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Abstract

Let v : [0, T ] × Rd → R be the solution of the parabolic backward equation ∂tv +

(1/2)
∑

i,j [σσ
>]i,j∂xi∂xjv +

∑
i bi∂xiv + kv = 0 with terminal condition g, where the

coefficients are time- and state-dependent, and satisfy certain regularity assump-
tions. Let X = (Xt)t∈[0,T ] be the associated Rd-valued diffusion process on some
appropriate (Ω,F ,Q). For p ∈ [2,∞) and a measure dP = λT dQ, where λT satisfies
the Muckenhoupt condition Ap, we relate the behavior of

‖g(XT )−EP(g(XT )|Ft)‖Lp(P), ‖∇v(t,Xt)‖Lp(P), ‖D2v(t,Xt)‖Lp(P)

to each other, where D2v := (∂xi∂xjv)i,j is the Hessian matrix.
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1 Introduction

We investigate the quantitative behavior of parabolic partial differential equations with
respect to measures on the Wiener space generated by diffusions including a change
of measure induced by a Muckenhoupt weight. This type of questions arises from the
approximation theory of stochastic integrals and backward stochastic differential equa-
tions (BSDEs). The partial differential equation we consider is given by

Lv = 0 on [0, T )×Rd and v(T, ·) = g on Rd (1.1)

with

L := ∂t +
1

2

d∑
i,j=1

ai,j(t, x)∂2xi,xj +

d∑
i=1

bi(t, x)∂xi + k(t, x), (1.2)

where A := (ai,j)
d
i,j=1 = σσ>. It is well known [3] that under regularity conditions on

σ, b and k there is a fundamental solution Γ : {0 ≤ t < τ ≤ T} × Rd × Rd → [0,∞)

satisfying upper Gaussian bounds

|Da
xD

b
tΓ(t, x; τ, ξ)| ≤ c(τ − t)−

|a|+2b
2 γdτ−t ((x− ξ)/c) with γds (x) := e−

|x|2
2s /(

√
2πs)d
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Fractional smoothness and diffusion processes

for a and b up to a certain order. Under growth conditions on g these bounds transfer
to estimates for the gradient and the Hessian of the solution to (1.1) obtained by

v(t, x) :=

∫
Rd

Γ(t, x;T, ξ)g(ξ)dξ. (1.3)

In our setting there will be a κg ∈ [0, 2) such that for 0 ≤ |a| + 2b ≤ 3 the derivatives
Da
xD

b
tv exist in any order, are continuous on [0, T )×Rd, and satisfy

|Da
xD

b
tv(t, x)| ≤ c(1.4)(T − t)−

|a|+2b
2 exp(c(1.4)|x|κg ). (1.4)

The point-wise estimates (1.4) serve often as a-priori estimates in stochastic analysis.
However, they do not take into account regularities of g. Moreover, moment estimates
of Da

xv(t, x) appear to be more natural in various situations. To explain this, let p ∈
[2,∞), B = (Bt)t∈[0,T ] be a d-dimensional (Ft)t∈[0,T ]-standard Brownian motion under
a measure Q, where the usual assumptions are satisfied, and consider the Rd-valued
diffusion

Xt = x0 +

∫ t

0

σ(s,Xs)dBs +

∫ t

0

b(s,Xs)ds,

with σ and b taken from (1.2). To consider Lp-time discretizations of the stochastic
integrals

KX
T g(XT ) = E(KX

T g(XT )) +

∫ T

0

KX
t ∇v(t,Xt)σ(t,Xt)dBt with KX

t := e
∫ t
0
k(r,Xr)dr,

it turns out that the behavior of the Lp-norm of the Hessian (∂2v/∂xi∂xj)(t,Xt) deter-
mines this approximation; see [4, 6, 12] for k = 0. A control of the blow-up of this
Lp-norm as t → T enables the derivation of sharp convergence results. Similarly, the
Lp-variation of the solution of a BSDE is triggered by the blow-up of the Lp-norm of the
gradient of an associated semi-linear solution or an appropriate linear parabolic PDE,
see [8, 5]. If one analyzes these examples, it turns out that one needs to relate to each
other the quantitative behavior of

‖g(XT )−E(g(XT )|Ft)‖Lp(Q), ‖∇v(t,Xt)‖Lp(Q), and ‖D2v(t,Xt)‖Lp(Q)

with D2 = (∂2/∂xi∂xj)
d
i,j=1. In this note we go even one step ahead, by establishing

equivalence relations under an equivalent probability measure P that satisfies a Muck-
enhoupt condition. This gives considerably more insight into the quantitative behavior
of the parabolic PDE and more flexibility in applications: among them, we mention the
analysis of discrete-time hedging errors in mathematical finance [10, 9], where option
prices are computed under the risk-neutral probability measure Q and hedging errors
are analysed under the historical probability measure P. An application to quadratic
BSDEs is exposed in Remark 3.2(8).
Typically, setting M = P or Q, the terms ‖∇v(t,Xt)‖Lp(M) and ‖D2v(t,Xt)‖Lp(M) blow
up as t ↑ T in case the terminal condition g is not sufficiently smooth. Firstly to
measure the rates of these blows up and of the convergence to zero of ‖g(XT ) −
EM(g(XT )|Ft)‖Lp(M), and secondly to establish relations between them in our main
Theorem 3.1, we take advantage of the theory of real interpolation that provides for
this purpose the functionals Φq(h) := ‖h‖Lq([0,T ), dtT−t )

for a measurable function h :

[0, T )→ R where q ∈ [1,∞].

