p=2, k=0, b=0$, and $q=\infty$ was considered in [4] for the one-dimensional case (in particular, the process X is a martingale).
(3) The case $\theta=1$ and $q \in[2, \infty)$ yields to pathologies: Let $X=B, \mathbb{P}=\mathbb{Q}, T=1$ and $k=0$. Condition (i_{1}) implies (ii ${ }_{1}$) by Lemma 4.2 below. Moreover, condition (ii ${ }_{1}$) and the monotonicity of $\left\|\nabla v\left(t, B_{t}\right)\right\|_{L_{p}(\mathbb{P})}\left(\left(\nabla v\left(t, B_{t}\right)\right)_{t \in[0,1)}\right.$ is a martingale in this case) imply that $\nabla v\left(t, B_{t}\right)=0$ a.s. so that $g\left(B_{1}\right)$ is almost surely constant.
(4) Instead of (i_{θ}) it is also natural to consider

$$
\left(\mathrm{i}_{\theta}^{\prime}\right) \Phi_{q}\left((T-t)^{-\frac{\theta}{2}}\left\|e^{\int_{0}^{T} k\left(r, X_{r}\right) d r} g\left(X_{T}\right)-\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}}\left(e^{\int_{0}^{T} k\left(r, X_{r}\right) d r} g\left(X_{T}\right)\right)\right\|_{L_{p}(\mathbb{P})}\right)<+\infty
$$

One can easily check that $\left(\mathrm{i}_{\theta}\right) \Longleftrightarrow\left(\mathrm{i}_{\theta}^{\prime}\right)$ for $\theta \in(0,1]$ and $q \in[1, \infty]$. Indeed, for any random variables U and V, bounded and in $L_{p}=L_{p}(\mathbb{P})$, respectively, observe that

$$
\begin{aligned}
& \left\|U V-\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}}(U V)\right\|_{L_{p}} \\
\leq & \left\|\left[U-\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}} U\right] V\right\|_{L_{p}}+\left\|\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}}(U)\left[V-\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}} V\right]\right\|_{L_{p}}+\left\|\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}}\left(U\left[\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}}(V)-V\right]\right)\right\|_{L_{p}} \\
\leq & \left\|\left[U-\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}} U\right] V\right\|_{L_{p}}+2\|U\|_{\infty}\left\|V-\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}} V\right\|_{L_{p}}
\end{aligned}
$$

For $U=e^{\int_{0}^{T} k\left(r, X_{r}\right) d r}$ and $V=g\left(X_{T}\right)$ we have $\left|U-\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}} U\right| \leq 2\|k\|_{\infty}(T-t) e^{\|k\|_{\infty} T}$ and can therefore deduce that $\left(\mathrm{i}_{\theta}\right) \Longrightarrow\left(\mathrm{i}_{\theta}^{\prime}\right)$. The converse is proved similarly.
(5) The case $\theta=1$ and $q=\infty$: One has $\left(\mathrm{i}_{1}^{\prime}\right) \Longleftrightarrow$ ($\left.\mathrm{ii}_{1}\right) \Longrightarrow$ (iii ${ }_{1}$) which follows from (4.15), Lemmas 4.2 and 4.5 below, and $\Phi_{\infty}\left((T-t)^{-\frac{1}{2}}\left(\int_{t}^{T} h(s)^{2} d s\right)^{\frac{1}{2}}\right) \leq \Phi_{\infty}(h)$. The implication $\left(\mathrm{iii}_{1}\right) \Longrightarrow\left(\mathrm{ii}_{1}\right)$ is not true in general. Take $p=2, q=\infty, X=B, \mathbb{P}=\mathbb{Q}$, $T=1, k=0$ and $d=1$ and the counterexample $g(x)=\sqrt{x \vee 0}$ from [5].
(6) A change of drift of the diffusion X by a term $\int_{0}^{t} \beta_{s} d s$, where the process β is uniformly bounded, yields to the case that $d \mathbb{P} / d \mathbb{Q} \in A_{\alpha}(\mathbb{Q})$ for all $\alpha \in(1, \infty)$. Note that our main result Theorem 3.1 only requires $d \mathbb{P} / d \mathbb{Q} \in A_{p}(\mathbb{Q})$.
To explain this, let $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \in[0, T]}, \mathbb{P}\right)$ be a stochastic basis satisfying the usual conditions with $\mathcal{F}=\mathcal{F}_{T}$. Assume that the filtration is the augmented natural filtration of a standard d-dimensional Brownian motion $W=\left(W_{t}\right)_{t \in[0, T]}$ starting in zero. It is known [17, Corollary 1 on p. 187] that on this stochastic basis all local martingales are continuous. Assume a progressively measurable d-dimensional process
$\beta=\left(\beta_{t}\right)_{t \in[0, T]}$ with $\sup _{t, \omega}\left|\beta_{t}(\omega)\right|<\infty$ and consider the unique strong solution of

$$
X_{t}=x_{0}+\int_{0}^{t} \sigma\left(s, X_{s}\right) d W_{s}+\int_{0}^{t} b\left(s, X_{s}\right) d s-\int_{0}^{t} \beta_{s} d s
$$

Letting $\gamma_{s}:=\sigma^{-1}\left(s, X_{s}\right) \beta_{s}, B_{t}:=W_{t}-\int_{0}^{t} \gamma_{s} d s, 1 / \lambda_{t}:=e^{\int_{0}^{t} \gamma_{s}^{\top} d W_{s}-\frac{1}{2} \int_{0}^{t}\left|\gamma_{s}\right|^{2} d s}$, and $d \mathbb{Q}:=\left(1 / \lambda_{T}\right) d \mathbb{P}$, Girsanov's Theorem gives that $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \in[0, T]}, \mathbb{Q}\right),\left(B_{t}\right)_{t \in[0, T]}$ and $\left(X_{t}\right)_{t \in[0, T]}$ satisfy our assumptions. Moreover $\lambda \in A_{\alpha}(\mathbb{Q})$ for all $\alpha \in(1, \infty)$.
(7) In case the drift term in item (6) is Markovian, i.e. $\beta_{t}=\beta\left(t, X_{t}\right)$ for an appropriate $\beta:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, and if we let $y_{t}:=v\left(t, X_{t}\right)$ and $z_{t}:=\nabla v\left(t, X_{t}\right) \sigma\left(t, X_{t}\right)$, then

$$
-d y_{t}=\left[k\left(t, X_{t}\right) y_{t}+z_{t} \sigma^{-1}\left(t, X_{t}\right) \beta\left(t, X_{t}\right)\right] d t-z_{t} d W_{t} \quad \text { with } \quad y_{T}=g\left(X_{T}\right) .
$$