We proceed as follows: Section 2 introduces the setting and needed tools, in Section 3
we formulate the main Theorem 3.1, and Section 4 contains the proof of Theorem 3.1.
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Fractional smoothness and diffusion processes

2 Setting

Notation. Usually we denote by | · | the Euclidean norm of a vector. Given a matrix C
considered as operator C : `n2 → `N2 , the expression |C| stands for the Hilbert-Schmidt
norm and C> for the transposed of C. The Lp-norm (p ∈ [1,∞]) of a random vector
Z : Ω→ Rn or a random matrix Z : Ω→ Rn×m is denoted by ‖Z‖p = ‖|Z|‖Lp . As usual,
Da
xϕ is the partial derivative of the order of a multi-index a (with length |a| =

∑
i |ai|)

with respect to x. The Hessian matrix of a function ϕ : Rd → R is abbreviated by D2ϕ

and the gradient (as row vector) by ∇ϕ. In particular, this means that D2 and ∇ always
refer to the state variable x ∈ Rd. If we mention that a constant depends on b, σ or k,
then we implicitly indicate a possible dependence on T and d as well. Finally, letting
h : [0, T ]×Rd → Rn×m we use the notation ‖h‖∞ := supt,x |h(t, x)|.

Parabolic PDE. Our assumptions on the Cauchy problem (1.1)-(1.2) are as follows:

(C1) The functions σi,j , bi, k are bounded and belong to C0,2
b ([0, T ] × Rd) and there is

some γ ∈ (0, 1] such that the functions and their state-derivatives are γ-Hölder
continuous with respect to the parabolic metric on each compactum of [0, T ]×Rd.
Moreover, σ is 1/2-Hölder continuous in t, uniformly in x.

(C2) σ(t, x) is an invertible d× d-matrix with supt,x |σ−1(t, x)| < +∞.

(C3) The terminal function g : Rd → R is measurable and exponentially bounded: for
some Kg ≥ 0 and κg ∈ [0, 2) we have |g(x)| ≤ Kg exp(Kg|x|κg ) for all x ∈ Rd.

The condition (C2) implies that the operator L is uniformly parabolic. Under the above
assumptions there exists a fundamental solution:

Proposition 2.1 ([3, Theorem 7, p. 260; Theorem 10, pp. 72-74]). Under the as-
sumptions (C1) and (C2) there exists a fundamental solution Γ(t, x; τ, ξ) : {0 ≤ t < τ ≤
T} ×Rd ×Rd → [0,∞) for L and a constant c(2.1) > 0 such that for 0 ≤ |a| + 2b ≤ 3 the
derivatives Da

xD
b
tΓ exist in any order, are continuous, and satisfy

|Da
xD

b
tΓ(t, x; τ, ξ)| ≤ c(2.1)(τ − t)−

|a|+2b
2 γdτ−t

(
x− ξ
c(2.1)

)
with γds (x) = e−

|x|2
2s /(

√
2πs)d.

(2.1)

For 0 ≤ |a| + 2b ≤ 3 Proposition 2.1 implies that the derivatives Da
xD

b
tv, with v defined

in (1.3), exist in any order, are continuous on [0, T )×Rd and satisfy

Lv = 0 on [0, T )×Rd and |Da
xD

b
tv(t, x)| ≤ c(T − t)−

|a|+2b
2 exp(c|x|κg )

for x ∈ Rd and t ∈ [0, T ), where c > 0 depends at most on (κg,Kg, c(2.1), T ).

Stochastic differential equation. Let (Bt)t∈[0,T ] be a d-dimensional standard Brow-
nian motion defined on (Ω,F , (Ft)t∈[0,T ],Q), where (Ω,F ,Q) is complete, (Ft)t∈[0,T ] is
right-continuous, F = FT , F0 is generated by the null sets of F and where all local
martingales are continuous. As we work on a closed time-interval we have to explain
our understanding of a local martingale: we require that the localizing sequence of
stopping times 0 ≤ τ1 ≤ τ2 ≤ · · · ≤ T satisfies limnQ(τn = T ) = 1. So we think about
the extension of the filtration by FT to (T,∞) and that all local martingales (Nt)t∈[0,T ]

(in our setting) are extended by NT to (T,∞). This yields the standard notion of a local
martingale. We need this implicitly whenever we refer to results about the Mucken-
houpt weights Aα(Q) from [15]. The process X = (Xt)t∈[0,T ] is given as unique strong
solution of

Xt = x0 +

∫ t

0

σ(s,Xs)dBs +

∫ t

0

b(s,Xs)ds.
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Fractional smoothness and diffusion processes

Introducing the standing notation

KX
t = e

∫ t
0
k(r,Xr)dr and Mt := KX

t v(t,Xt),

Itô’s formula implies, for t ∈ [0, T ), that

Mt = v(0, x0) +

∫ t

0

KX
s ∇v(s,Xs)σ(s,Xs)dBs. (2.2)

Moreover,
lim
t→T

Mt = MT and lim
t→T

v(t,Xt) = g(XT ) (2.3)

almost surely and in any Lr(Q) with r ∈ [1,∞). Using Proposition 2.1 for k = 0 we also

have Q(|Xt − x0| > λ) ≤ c exp
(
−λ

2

c

)
for all λ ≥ 0 and t ∈ [0, T ], where c = c(σ, b) > 0

is independent of x0 ∈ Rd. It implies that g(XT ) ∈
⋂
r∈[1,∞) Lr(Q) so that Remark 2.6

below applies. We also use

Lemma 2.2 ([7], [8, Proof of Lemma 1.1], [5, Remark 3 in Appendix B]). Assume (C1)
and (C2) and let t ∈ (0, T ], h : Rd → R be a Borel function satisfying (C3) and ΓX be the
transition density of X, i.e. Γ from Proposition 2.1 for k = 0. Define

H(s, x) :=

∫
Rd

ΓX(s, x; t, ξ)h(ξ)dξ for (s, x) ∈ [0, t)×Rd.