Now we get analogues to $\left(i_{\theta}\right) \Leftrightarrow\left(i i_{\theta}\right)$ for $q=\infty$ because for $p \in[2, \infty), \theta \in(0,1]$, and a polynomially bounded g it is shown in [5] that under certain conditions

$$
\Phi_{\infty}\left((T-t)^{\frac{1-\theta}{2}}\left\|z_{t}\right\|_{L_{p}(\mathbb{P})}\right)<+\infty \text { iff } \Phi_{\infty}\left((T-t)^{-\frac{\theta}{2}}\left\|g\left(X_{T}\right)-\mathbb{E}^{\mathcal{F}_{t}}\left(g\left(X_{T}\right)\right)\right\|_{L_{p}(\mathbb{P})}\right)<+\infty
$$

(8) We let $k \equiv 0$ and $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a bounded Borel function. By (2.2)-(2.3) one has

$$
y_{t}^{0}=g\left(X_{T}\right)-\int_{t}^{T} z_{s}^{0} d B_{s} \text { with } y_{t}^{0}:=v\left(t, X_{t}\right) \text { and } z_{s}^{0}:=\nabla v\left(s, X_{s}\right) \sigma\left(s, X_{s}\right)
$$

for $t \in[0, T]$ and $s \in[0, T)$. Now we perturb this equation by a 1 -variation term $\int_{t}^{T} f\left(s, X_{s}, y_{s}, z_{s}\right) d s$ and obtain a backward stochastic differential equation

$$
y_{t}=g\left(X_{T}\right)+\int_{t}^{T} f\left(s, X_{s}, y_{s}, z_{s}\right) d s-\int_{t}^{T} z_{s} d B_{s}
$$

where the function f is called generator. As shown in [8,5], a key tool to study variational properties of a BSDE (that are also the basis for discretization schemes) is the comparison of the exact solution to the solution for the zero-generator case, i.e. to study the difference $y_{t}-y_{t}^{0}$. The following example includes BSDEs of quadratic type. Our assumptions are:
(a) $f:[0, T] \times \mathbb{R}^{d} \times \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is continuous.
(b) There exists a progressively measurable scalar process $\left(\theta_{s}\right)_{s \in[0, T)}$ such that $\sup _{s, \omega}\left|\theta_{s}(\omega)\right| \leq \eta_{1}<\infty$ and $\left.\left|f\left(s, X_{s}, y_{s}, z_{s}\right)-\theta_{s}\right| z_{s}\right|^{2} \mid \leq \eta_{2}<\infty$ on Ω for $s \in[0, T)$.
(c) $\mathbb{E}_{\mathbb{Q}}\left(\int_{t}^{T}\left|z_{s}\right|^{2} d s \mid \mathcal{F}_{t}\right) \leq c^{2} \mathbb{Q}$-a.s. for all $t \in[0, T)$.

Using for example [13, Theorem 2.6], where one finds standard assumptions on f for the quadratic case, one can construct examples that satisfy our assumptions. The boundedness of g implies that $\left(z_{s}^{0}\right)_{s \in[0, T)}$ satisfies (possibly with another constant) the same property (c). Hence $Y:=\int_{0}^{0} \theta_{s}\left(z_{s}+z_{s}^{0}\right) d B_{s}$ is a BMO-martingale with respect to \mathbb{Q}. Letting $\lambda_{t}:=\mathcal{E}(Y)_{t}$ and $d \mathbb{P}=\lambda_{T} d \mathbb{Q}$, we arrive in the setting of our paper as Proposition 2.5 implies that $\lambda \in A_{\alpha}(\mathbb{Q})$ and $\lambda \in \mathcal{R} \mathcal{H}_{\beta}(\mathbb{Q})$ for some $\alpha, \beta \in(1, \infty)$. Letting $d W_{s}:=d B_{s}-\theta_{s}\left(z_{s}+z_{s}^{0}\right) d s$, we obtain a \mathbb{P}-Brownian motion by Girsanov's Theorem. For $\Delta y_{t}:=y_{t}-y_{t}^{0}$ and $\Delta z_{t}:=z_{t}-z_{t}^{0}$ this yields

$$
\Delta y_{t}=\int_{t}^{T} f\left(s, X_{s}, y_{s}, z_{s}\right) d s-\int_{t}^{T} \Delta z_{s} d B_{s}=\int_{t}^{T} \widetilde{f}\left(s, z_{s}^{0}\right) d s-\int_{t}^{T} \Delta z_{s} d W_{s}
$$

with $\tilde{f}\left(s, \omega, z_{0}\right):=f\left(s, X_{s}(\omega), y_{s}(\omega), z_{s}(\omega)\right)-\theta_{s}(\omega)\left(\left|z_{s}(\omega)\right|^{2}-\left|z_{s}^{0}(\omega)\right|^{2}\right)$. Consequently,

$$
\left|\Delta y_{t}\right| \leq \mathbb{E}_{\mathbb{P}}\left(\int_{t}^{T}\left|\widetilde{f}\left(s, z_{s}^{0}\right)\right| d s \mid \mathcal{F}_{t}\right)
$$

and, for $q \in[1, \infty), \gamma:=\left[\mathbb{E}_{\mathbb{P}} \lambda_{T}^{-\alpha^{\prime}}\right]^{\frac{1}{\alpha^{\prime} q}}<\infty\left(\lambda \in A_{\alpha}(\mathbb{Q})\right), r:=\alpha q$, and $p:=2 r \in$ $(2, \infty)$,

$$
\begin{aligned}
\left\|\Delta y_{t}\right\|_{L_{q}(\mathbb{Q})} \leq \gamma\left\|\Delta y_{t}\right\|_{L_{r}(\mathbb{P})} & \leq \eta_{1} \gamma\left\|\int_{t}^{T}\left|z_{s}^{0}\right|^{2} d s\right\|_{L_{r}(\mathbb{P})}+\eta_{2} \gamma(T-t) \\
& \leq \eta_{1} \gamma \int_{t}^{T}\left\|z_{s}^{0}\right\|_{L_{p}(\mathbb{P})}^{2} d s+\eta_{2} \gamma(T-t)
\end{aligned}
$$

Therefore, owing to Theorem 3.1 (two first items) the appropriate control of the above time-integral as $t \rightarrow T$ follows from the suitable time-integrability of $\| g\left(X_{T}\right)-$ $\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}} g\left(X_{T}\right) \|_{L_{p}(\mathbb{P})}$, which can be directly checked according to the g considered.