For r ∈ [0, t) and x ∈ Rd let (Zu)u∈[r,t] be the diffusion based on (σ, b) starting in x

defined on some (M,G, (Gu)u∈[r,t], µ) equipped with a standard (Gu)u∈[r,t]-Brownian mo-
tion, where (M,G, µ) is complete, (Gu)u∈[r,t] is right-continuous and Gr is generated by
the null sets of G. Then, for q ∈ (1,∞), s ∈ [r, t), and i = 1, 2 one has a.s. that

|∆iH(s, Zs)| ≤ κq(t− s)−
i
2 [E(|h(Zt)−E(h(Zt)|Gs)|q|Gs)]

1
q ,

where κq > 0 depends at most on (σ, b, q), ∆1 := ∇, and ∆2 := D2.

Muckenhoupt weights. The probabilistic Muckenhoupt weights provide a natural
way to verify various martingale inequalities after a change of measure, see exemplary
[14, 2, 15]. To use these weights we exploit an equivalent measure P ∼ Q in addition
to the given measure Q and agree about the following standing assumption:

(P) There exists a martingale Y = (Yt)t∈[0,T ] with Y0 ≡ 0 such that λt := E(Y )t =

eYt−
1
2 〈Y 〉t for t ∈ [0, T ] is a martingale and dP = λT dQ.

Definition 2.3. Assume that condition (P) is satisfied.

(i) For α ∈ (1,∞) we let λ ∈ Aα(Q) provided that there is a constant c > 0 such that

for all stopping times τ : Ω→ [0, T ] one has that EQ
(
|(λτ/λT )|

1
α−1 |Fτ

)
≤ c a.s.

(ii) For β ∈ (1,∞) we let λ ∈ RHβ(Q) provided that there is a constant c > 0 such that

for all stopping times τ : Ω→ [0, T ] one has that EQ(|λT |β |Fτ )
1
β ≤ cλτ a.s.

The class Aα(Q) represents the probabilistic variant of the Muckenhoupt condition and
RH stands for reverse Hölder inequality. Next we need

Definition 2.4. A martingale Z = (Zt)t∈[0,T ] is called BMO-martingale if Z0 ≡ 0 and
there is a c > 0 with EQ

(
|ZT − Zτ |2|Fτ

)
≤ c2 a.s. for all stopping times τ : Ω→ [0, T ].

It is known [15, Theorem 2.3] that (eZt−
1
2 〈Z〉t)t∈[0,T ] is a martingale for Z ∈ BMO.
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Fractional smoothness and diffusion processes

Proposition 2.5 ([15, Theorems 2.4 and 3.4]). Under (P) the following is equivalent:

Y ∈ BMO, E(Y ) ∈
⋃

α∈(1,∞)

Aα(Q), and E(Y ) ∈
⋃

β∈(1,∞)

RHβ(Q).

Remark 2.6. Under the assertions of Proposition 2.5 we have λT ∈ Lβ(Q) and 1/λT ∈
Lα′(P) with 1 = (1/α) + (1/α′) so that

⋂
r∈[1,∞) Lr(Q) =

⋂
r∈[1,∞) Lr(P).

Proposition 2.7 ([15, Theorems 2.3 and 3.19]). Let Y be a BMO-martingale so that (P)
is satisfied. For all p ∈ (0,∞) there is a bp(P) > 0 such that for allQ-martingales N with
N0 ≡ 0 and N∗t := sups∈[0,t] |Ns| one has that

(1/bp(P))‖N∗T ‖Lp(P) ≤ ‖
√
〈N〉T ‖Lp(P) ≤ bp(P)‖N∗T ‖Lp(P).

Lastly, we will often use the notation EFtQ U = EQ(U |Ft) and similarly EFtP U .

3 The result

In the following θ ∈ (0, 1] will be the main parameter of the fractional smoothness. As
fine-tuning parameter we use q ∈ [2,∞] and define

Φq(h) := ‖h‖Lq([0,T ), dtT−t )

for a measurable function h : [0, T )→ R. The main result of the paper is:

Theorem 3.1. Let p ∈ [2,∞) and λ ∈ Ap(Q), and assume that (C1), (C2) and (P) are
satisfied. Then, for θ ∈ (0, 1), q ∈ [2,∞], a measurable function g : Rd → R satisfying
(C3) and for dP = λT dQ the following assertions are equivalent:

(iθ) Φq

(
(T − t)− θ2 ‖g(XT )−EFtP g(XT )‖Lp(P)

)
< +∞.

(iiθ) Φq

(
(T − t) 1−θ

2 ‖∇v(t,Xt)‖Lp(P)

)
< +∞.

(iiiθ) Φq

(
(T − t) 2−θ

2 ‖D2v(t,Xt)‖Lp(P)

)
< +∞.

As explained in the introduction, the blow-up of ‖∇v(t,Xt)‖Lp(P) and ‖D2v(t,Xt)‖Lp(P)

as t → T is used in [4, 6, 12] to study approximation properties of stochastic integrals
and in [8, 5] to study the Lp-variation of the solutions of BSDEs. To illustrate Theorem
3.1 by two special cases, we again let ∆1 = ∇ and ∆2 = D2.

For q =∞ we obtain the equivalence of

(i) ‖g(XT )−EFtP g(XT )‖Lp(P) ≤ c1(T − t) θ2 for all t ∈ [0, T ), and

(ii) ‖∆iv(t,Xt)‖Lp(P) ≤ c2(T − t) θ−i2 for all t ∈ [0, T ).

For q = p we use 〈M〉t =
∫ t
0
|KX

s ∇v(s,Xs)σ(s,Xs)|2ds to get an equivalence of moments
of path-wise fractional integrals obtained by Riemann-Liouville operators:

EP

∫ T

0

(T − t)−p θ2−1|g(XT )−EFtP g(XT )|pdt <∞

⇐⇒ EP

∫ T

0

(T − t)p
i−θ
2 −1|∆iv(t,Xt)|pdt <∞
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⇐⇒ EP

∫ T

0

(T − t)
p
2 (1−θ)−1

∣∣∣∣ ddt 〈M〉t
∣∣∣∣
p
2

dt <∞.

Note that for p = 2/(1 − θ) the exponent of the weight in the last integral vanishes so
that the quadratic intensity of M to the power p/2 is weighted uniformly on [0, T ).

Remark 3.2. (1) Often (iθ) is reasonable easy to check in applications, so that one
point of the paper is, that we derive the sharp controls (iiθ)-(iiiθ) on the derivatives.
Examples of functions g that satisfy (iθ) are given in [4, 6, 11, 5]. For example,
assume that d = 1 and g : R → R is a function of bounded variation (say g(x) =

χ[K,∞)(x) for some K ∈ R). Applying (4.1), we get ‖g(XT ) − EFtP g(XT )‖Lp(P) ≤
2‖g(XT )−g(Xt)‖Lp(P) and [1, Theorem 2.4] yields upper bounds for the last expres-
sion.

(2) For X = B, P = Q, T = 1 and k = 0 the conditions of Theorem 3.1 are equivalent
to g belonging to the Malliavin Besov space Bθp,q on Rd weighted by the standard
Gaussian measure (see [12]). The case p = 2, k = 0, b = 0, and q = ∞ was
considered in [4] for the one-dimensional case (in particular, the process X is a
martingale).

(3) The case θ = 1 and q ∈ [2,∞) yields to pathologies: Let X = B, P = Q, T = 1 and
k = 0. Condition (i1) implies (ii1) by Lemma 4.2 below. Moreover, condition (ii1) and
the monotonicity of ‖∇v(t, Bt)‖Lp(P) ((∇v(t, Bt))t∈[0,1) is a martingale in this case)
imply that ∇v(t, Bt) = 0 a.s. so that g(B1) is almost surely constant.

(4) Instead of (iθ) it is also natural to consider

(i′θ) Φq
(
(T − t)− θ2 ‖e

∫ T
0
k(r,Xr)drg(XT )−EFtP (e

∫ T
0
k(r,Xr)drg(XT ))‖Lp(P)

)
< +∞.

One can easily check that (iθ) ⇐⇒ (i′θ) for θ ∈ (0, 1] and q ∈ [1,∞]. Indeed, for any
random variables U and V , bounded and in Lp = Lp(P), respectively, observe that

‖UV −EFtP (UV )‖Lp
≤

∥∥[U −EFtP U ]V
∥∥
Lp

+
∥∥EFtP (U)[V −EFtP V ]

∥∥
Lp

+
∥∥EFtP (U [EFtP (V )− V ])

∥∥
Lp

≤ ‖[U −EFtP U ]V ‖Lp + 2‖U‖∞‖V −EFtP V ‖Lp .

For U = e
∫ T
0
k(r,Xr)dr and V = g(XT ) we have |U −EFtP U | ≤ 2‖k‖∞(T − t)e‖k‖∞T and

can therefore deduce that (iθ)=⇒ (i′θ). The converse is proved similarly.

(5) The case θ = 1 and q =∞: One has (i′1) ⇐⇒ (ii1) =⇒ (iii1) which follows from

(4.15), Lemmas 4.2 and 4.5 below, and Φ∞

(
(T − t)− 1

2

( ∫ T
t
h(s)2ds

) 1
2

)
≤ Φ∞(h). The

implication (iii1) =⇒ (ii1) is not true in general. Take p = 2, q = ∞, X = B, P = Q,
T = 1, k = 0 and d = 1 and the counterexample g(x) =

√
x ∨ 0 from [5].

(6) A change of drift of the diffusion X by a term
∫ t
0
βsds, where the process β is uni-

formly bounded, yields to the case that dP/dQ ∈ Aα(Q) for all α ∈ (1,∞). Note
that our main result Theorem 3.1 only requires dP/dQ ∈ Ap(Q).

To explain this, let (Ω,F , (Ft)t∈[0,T ],P) be a stochastic basis satisfying the usual con-
ditions with F = FT . Assume that the filtration is the augmented natural filtration
of a standard d-dimensional Brownian motion W = (Wt)t∈[0,T ] starting in zero. It
is known [17, Corollary 1 on p. 187] that on this stochastic basis all local martin-
gales are continuous. Assume a progressively measurable d-dimensional process
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β = (βt)t∈[0,T ] with supt,ω |βt(ω)| <∞ and consider the unique strong solution of

Xt = x0 +

∫ t

0

σ(s,Xs)dWs +

∫ t

0

b(s,Xs)ds−
∫ t

0

βsds.