4 Proof of Theorem 3.1

Given a probability space (M, Σ, μ) with a sub- σ algebra $\mathcal{G} \subseteq \Sigma$ and $Z \in L_{p}(M, \Sigma, \mu)$ with $p \in[1, \infty]$ we shall use the inequality:

$$
\begin{equation*}
\frac{1}{2}\|Z-\mathbb{E}(Z \mid \mathcal{G})\|_{p} \leq \inf _{Z^{\prime} \in L_{p}(M, \mathcal{G}, \mu)}\left\|Z-Z^{\prime}\right\|_{p} \leq\|Z-\mathbb{E}(Z \mid \mathcal{G})\|_{p} \tag{4.1}
\end{equation*}
$$

Lemma 4.1. For $1<\alpha<\infty, \lambda \in A_{\alpha}(\mathbb{Q}), U \in L_{\alpha}(\Omega, \mathcal{F}, \mathbb{P})$ and $c_{(4.2)}>0$ such that $\left[\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{t}}\left(\left|\frac{\lambda_{t}}{\lambda_{T}}\right|^{\frac{1}{\alpha-1}}\right)\right]^{\frac{\alpha-1}{\alpha}} \leq c_{(4.2)}$ a.s. we have that

$$
\begin{equation*}
\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{t}}|U| \leq c_{(4.2)}\left[\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}}|U|^{\alpha}\right]^{\frac{1}{\alpha}} \quad \text { a.s. } \quad \text { and } \quad\left\|\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{t}} U\right\|_{L_{\alpha}(\mathbb{P})} \leq c_{(4.2)}\|U\|_{L_{\alpha}(\mathbb{P})} \tag{4.2}
\end{equation*}
$$

Proof. Letting $1=\frac{1}{\alpha}+\frac{1}{\alpha^{\prime}}$ one has a.s. that

$$
\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{t}}|U|=\lambda_{t} \mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}}\left(|U| / \lambda_{T}\right) \leq \lambda_{t}\left[\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}}|U|^{\alpha}\right]^{\frac{1}{\alpha}}\left[\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}} \lambda_{T}^{-\alpha^{\prime}}\right]^{\frac{1}{\alpha^{\prime}}} \leq c_{(4.2)}\left[\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}}|U|^{\alpha}\right]^{\frac{1}{\alpha}}
$$

In the next step we will estimate $\nabla v\left(t, X_{t}\right)$ and $D^{2} v\left(t, X_{t}\right)$ from above by conditional moments of $M_{T}=K_{T}^{X} g\left(X_{T}\right)$ and $g\left(X_{T}\right)$ in Lemmas 4.2 and 4.5, and extend therefore Lemma 2.2 to the case $k \neq 0$ and allow at the same time a change of measure by Muckenhoupt weights.

Lemma 4.2. For $p \in(1, \infty)$ and $d \mathbb{P}=\lambda_{T} d \mathbb{Q}$ with $\lambda \in A_{p}(\mathbb{Q})$ we have a.s. that

$$
\begin{equation*}
\left|\nabla v\left(t, X_{t}\right)\right| \leq c_{(4.3)}\left[(T-t)^{-\frac{1}{2}}\left(\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}}\left|M_{T}-\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}} M_{T}\right|^{p}\right)^{\frac{1}{p}}+(T-t)\left(\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}}\left|M_{T}\right|^{p}\right)^{\frac{1}{p}}\right] \tag{4.3}
\end{equation*}
$$

where $c_{(4.3)}>0$ depends at most on $(\sigma, b, k, p, \mathbb{P})$.
Proof. I. First we follow a martingale approach (see, for example, [7]) and prove the statement for all $p \in(1, \infty)$ for the measure \mathbb{Q}.
(a) We define $\left(\nabla X_{t}\right)_{t \in[0, T]}$ to be the solution of the linear SDE (see [17, Chapter 5])

$$
\nabla X_{t}=I_{d}+\sum_{j=1}^{d} \int_{0}^{t} \nabla \sigma_{j}\left(s, X_{s}\right) \nabla X_{s} d B_{s}^{j}+\int_{0}^{t} \nabla b\left(s, X_{s}\right) \nabla X_{s} d s
$$

with $\sigma()=.\left(\sigma_{1}(),. \ldots, \sigma_{d}().\right)$. This matrix-valued process is a.s. invertible with
$\left[\nabla X_{t}\right]^{-1}=I_{d}-\sum_{j=1}^{d} \int_{0}^{t}\left[\nabla X_{s}\right]^{-1} \nabla \sigma_{j}\left(s, X_{s}\right) d B_{s}^{j}-\int_{0}^{t}\left[\nabla X_{s}\right]^{-1}\left(\nabla b\left(s, X_{s}\right)-\sum_{j=1}^{d}\left[\nabla \sigma_{j}\left(s, X_{s}\right)\right]^{2}\right) d s$.
(b) Formally differentiating the martingale $\left(M_{t}\right)_{t \in[0, T]}$ with respect to the initial value $x_{0} \in \mathbb{R}^{d}$ of $\left(X_{t}\right)_{t \in[0, T]}$, we obtain the process $\left(N_{t}\right)_{t \in[0, T)}$ with

$$
\begin{equation*}
N_{t}:=K_{t}^{X} \nabla v\left(t, X_{t}\right) \nabla X_{t}+M_{t}\left[\int_{0}^{t} \nabla k\left(s, X_{s}\right) \nabla X_{s} d s\right] . \tag{4.4}
\end{equation*}
$$