Letting γs := σ−1(s,Xs)βs, Bt := Wt −
∫ t
0
γsds, 1/λt := e

∫ t
0
γ>s dWs− 1

2

∫ t
0
|γs|2ds, and

dQ := (1/λT )dP, Girsanov’s Theorem gives that (Ω,F , (Ft)t∈[0,T ],Q), (Bt)t∈[0,T ] and
(Xt)t∈[0,T ] satisfy our assumptions. Moreover λ ∈ Aα(Q) for all α ∈ (1,∞).

(7) In case the drift term in item (6) is Markovian, i.e. βt = β(t,Xt) for an appropriate
β : [0, T ]×Rd → Rd, and if we let yt := v(t,Xt) and zt := ∇v(t,Xt)σ(t,Xt), then

−dyt = [k(t,Xt)yt + ztσ
−1(t,Xt)β(t,Xt)]dt− ztdWt with yT = g(XT ).

Now we get analogues to (iθ) ⇔ (iiθ) for q = ∞ because for p ∈ [2,∞), θ ∈ (0, 1],
and a polynomially bounded g it is shown in [5] that under certain conditions

Φ∞((T − t)
1−θ
2 ‖zt‖Lp(P))<+∞ iff Φ∞((T − t)− θ2 ‖g(XT )−EFt(g(XT ))‖Lp(P))<+∞.

(8) We let k ≡ 0 and g : Rd → R be a bounded Borel function. By (2.2)-(2.3) one has

y0t = g(XT )−
∫ T

t

z0sdBs with y0t := v(t,Xt) and z0s := ∇v(s,Xs)σ(s,Xs)

for t ∈ [0, T ] and s ∈ [0, T ). Now we perturb this equation by a 1-variation term∫ T
t
f(s,Xs, ys, zs)ds and obtain a backward stochastic differential equation

yt = g(XT ) +

∫ T

t

f(s,Xs, ys, zs)ds−
∫ T

t

zsdBs,

where the function f is called generator. As shown in [8, 5], a key tool to study vari-
ational properties of a BSDE (that are also the basis for discretization schemes) is
the comparison of the exact solution to the solution for the zero-generator case, i.e.
to study the difference yt − y0t . The following example includes BSDEs of quadratic
type. Our assumptions are:

(a) f : [0, T ]×Rd ×R×Rd → R is continuous.

(b) There exists a progressively measurable scalar process (θs)s∈[0,T ) such that
sups,ω |θs(ω)| ≤ η1 <∞ and |f(s,Xs, ys, zs)−θs|zs|2| ≤ η2 <∞ on Ω for s ∈ [0, T ).

(c) EQ(
∫ T
t
|zs|2ds|Ft) ≤ c2 Q-a.s. for all t ∈ [0, T ).

Using for example [13, Theorem 2.6], where one finds standard assumptions on f

for the quadratic case, one can construct examples that satisfy our assumptions.
The boundedness of g implies that (z0s)s∈[0,T ) satisfies (possibly with another con-
stant) the same property (c). Hence Y :=

∫ ·
0
θs(zs + z0s)dBs is a BMO-martingale

with respect to Q. Letting λt := E(Y )t and dP = λT dQ, we arrive in the setting
of our paper as Proposition 2.5 implies that λ ∈ Aα(Q) and λ ∈ RHβ(Q) for some
α, β ∈ (1,∞). Letting dWs := dBs− θs(zs + z0s)ds, we obtain a P-Brownian motion by
Girsanov’s Theorem. For ∆yt := yt − y0t and ∆zt := zt − z0t this yields

∆yt =

∫ T

t

f(s,Xs, ys, zs)ds−
∫ T

t

∆zsdBs =

∫ T

t

f̃(s, z0s)ds−
∫ T

t

∆zsdWs
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Fractional smoothness and diffusion processes

with f̃(s, ω, z0) := f(s,Xs(ω), ys(ω), zs(ω))− θs(ω)(|zs(ω)|2 − |z0s(ω)|2). Consequently,

|∆yt| ≤ EP

(∫ T

t

|f̃(s, z0s)|ds|Ft

)

and, for q ∈ [1,∞), γ :=
[
EPλ

−α′
T

] 1
α′q

< ∞ (λ ∈ Aα(Q)), r := αq, and p := 2r ∈
(2,∞),

‖∆yt‖Lq(Q) ≤ γ‖∆yt‖Lr(P) ≤ η1γ

∥∥∥∥∥
∫ T

t

|z0s |2ds

∥∥∥∥∥
Lr(P)

+ η2γ(T − t)

≤ η1γ

∫ T

t

‖z0s‖2Lp(P)ds+ η2γ(T − t).

Therefore, owing to Theorem 3.1 (two first items) the appropriate control of the
above time-integral as t→ T follows from the suitable time-integrability of ‖g(XT )−
EFtP g(XT )‖Lp(P), which can be directly checked according to the g considered.

4 Proof of Theorem 3.1

Given a probability space (M,Σ, µ) with a sub-σ algebra G ⊆ Σ and Z ∈ Lp(M,Σ, µ) with
p ∈ [1,∞] we shall use the inequality:

1

2
‖Z −E(Z|G)‖p ≤ inf

Z′∈Lp(M,G,µ)
‖Z − Z ′‖p ≤ ‖Z −E(Z|G)‖p. (4.1)

Lemma 4.1. For 1 < α < ∞, λ ∈ Aα(Q), U ∈ Lα(Ω,F ,P) and c(4.2) > 0 such that

[EFtQ (| λtλT |
1

α−1 )]
α−1
α ≤ c(4.2) a.s. we have that

EFtQ |U | ≤ c(4.2)

[
EFtP |U |

α
] 1
α

a.s. and ‖EFtQ U‖Lα(P) ≤ c(4.2)‖U‖Lα(P). (4.2)

Proof. Letting 1 = 1
α + 1

α′ one has a.s. that

EFtQ |U | = λtE
Ft
P (|U |/λT ) ≤ λt[EFtP |U |

α]
1
α [EFtP λ

−α′
T ]

1
α′ ≤ c(4.2)[E

Ft
P |U |

α]
1
α .