By [16, Section 3.1] and because of our quantitative bounds for the derivatives on v one can expect to obtain a martingale. Either one goes this way to check the fact that $\left(N_{t}\right)_{t \in[0, T)}$ is a \mathbb{Q}-martingale or, alternatively, one computes the Itô-process decomposition of N and uses the PDE to remove the bounded variation term.
(c) Exploiting the martingale property of N between t and some $S \in(t, T)$, we have

$$
\begin{align*}
& (S-t) N_{t}=\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{t}} \int_{t}^{S} N_{r} d r \tag{4.5}\\
& =\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{t}}\left(\left[\int_{t}^{S} K_{r}^{X} \nabla v\left(r, X_{r}\right) \sigma\left(r, X_{r}\right) d B_{r}\right]\left[\int_{t}^{S}\left(\sigma\left(r, X_{r}\right)^{-1} \nabla X_{r}\right)^{\top} d B_{r}\right]^{\top}\right) \tag{4.6}\\
& +(S-t) M_{t}\left[\int_{0}^{t} \nabla k\left(s, X_{s}\right) \nabla X_{s} d s\right]+\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{t}}\left(M_{S} \int_{t}^{S}\left[\int_{t}^{r} \nabla k\left(s, X_{s}\right) \nabla X_{s} d s\right] d r\right) . \tag{4.7}
\end{align*}
$$

For the last equality, we have used the \mathbb{Q}-martingale property of $\left(M_{t}\right)_{t \in[0, T]}$ and the conditional Itô isometry. Inserting (4.4) into $(S-t) N_{t}$, the second term cancels with the first term from (4.7) and $(S-t) K_{t}^{X} \nabla v\left(t, X_{t}\right) \nabla X_{t}$ is left on the left-hand side. Interchanging the integrals over $d s$ and $d r$ in the second term of (4.7) and using the stochastic integral representation of $M_{S}-M_{t}$ in (4.6), we finally see that

$$
\begin{aligned}
(S-t) K_{t}^{X} \nabla v\left(t, X_{t}\right) \nabla X_{t}= & \mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{t}}\left(\left[M_{S}-M_{t}\right]\left[\int_{t}^{S}\left(\sigma\left(r, X_{r}\right)^{-1} \nabla X_{r}\right)^{\top} d B_{r}\right]^{\top}\right) \\
& +\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{t}}\left(M_{S}\left[\int_{t}^{S}(S-s) \nabla k\left(s, X_{s}\right) \nabla X_{s} d s\right]\right)
\end{aligned}
$$

Using that $M_{S} \rightarrow M_{T}$ in $L_{2}(\mathbb{Q})$ we derive the same equation with S replaced by T and multiplied with $\left[\nabla X_{t}\right]^{-1}$. Finally, observe that $\sup _{t \in[0, T)} \sup _{r \in[t, T]} \mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{t}}\left(\left|\nabla X_{r}\left[\nabla X_{t}\right]^{-1}\right|^{q}\right)$ is a bounded random variable for any $q \geq 1$; therefore, standard computations using the conditional Hölder inequality complete our assertion.
II. The statement for \mathbb{P} will be deduced from the statement for \mathbb{Q} proved for $q \in(1, p)$. By [15, Corollary 3.3] there is an $\alpha \in(1, p)$ such that also $\lambda \in A_{\alpha}(\mathbb{Q})$. Let $q:=p / \alpha \in$ $(1, p)$. For $\lambda \in A_{\alpha}(\mathbb{Q})$ we apply Lemma 4.1 with $U:=|Z|^{q}$, where $Z \in \bigcap_{r \in[1, \infty)} L_{r}(\mathbb{Q})$ (cf. Remark 2.6), and get $\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{t}}|Z|^{q}\right)^{\frac{1}{q}} \leq c_{(4.2)}^{\frac{1}{q}}\left(\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}}|Z|^{p}\right)^{\frac{1}{p}}$ and, by (4.1),

$$
\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{t}}\left|Z-\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{t}} Z\right|^{q}\right)^{\frac{1}{q}} \leq 2\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{t}}\left|Z-\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}} Z\right|^{q}\right)^{\frac{1}{q}} \leq 2 c_{(4.2)}^{\frac{1}{q}}\left(\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}}\left|Z-\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}} Z\right|^{p}\right)^{\frac{1}{p}}
$$

For the following we let $m(t, x):=v(t, x) k(t, x)$.

Lemma 4.3. For $0 \leq r<t \leq T$ and $1<p_{0}<p<\infty$ one has a.s. that

$$
\begin{align*}
&\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left|m\left(t, X_{t}\right)-\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}} m\left(t, X_{t}\right)\right|^{p_{0}}\right)^{\frac{1}{p_{0}}} \\
& \leq c_{(4.8)}\left[\sqrt{t-r}\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left|M^{*}\right|^{p}\right)^{\frac{1}{p}}+\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left|M_{t}-M_{r}\right|^{p_{0}}\right)^{\frac{1}{p_{0}}}\right] \tag{4.8}
\end{align*}
$$

where $M^{*}:=\sup _{s \in[0, T]}\left|M_{s}\right|$ and $c_{(4.8)}>0$ depends at most on $\left(p_{0}, p, \sigma, b, k\right)$.
Proof. Applying a telescoping sum argument and the conditional Hölder inequality to $m\left(s, X_{s}\right)=k\left(s, X_{s}\right)\left(K_{s}^{X}\right)^{-1} M_{s}$ we derive

$$
\begin{aligned}
\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left|m\left(t, X_{t}\right)-\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}} m\left(t, X_{t}\right)\right|^{p_{0}}\right)^{\frac{1}{p_{0}}} & \leq 2\|k\|_{\infty} e^{T\|k\|_{\infty}}\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left|M_{t}-M_{r}\right|^{p_{0}}\right)^{\frac{1}{p_{0}}} \\
& +2\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left|k\left(t, X_{t}\right)-\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}} k\left(t, X_{t}\right)\right|^{\beta}\right)^{\frac{1}{\beta}} e^{T\|k\|_{\infty}}\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left|M^{*}\right|^{p}\right)^{\frac{1}{p}} \\
& +2\|k\|_{\infty}\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left|\left(K_{t}^{X}\right)^{-1}-\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left(K_{t}^{X}\right)^{-1}\right|^{\beta}\right)^{\frac{1}{\beta}}\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left|M^{*}\right|^{p}\right)^{\frac{1}{p}}
\end{aligned}
$$

for $\frac{1}{p_{0}}=\frac{1}{p}+\frac{1}{\beta}$. We conclude by

$$
\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left|k\left(t, X_{t}\right)-\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}} k\left(t, X_{t}\right)\right|^{\beta}\right)^{\frac{1}{\beta}} \leq 2\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left|k\left(t, X_{t}\right)-k\left(t, X_{r}\right)\right|^{\beta}\right)^{\frac{1}{\beta}} \leq c(k, b, \sigma, \beta) \sqrt{t-r}
$$

and $\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left|\left(K_{t}^{X}\right)^{-1}-\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left(K_{t}^{X}\right)^{-1}\right|^{\beta}\right)^{\frac{1}{\beta}} \leq 2\|k\|_{\infty}(t-r) e^{T\|k\|_{\infty}}$.
Lemma 4.4. For $0 \leq r<t<T$ and $p \in(1, \infty)$ one has a.s. that

$$
\begin{equation*}
\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left|M_{t}-M_{r}\right|^{p}\right)^{\frac{1}{p}} \leq c_{(4.9)}\left[\left(\frac{t-r}{T-t}\right)^{\frac{1}{2}}\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left|M_{T}-M_{r}\right|^{p}\right)^{\frac{1}{p}}+(t-r)^{\frac{1}{2}}\left|M_{r}\right|\right] \tag{4.9}
\end{equation*}
$$

where $c_{(4.9)} \geq 1$ depends at most on (p, σ, b, k).
Proof. Let $p_{0}:=\frac{1+p}{2}, \zeta_{u}:=K_{u}^{X} \nabla v\left(u, X_{u}\right) \sigma\left(u, X_{u}\right)$ and $0 \leq r \leq u \leq t$. Then Lemma 4.2 implies that

$$
\begin{aligned}
&\left|\zeta_{u}\right| e^{-T\|k\|_{\infty} \leq} \leq\|\sigma\|_{\infty} c_{(4.3), p_{0}} {\left[(T-u)^{-\frac{1}{2}}\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{u}}\left|M_{T}-M_{u}\right|^{p_{0}}\right)^{\frac{1}{p_{0}}}+(T-u)\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{u}}\left|M_{T}\right|^{p_{0}}\right)^{\frac{1}{p_{0}}}\right] } \\
& \leq\|\sigma\|_{\infty} c_{(4.3), p_{0}}\left[(T-u)^{-\frac{1}{2}} 2\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{u}}\left|M_{T}-M_{r}\right|^{p_{0}}\right)^{\frac{1}{p_{0}}}\right. \\
&\left.+(T-u)\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{u}}\left|M_{T}-M_{r}\right|^{p_{0}}\right)^{\frac{1}{p_{0}}}+(T-u)\left|M_{r}\right|\right] \\
& \leq\|\sigma\|_{\infty} c_{(4.3), p_{0}}\left[2+T^{\frac{3}{2}}+T\right]\left[(T-t)^{-\frac{1}{2}}\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{u}}\left|M_{T}-M_{r}\right|^{p_{0}}\right)^{\frac{1}{p_{0}}}+\left|M_{r}\right|\right] .
\end{aligned}
$$

Letting $c:=e^{T\|k\|_{\infty}}\|\sigma\|_{\infty} c_{(4.3), p_{0}}\left[2+T^{\frac{3}{2}}+T\right]$ we conclude the proof by using the Burkhol-der-Davis-Gundy and the Doob inequality in order to get

$$
\begin{aligned}
& \frac{1}{a_{p}}\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left|M_{t}-M_{r}\right|^{p}\right)^{\frac{1}{p}} \leq\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left(\int_{r}^{t}\left|\zeta_{u}\right|^{2} d u\right)^{\frac{p}{2}}\right)^{\frac{1}{p}} \\
\leq & c\left[(T-t)^{-\frac{1}{2}}\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left(\int_{r}^{t}\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{u}}\left|M_{T}-M_{r}\right|^{p_{0}}\right)^{\frac{2}{p_{0}}} d u\right)^{\frac{p}{2}}\right)^{\frac{1}{p}}+\sqrt{t-r}\left|M_{r}\right|\right] \\
\leq & c\left[\sqrt{\frac{t-r}{T-t}}\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left(\sup _{u \in[r, t]} \mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{u}}\left|M_{T}-M_{r}\right|^{p_{0}}\right)^{\frac{p}{p_{0}}}\right)^{\frac{1}{p}}+\sqrt{t-r}\left|M_{r}\right|\right]
\end{aligned}
$$

$$
\begin{aligned}
& \leq c\left[\left(\frac{p / p_{0}}{\left(p / p_{0}\right)-1}\right)^{\frac{1}{p_{0}}} \sqrt{\frac{t-r}{T-t}}\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{t}}\left|M_{T}-M_{r}\right|^{p_{0}}\right)^{\frac{p}{p_{0}}}\right)^{\frac{1}{p}}+\sqrt{t-r}\left|M_{r}\right|\right] \\
& \leq c\left[\left(\frac{p}{p-p_{0}}\right)^{\frac{1}{p_{0}}} \sqrt{\frac{t-r}{T-t}}\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}} \mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{t}}\left|M_{T}-M_{r}\right|^{p}\right)^{\frac{1}{p}}+\sqrt{t-r}\left|M_{r}\right|\right] .
\end{aligned}
$$

Lemma 4.5. For $p \in(1, \infty)$ and $d \mathbb{P}=\lambda_{T} d \mathbb{Q}$ with $\lambda \in A_{p}(\mathbb{Q})$ there is a constant $c_{(4.10)}>$ 0 , depending at most on $(\sigma, b, k, p, \mathbb{P})$, such that one has a.s. that

$$
\begin{equation*}
\left|D^{2} v\left(r, X_{r}\right)\right| \leq c_{(4.10)}\left[\frac{\left(\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{r}}\left|g\left(X_{T}\right)-\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{r}} g\left(X_{T}\right)\right|^{p}\right)^{\frac{1}{p}}}{T-r}+\sqrt{T-r}\left(\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{r}}\left|M^{*}\right|^{p}\right)^{\frac{1}{p}}\right] \tag{4.10}
\end{equation*}
$$