In the next step we will estimate ∇v(t,Xt) and D2v(t,Xt) from above by conditional
moments of MT = KX

T g(XT ) and g(XT ) in Lemmas 4.2 and 4.5, and extend therefore
Lemma 2.2 to the case k 6= 0 and allow at the same time a change of measure by
Muckenhoupt weights.

Lemma 4.2. For p ∈ (1,∞) and dP = λT dQ with λ ∈ Ap(Q) we have a.s. that

|∇v(t,Xt)| ≤ c(4.3)

[
(T − t)− 1

2

(
EFtP |MT −EFtP MT |p

) 1
p

+ (T − t)
(
EFtP |MT |p

) 1
p
]
, (4.3)

where c(4.3) > 0 depends at most on (σ, b, k, p,P).

Proof. I. First we follow a martingale approach (see, for example, [7]) and prove the
statement for all p ∈ (1,∞) for the measure Q.

(a) We define (∇Xt)t∈[0,T ] to be the solution of the linear SDE (see [17, Chapter 5])

∇Xt = Id +

d∑
j=1

∫ t

0

∇σj(s,Xs)∇XsdB
j
s +

∫ t

0

∇b(s,Xs)∇Xsds
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with σ(.) = (σ1(.), . . . , σd(.)). This matrix-valued process is a.s. invertible with

[∇Xt]
−1= Id−

d∑
j=1

∫ t

0

[∇Xs]
−1∇σj(s,Xs)dB

j
s−
∫ t

0

[∇Xs]
−1(∇b(s,Xs)−

d∑
j=1

[∇σj(s,Xs)]
2)ds.

(b) Formally differentiating the martingale (Mt)t∈[0,T ] with respect to the initial value
x0 ∈ Rd of (Xt)t∈[0,T ], we obtain the process (Nt)t∈[0,T ) with

Nt := KX
t ∇v(t,Xt)∇Xt +Mt

[ ∫ t

0

∇k(s,Xs)∇Xsds
]
. (4.4)

By [16, Section 3.1] and because of our quantitative bounds for the derivatives on v

one can expect to obtain a martingale. Either one goes this way to check the fact that
(Nt)t∈[0,T ) is a Q-martingale or, alternatively, one computes the Itô-process decomposi-
tion of N and uses the PDE to remove the bounded variation term.

(c) Exploiting the martingale property of N between t and some S ∈ (t, T ), we have

(S − t)Nt = EFtQ

∫ S

t

Nrdr (4.5)

= EFtQ

([ ∫ S

t

KX
r ∇v(r,Xr)σ(r,Xr)dBr

][ ∫ S

t

(σ(r,Xr)
−1∇Xr)

>dBr

]>)
(4.6)

+ (S − t)Mt

[ ∫ t

0

∇k(s,Xs)∇Xsds
]

+EFtQ

(
MS

∫ S

t

[ ∫ r

t

∇k(s,Xs)∇Xsds
]
dr
)
. (4.7)

For the last equality, we have used theQ-martingale property of (Mt)t∈[0,T ] and the con-
ditional Itô isometry. Inserting (4.4) into (S−t)Nt, the second term cancels with the first
term from (4.7) and (S − t)KX

t ∇v(t,Xt)∇Xt is left on the left-hand side. Interchanging
the integrals over ds and dr in the second term of (4.7) and using the stochastic integral
representation of MS −Mt in (4.6), we finally see that

(S − t)KX
t ∇v(t,Xt)∇Xt = EFtQ

(
[MS −Mt]

[ ∫ S

t

(σ(r,Xr)
−1∇Xr)

>dBr

]>)
+EFtQ

(
MS

[ ∫ S

t

(S − s)∇k(s,Xs)∇Xsds
])
.

Using that MS → MT in L2(Q) we derive the same equation with S replaced by T and
multiplied with [∇Xt]

−1. Finally, observe that supt∈[0,T ) supr∈[t,T ]E
Ft
Q (|∇Xr[∇Xt]

−1|q) is
a bounded random variable for any q ≥ 1; therefore, standard computations using the
conditional Hölder inequality complete our assertion.

II. The statement for P will be deduced from the statement for Q proved for q ∈ (1, p).
By [15, Corollary 3.3] there is an α ∈ (1, p) such that also λ ∈ Aα(Q). Let q := p/α ∈
(1, p). For λ ∈ Aα(Q) we apply Lemma 4.1 with U := |Z|q, where Z ∈

⋂
r∈[1,∞) Lr(Q) (cf.

Remark 2.6), and get
(
EFtQ |Z|q

) 1
q ≤ c

1
q

(4.2)

(
EFtP |Z|p

) 1
p

and, by (4.1),

(
EFtQ |Z −E

Ft
Q Z|

q
) 1
q ≤ 2

(
EFtQ |Z −E

Ft
P Z|

q
) 1
q ≤ 2c

1
q

(4.2)

(
EFtP |Z −E

Ft
P Z|

p
) 1
p

.