Proof. The statement for \mathbb{P} can be deduced from the statement for \mathbb{Q} for $q \in(1, p)$ as in Step II of the proof of Lemma 4.2. Now we show the estimate for the measure \mathbb{Q}. For $0 \leq s \leq t \leq T$, a fixed $T_{0} \in(0, T)$ and $r \in\left[0, T_{0}\right]$ we let

$$
v^{t}(s, x):=\mathbb{E}_{\mathbb{Q}}\left(m\left(t, X_{t}\right) \mid X_{s}=x\right) \text { and } v_{h}(r, x):=\mathbb{E}_{\mathbb{Q}}\left(v\left(T_{0}, X_{T_{0}}\right) \mid X_{r}=x\right)
$$

where $m=v k$ (the superscript t stands for the time-horizon t and h for homogenous). Itô's formula applied to v gives for $r \in\left[0, T_{0}\right]$ that

$$
v(r, x)=\mathbb{E}_{\mathbb{Q}}\left(v\left(T_{0}, X_{T_{0}}\right)+\int_{r}^{T_{0}}(k v)\left(t, X_{t}\right) d t \mid X_{r}=x\right)=v_{h}(r, x)+\int_{r}^{T_{0}} v^{t}(r, x) d t .
$$

Using Lemma 2.2 and the arguments from Remark 3.2(4) one can show for $0 \leq r<t \leq$ $T_{0}<T$ that

$$
\begin{equation*}
\left|\nabla v^{t}(r, x)\right| \leq \gamma e^{\gamma|x|^{k_{g}}} \quad \text { and } \quad\left|D^{2} v^{t}(r, x)\right| \leq \frac{\gamma}{\sqrt{t-r}} e^{\gamma|x|^{k_{g}}} \tag{4.11}
\end{equation*}
$$

where $\gamma>0$ depends at most on $\left(\sigma, b, k, K_{g}, k_{g}, T_{0}\right)$. From this we deduce that

$$
D^{2} v(r, x)=D^{2} v_{h}(r, x)+\int_{r}^{T_{0}} D^{2} v^{t}(r, x) d t
$$

where (4.11) is used to interchange the integral and D^{2}. For $p_{0}:=\frac{1+p}{2}, 0 \leq r<t \leq T$ and $s \in\left[0, T_{0}\right)$ we again use Lemma 2.2 to get

$$
\begin{aligned}
\left|D^{2} v^{t}\left(r, X_{r}\right)\right| & \leq \frac{\kappa_{p_{0}}}{(t-r)}\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left|m\left(t, X_{t}\right)-\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}} m\left(t, X_{t}\right)\right|^{p_{0}}\right)^{\frac{1}{p_{0}}} \quad \text { a.s. } \\
\left|D^{2} v_{h}\left(s, X_{s}\right)\right| & \leq \frac{\kappa_{p}}{\left(T_{0}-s\right)}\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{s}}\left|v\left(T_{0}, X_{T_{0}}\right)-\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{s}} v\left(T_{0}, X_{T_{0}}\right)\right|^{p}\right)^{\frac{1}{p}} \quad \text { a.s. }
\end{aligned}
$$

$>$ From the first estimate we derive by Lemmas 4.3 and 4.4 (with p replaced by p_{0}) a.s. that

$$
\begin{aligned}
\left|D^{2} v^{t}\left(r, X_{r}\right)\right| \leq & \frac{\kappa_{p_{0}}}{(t-r)}\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left|m\left(t, X_{t}\right)-\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}} m\left(t, X_{t}\right)\right|^{p_{0}}\right)^{\frac{1}{p_{0}}} \\
\leq & \frac{\kappa_{p_{0}} c_{(4.8)}}{(t-r)}\left[\sqrt{t-r}\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left|M^{*}\right|^{p}\right)^{\frac{1}{p}}+\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left|M_{t}-M_{r}\right|^{p_{0}}\right)^{\frac{1}{p_{0}}}\right] \\
\leq & \kappa_{p_{0}} c_{(4.8)}\left[1+c_{(4.9)}\right] \frac{1}{\sqrt{t-r}}\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left|M^{*}\right|^{p}\right)^{\frac{1}{p}} \\
& +\kappa_{p_{0}} c_{(4.8)} c_{(4.9)} \frac{1}{\sqrt{T-t} \sqrt{t-r}}\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left|M_{T}-M_{r}\right|^{p_{0}}\right)^{\frac{1}{p_{0}}}
\end{aligned}
$$

and

$$
\int_{r}^{T}\left|D^{2} v^{t}\left(r, X_{r}\right)\right| d t \leq c\left[\sqrt{T-r}\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left|M^{*}\right|^{p}\right)^{\frac{1}{p}}+\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left|M_{T}-M_{r}\right|^{p}\right)^{\frac{1}{p}}\right]
$$

with $c:=\kappa_{p_{0}} c_{(4.8)} \max \left\{2+2 c_{(4.9)}, c_{(4.9)} \operatorname{Beta}\left(\frac{1}{2}, \frac{1}{2}\right)\right\}$. The second estimate yields by $T_{0} \uparrow T$ and (2.3) that

$$
\left|D^{2} v_{h}\left(r, X_{r}\right)\right| \leq \frac{\kappa_{p}}{(T-r)}\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left|g\left(X_{T}\right)-\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}} g\left(X_{T}\right)\right|^{p}\right)^{\frac{1}{p}}
$$

and the upper bound is independent of T_{0}. Combining the estimates with

$$
\begin{aligned}
\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left|M_{T}-M_{r}\right|^{p}\right)^{\frac{1}{p}} \leq & 2 e^{\|k\|_{\infty} T} \\
& {\left[\|k\|_{\infty}(T-r) e^{\|k\|_{\infty} T}\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left|M^{*}\right|^{p}\right)^{\frac{1}{p}}+\left(\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}}\left|g\left(X_{T}\right)-\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}} g\left(X_{T}\right)\right|^{p}\right)^{\frac{1}{p}}\right] }
\end{aligned}
$$

using the arguments from Remark 3.2(4) the proof is complete.
Lemma 4.6. For $p \in[2, \infty), \lambda \in A_{p}(\mathbb{Q}), 0 \leq s<t<T$ and $l=1, \ldots, d$ we have that