For the following we let m(t, x) := v(t, x)k(t, x).
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Lemma 4.3. For 0 ≤ r < t ≤ T and 1 < p0 < p <∞ one has a.s. that

(
EFrQ |m(t,Xt)−EFrQ m(t,Xt)|p0

) 1
p0

≤ c(4.8)

[√
t− r

(
EFrQ |M

∗|p
) 1
p

+
(
EFrQ |Mt −Mr|p0

) 1
p0

]
(4.8)

where M∗ := sups∈[0,T ] |Ms| and c(4.8) > 0 depends at most on (p0, p, σ, b, k).

Proof. Applying a telescoping sum argument and the conditional Hölder inequality to
m(s,Xs) = k(s,Xs)(K

X
s )−1Ms we derive(

EFrQ |m(t,Xt)−EFrQ m(t,Xt)|p0
) 1
p0 ≤ 2‖k‖∞eT‖k‖∞

(
EFrQ |Mt −Mr|p0

) 1
p0

+2
(
EFrQ |k(t,Xt)−EFrQ k(t,Xt)|β

) 1
β

eT‖k‖∞
(
EFrQ |M

∗|p
) 1
p

+2‖k‖∞
(
EFrQ |(K

X
t )−1 −EFrQ (KX

t )−1|β
) 1
β
(
EFrQ |M

∗|p
) 1
p

for 1
p0

= 1
p + 1

β . We conclude by

(
EFrQ |k(t,Xt)−EFrQ k(t,Xt)|β

) 1
β ≤ 2

(
EFrQ |k(t,Xt)− k(t,Xr)|β

) 1
β ≤ c(k, b, σ, β)

√
t− r

and
(
EFrQ |(KX

t )−1 −EFrQ (KX
t )−1|β

) 1
β ≤ 2‖k‖∞(t− r)eT‖k‖∞ .

Lemma 4.4. For 0 ≤ r < t < T and p ∈ (1,∞) one has a.s. that(
EFrQ |Mt −Mr|p

) 1
p ≤ c(4.9)

[( t− r
T − t

) 1
2
(
EFrQ |MT −Mr|p

) 1
p

+ (t− r) 1
2 |Mr|

]
(4.9)

where c(4.9) ≥ 1 depends at most on (p, σ, b, k).

Proof. Let p0 := 1+p
2 , ζu := KX

u ∇v(u,Xu)σ(u,Xu) and 0 ≤ r ≤ u ≤ t. Then Lemma 4.2
implies that

|ζu|e−T‖k‖∞ ≤ ‖σ‖∞c(4.3),p0

[
(T − u)−

1
2

(
EFuQ |MT −Mu|p0

) 1
p0

+ (T − u)
(
EFuQ |MT |p0

) 1
p0

]
≤ ‖σ‖∞c(4.3),p0

[
(T − u)−

1
2 2
(
EFuQ |MT −Mr|p0

) 1
p0

+ (T − u)
(
EFuQ |MT −Mr|p0

) 1
p0

+ (T − u)|Mr|
]

≤ ‖σ‖∞c(4.3),p0 [2 + T
3
2 + T ]

[
(T − t)− 1

2

(
EFuQ |MT −Mr|p0

) 1
p0

+ |Mr|
]
.

Letting c := eT‖k‖∞‖σ‖∞c(4.3),p0 [2 +T
3
2 +T ] we conclude the proof by using the Burkhol-

der-Davis-Gundy and the Doob inequality in order to get

1

ap

(
EFrQ |Mt −Mr|p

) 1
p ≤

(
EFrQ

(∫ t

r

|ζu|2du
) p

2
) 1
p

≤ c

[
(T − t)− 1

2

(
EFrQ

(∫ t

r

(
EFuQ |MT −Mr|p0

) 2
p0
du
) p

2
) 1
p

+
√
t− r|Mr|

]
≤ c

[√ t− r
T − t

(
EFrQ

(
sup
u∈[r,t]

EFuQ |MT −Mr|p0
) p
p0
) 1
p

+
√
t− r|Mr|

]
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≤ c

[( p/p0
(p/p0)− 1

) 1
p0

√
t− r
T − t

(
EFrQ

(
EFtQ |MT −Mr|p0

) p
p0
) 1
p

+
√
t− r|Mr|

]
≤ c

[(
p

p− p0

) 1
p0

√
t− r
T − t

(
EFrQ E

Ft
Q |MT −Mr|p

) 1
p

+
√
t− r|Mr|

]
.

Lemma 4.5. For p ∈ (1,∞) and dP = λT dQ with λ ∈ Ap(Q) there is a constant c(4.10) >

0, depending at most on (σ, b, k, p,P), such that one has a.s. that

|D2v(r,Xr)| ≤ c(4.10)

[(EFrP ∣∣∣g(XT )−EFrP g(XT )
∣∣∣p) 1

p

T − r
+
√
T − r

(
EFrP |M

∗|p
) 1
p

]
. (4.10)

Proof. The statement for P can be deduced from the statement for Q for q ∈ (1, p) as in
Step II of the proof of Lemma 4.2. Now we show the estimate for the measure Q. For
0 ≤ s ≤ t ≤ T , a fixed T0 ∈ (0, T ) and r ∈ [0, T0] we let

vt(s, x) := EQ (m(t,Xt)|Xs = x) and vh(r, x) := EQ (v(T0, XT0
)|Xr = x)

where m = vk (the superscript t stands for the time-horizon t and h for homogenous).
Itô’s formula applied to v gives for r ∈ [0, T0] that

v(r, x) = EQ

(
v(T0, XT0

) +

∫ T0

r

(kv)(t,Xt)dt|Xr = x
)

= vh(r, x) +

∫ T0

r

vt(r, x)dt.

Using Lemma 2.2 and the arguments from Remark 3.2(4) one can show for 0 ≤ r < t ≤
T0 < T that

|∇vt(r, x)| ≤ γeγ|x|
kg

and |D2vt(r, x)| ≤ γ√
t− r

eγ|x|
kg
, (4.11)

where γ > 0 depends at most on (σ, b, k,Kg, kg, T0). From this we deduce that

D2v(r, x) = D2vh(r, x) +

∫ T0

r

D2vt(r, x)dt

where (4.11) is used to interchange the integral and D2. For p0 := 1+p
2 , 0 ≤ r < t ≤ T

and s ∈ [0, T0) we again use Lemma 2.2 to get

|D2vt(r,Xr)| ≤
κp0

(t− r)

(
EFrQ

∣∣∣m(t,Xt)−EFrQ m(t,Xt)
∣∣∣p0) 1

p0
a.s.,

|D2vh(s,Xs)| ≤
κp

(T0 − s)

(
EFsQ

∣∣∣v(T0, XT0
)−EFsQ v(T0, XT0

)
∣∣∣p) 1

p

a.s.

>From the first estimate we derive by Lemmas 4.3 and 4.4 (with p replaced by p0) a.s.
that

|D2vt(r,Xr)| ≤
κp0

(t− r)

(
EFrQ

∣∣∣m(t,Xt)−EFrQ m(t,Xt)
∣∣∣p0) 1

p0

≤ κp0c(4.8)

(t− r)

[√
t− r

(
EFrQ |M

∗|p
) 1
p

+
(
EFrQ |Mt −Mr|p0

) 1
p0

]
≤ κp0c(4.8)[1 + c(4.9)]

1√
t− r

(
EFrQ |M

∗|p
) 1
p

+κp0c(4.8)c(4.9)
1√

T − t
√
t− r

(
EFrQ |MT −Mr|p0

) 1
p0
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and ∫ T

r

|D2vt(r,Xr)|dt ≤ c
[√

T − r
(
EFrQ |M

∗|p
) 1
p

+
(
EFrQ |MT −Mr|p

) 1
p

]
with c := κp0c(4.8) max{2 + 2c(4.9), c(4.9)Beta( 1

2 ,
1
2 )}. The second estimate yields by T0 ↑ T

and (2.3) that

|D2vh(r,Xr)| ≤
κp

(T − r)

(
EFrQ

∣∣∣g(XT )−EFrQ g(XT )
∣∣∣p) 1

p

and the upper bound is independent of T0. Combining the estimates with

(
EFrQ |MT −Mr|p

) 1
p ≤ 2e‖k‖∞T[

‖k‖∞(T − r)e‖k‖∞T
(
EFrQ |M

∗|p
) 1
p

+
(
EFrQ

∣∣∣g(XT )−EFrQ g(XT )
∣∣∣p) 1

p

]
using the arguments from Remark 3.2(4) the proof is complete.

Lemma 4.6. For p ∈ [2,∞), λ ∈ Ap(Q), 0 ≤ s < t < T and l = 1, ..., d we have that∥∥KX
t ∂xlv(t,Xt)−KX

s ∂xlv(s,Xs)
∥∥
Lp(P)

≤ c(4.12)

[
‖MT ‖Lp(P)

∫ t

s

dr√
T − r

+
(∫ t

s

‖D2v(r,Xr)‖2Lp(P)dr
) 1

2
]

(4.12)

with c(4.12) > 0 depending at most on (σ, b, k, p,P).

Proof. Using the PDE for v to obtain that wl = ∂xlv solves

Lwl = −1

2

d∑
i,j=1

(∂xlai,j) ∂
2
xi,xjv −

d∑
i=1

(∂xlbi) ∂xiv − (∂xlk) v,

and exploiting Propositions 2.5 and 2.7 we get that∥∥KX
t ∂xlv(t,Xt)−KX

s ∂xlv(s,Xs)
∥∥
Lp(P)

(4.13)

≤ bp(P)

∥∥∥∥∥
(∫ t

s

|KX
r (∇∂xlv)(r,Xr)σ(r,Xr)|2dr

) 1
2

∥∥∥∥∥
Lp(P)

+
1

2
‖∂xlA‖∞

∥∥∥∥∫ t

s

|KX
r D

2v(r,Xr)|dr
∥∥∥∥
Lp(P)

+‖∂xlb‖∞
∥∥∥∥∫ t

s

|KX
r ∇v(r,Xr)|dr

∥∥∥∥
Lp(P)

+ ‖∂xlk‖∞
∥∥∥∥∫ t

s

|KX
r v(r,Xr)|dr

∥∥∥∥
Lp(P)

.

Lemma 4.1 yields supr
∥∥KX

r v(r,Xr)
∥∥
Lp(P)

= supr

∥∥∥EFrQ MT

∥∥∥
Lp(P)

≤ c(4.2)‖MT ‖Lp(P) and,

by Lemma 4.2, ‖∇v(r,Xr)‖Lp(P) ≤ c(4.3)(T − r)−
1
2

(
2 + T 3/2

)
‖MT ‖Lp(P). Inserting these

estimates into the above upper bound for (4.13) gives the result.

Lemma 4.7 ([12, Proposition A.4]). Let 0 < θ < 1, 2 ≤ q ≤ ∞ and dk : [0, T ) → [0,∞),
k = 0, 1, 2, be measurable functions. Assume that there are A ≥ 0 and D ≥ 1 such that

1

D
(T − t) k2 dk(t) ≤ d0(t) ≤ D

(∫ T

t

[d1(s)]2ds
) 1

2

and d1(t) ≤ A+D
(∫