$$
\begin{align*}
\| K_{t}^{X} \partial_{x_{l}} v\left(t, X_{t}\right) & -K_{s}^{X} \partial_{x_{l}} v\left(s, X_{s}\right) \|_{L_{p}(\mathbb{P})} \\
& \leq c_{(4.12)}\left[\left\|M_{T}\right\|_{L_{p}(\mathbb{P})} \int_{s}^{t} \frac{d r}{\sqrt{T-r}}+\left(\int_{s}^{t}\left\|D^{2} v\left(r, X_{r}\right)\right\|_{L_{p}(\mathbb{P})}^{2} d r\right)^{\frac{1}{2}}\right] \tag{4.12}
\end{align*}
$$

with $c_{(4.12)}>0$ depending at most on $(\sigma, b, k, p, \mathbb{P})$.
Proof. Using the PDE for v to obtain that $w_{l}=\partial_{x_{l}} v$ solves

$$
\mathcal{L} w_{l}=-\frac{1}{2} \sum_{i, j=1}^{d}\left(\partial_{x_{l}} a_{i, j}\right) \partial_{x_{i}, x_{j}}^{2} v-\sum_{i=1}^{d}\left(\partial_{x_{l}} b_{i}\right) \partial_{x_{i}} v-\left(\partial_{x_{l}} k\right) v,
$$

and exploiting Propositions 2.5 and 2.7 we get that

$$
\begin{align*}
& \left\|K_{t}^{X} \partial_{x_{l}} v\left(t, X_{t}\right)-K_{s}^{X} \partial_{x_{l}} v\left(s, X_{s}\right)\right\|_{L_{p}(\mathbb{P})} \tag{4.13}\\
\leq & b_{p}(\mathbb{P})\left\|\left(\int_{s}^{t}\left|K_{r}^{X}\left(\nabla \partial_{x_{l}} v\right)\left(r, X_{r}\right) \sigma\left(r, X_{r}\right)\right|^{2} d r\right)^{\frac{1}{2}}\right\|_{L_{p}(\mathbb{P})} \\
& +\frac{1}{2}\left\|\partial_{x_{l}} A\right\|_{\infty}\left\|\int_{s}^{t}\left|K_{r}^{X} D^{2} v\left(r, X_{r}\right)\right| d r\right\|_{L_{p}(\mathbb{P})} \\
& +\left\|\partial_{x_{l}} b\right\|_{\infty}\left\|\int_{s}^{t}\left|K_{r}^{X} \nabla v\left(r, X_{r}\right)\right| d r\right\|_{L_{p}(\mathbb{P})}+\left\|\partial_{x_{l}} k\right\|_{\infty}\left\|\int_{s}^{t}\left|K_{r}^{X} v\left(r, X_{r}\right)\right| d r\right\|_{L_{p}(\mathbb{P})} .
\end{align*}
$$

Lemma 4.1 yields $\sup _{r}\left\|K_{r}^{X} v\left(r, X_{r}\right)\right\|_{L_{p}(\mathbb{P})}=\sup _{r}\left\|\mathbb{E}_{\mathbb{Q}}^{\mathcal{F}_{r}} M_{T}\right\|_{L_{p}(\mathbb{P})} \leq c_{(4.2)}\left\|M_{T}\right\|_{L_{p}(\mathbb{P})}$ and, by Lemma 4.2, $\left\|\nabla v\left(r, X_{r}\right)\right\|_{L_{p}(\mathbb{P})} \leq c_{(4.3)}(T-r)^{-\frac{1}{2}}\left(2+T^{3 / 2}\right)\left\|M_{T}\right\|_{L_{p}(\mathbb{P})}$. Inserting these estimates into the above upper bound for (4.13) gives the result.

Lemma 4.7 ([12, Proposition A.4]). Let $0<\theta<1,2 \leq q \leq \infty$ and $d^{k}:[0, T) \rightarrow[0, \infty)$, $k=0,1,2$, be measurable functions. Assume that there are $A \geq 0$ and $D \geq 1$ such that

$$
\frac{1}{D}(T-t)^{\frac{k}{2}} d^{k}(t) \leq d^{0}(t) \leq D\left(\int_{t}^{T}\left[d^{1}(s)\right]^{2} d s\right)^{\frac{1}{2}} \text { and } d^{1}(t) \leq A+D\left(\int_{0}^{t}\left[d^{2}(u)\right]^{2} d u\right)^{\frac{1}{2}}
$$

for $k=1,2$ and $t \in[0, T)$. Then there is a constant $c_{(4.14)}>0$, depending at most on (D, θ, q, T), such that, for $k, l \in\{0,1,2\}$,

$$
\begin{equation*}
A+\Phi_{q}\left((T-t)^{\frac{k-\theta}{2}} d^{k}(t)\right) \sim_{c_{(4.14)}} A+\Phi_{q}\left((T-t)^{\frac{l-\theta}{2}} d^{l}(t)\right) . \tag{4.14}
\end{equation*}
$$

Proof of Theorem 3.1: We let $d^{0}(t):=\sqrt{T-t}+\left\|M_{T}-\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}} M_{T}\right\|_{L_{p}(\mathbb{P})}$,

$$
d^{1}(t):=1+\left\|\nabla v\left(t, X_{t}\right)\right\|_{L_{p}(\mathbb{P})} \quad \text { and } \quad d^{2}(t):=1+\left\|D^{2} v\left(t, X_{t}\right)\right\|_{L_{p}(\mathbb{P})}
$$

$>$ From Lemma 4.2 we get that

$$
\begin{aligned}
d^{1}(t) & \leq 1+c_{(4.3)}(T-t)^{-\frac{1}{2}}\left\|M_{T}-\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}} M_{T}\right\|_{L_{p}(\mathbb{P})}+c_{(4.3)}(T-t)\left\|M_{T}\right\|_{L_{p}(\mathbb{P})} \\
& \leq(T-t)^{-\frac{1}{2}}\left[1+c_{(4.3)}+c_{(4.3)} T\left\|M_{T}\right\|_{L_{p}(\mathbb{P})}\right] d^{0}(t)
\end{aligned}
$$

$>$ From Lemma 4.5 we get that

$$
d^{2}(t) \leq 1+c_{(4.10)}\left[\frac{\left\|g\left(X_{T}\right)-\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}} g\left(X_{T}\right)\right\|_{L_{p}(\mathbb{P})}}{T-t}+\sqrt{T-t}\left\|M^{*}\right\|_{L_{p}(\mathbb{P})}\right]
$$

Using Remark 3.2(4) we have that

$$
\left\|g\left(X_{T}\right)-\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}} g\left(X_{T}\right)\right\|_{L_{p}(\mathbb{P})} \leq 2 e^{\|k\|_{\infty} T}\left[\|k\|_{\infty}(T-t)\left\|M_{T}\right\|_{L_{p}(\mathbb{P})}+\left\|M_{T}-\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}} M_{T}\right\|_{L_{p}(\mathbb{P})}\right]
$$

Together with the previous estimate we obtain a $c=c\left(c_{(4.10)}, k, T,\left\|M^{*}\right\|_{L_{p}(\mathbb{P})}\right)>0$ such that $d^{2}(t) \leq c(T-t)^{-1} d^{0}(t)$. $>$ From

$$
\begin{equation*}
\left\|M_{T}-\mathbb{E}_{\mathbb{P}}^{\mathcal{F}_{t}} M_{T}\right\|_{L_{p}(\mathbb{P})} \leq 2 b_{p}(\mathbb{P}) e^{T\|k\|_{\infty}}\|\sigma\|_{\infty}\left\|\left(\int_{t}^{T}\left|\nabla v\left(s, X_{s}\right)\right|^{2} d s\right)^{\frac{1}{2}}\right\|_{L_{p}(\mathbb{P})} \tag{4.15}
\end{equation*}
$$

which follows from (4.1) and Proposition 2.7, and Lemma 4.6 for $s=0$ we get that

$$
d^{0}(t) \leq\left[1+c_{(4.15)}\right]\left(\int_{t}^{T}\left[d^{1}(s)\right]^{2} d s\right)^{\frac{1}{2}} \quad \text { and } \quad d^{1}(t) \leq d_{1}+d_{2}\left(\int_{0}^{t}\left[d^{2}(r)\right]^{2} d r\right)^{\frac{1}{2}}
$$

with constants $d_{1}:=1+e^{\|k\|_{\infty} T}\left[\left\|K_{0}^{X} \nabla v\left(0, X_{0}\right)\right\|_{L_{p}(\mathbb{P})}+2 c_{(4.12)} \sqrt{d T}\left\|M_{T}\right\|_{L_{p}(\mathbb{P})}\right]$ and $d_{2}:=$ $e^{\|k\|_{\infty} T} c_{(4.12)} \sqrt{d}$. Hence Lemma 4.7 and Remark 3.2(4) yield Theorem 3.1.

References

[1] R. Avikainen. On irregular functionals of SDEs and the Euler scheme. Finance and Stochastics, 13:381-401, 2009. MR-2519837
[2] A. Bonami and D. Lépingle. Fonction maximale et variation quadratique des martingales en présence d’un poids. In Séminaire de Probabilités XIII, Univ. de Strasbourg, Lect. Notes Math. 721, pages 294-306. Springer, 1979. MR-0544802
[3] A. Friedman. Partial differential equations of parabolic type. Prentice-Hall, 1964. MR0181836
[4] C. Geiss and S. Geiss. On approximation of a class of stochastic integrals and interpolation. Stoch. Stoch. Rep., 76(4):339-362, 2004. MR-2075477
[5] C. Geiss, S. Geiss, and E. Gobet. Generalized fractional smoothness and L_{p}-variation of BSDEs with non-Lipschitz terminal condition. Stochastic Processes and their Applications, 122(5):2078-2116, 2012. MR-2921973
[6] S. Geiss and M. Hujo. Interpolation and approximation in $L_{2}(\gamma)$. Journal of Approximation Theory, 144:213-232, 2007. MR-2293387
[7] E. Gobet and R. Munos. Sensitivity analysis using Itô-Malliavin calculus and martingales. Application to stochastic control problem. SIAM Journal of Control and Optimization, 43:5:1676-1713, 2005. MR-2137498
[8] E. Gobet and A. Makhlouf. L_{2}-time regularity of BSDEs with irregular terminal functions. Stochastic Processes and their Applications, 120:1105-1132, 2010. MR-2639740
[9] E. Gobet and A. Makhlouf. The tracking error rate of the Delta-Gamma hedging strategy. Mathematical Finance, 22(2):277-309, 2012. MR-2897386
[10] E. Gobet and E. Temam. Discrete time hedging errors for options with irregular pay-offs. Finance and Stochastics, 5(3):357-367, 2001. MR-1849426
[11] S. Geiss and A. Toivola. Weak convergence of error processes in discretizations of stochastic integrals and Besov spaces. Bernoulli, 15:925-954, 2009. MR-2597578
[12] S. Geiss and A. Toivola. On fractional smoothness and L_{p}-approximation on the Wiener space. arXiv:1206.5415, 2012. To appear in Annals Prob. as "On fractional smoothness and L_{p}-approximation on the Gaussian space".
[13] P. Imkeller and G. dos Reis. Path regularity and explicit convergence rate for BSDE with truncated quadratic growth. Stochastic Processes and their Applications, 120:348-379, 2010. MR-2584898
[14] M. Izumisawa and N. Kazamaki. Weighted norm inequalities for martingales. Tôhoku Math. Journal, 29:115-124, 1977. MR-0436313
[15] N. Kazamaki. Continuous exponential martingales and BMO, volume 1579 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1994. MR-1299529
[16] H. Kunita. Stochastic flows and stochastic differential equations. Cambridge Studies in Advanced Mathematics. 24. Cambridge: Cambridge University Press, 1997. MR-1472487
[17] P. Protter. Stochastic integration and differential equations. Springer Verlag, second edition, 2004. MR-2020294

[^0]: *Support for SG: project 133914 Stochastic and Harmonic Analysis, Interactions and Applications of the Academy of Finland. Support for EG: Chair Financial Risks of the Risk Foundation and the FiME Laboratory.
 ${ }^{\dagger}$ Department of Mathematics, University of Innsbruck, Austria. E-mail: stefan.geiss@uibk. ac.at
 ${ }^{\ddagger}$ Centre de Mathématiques Appliquées (CMAP), École Polytechnique and CNRS, France.
 E-mail: emmanuel.gobet@polytechnique.edu

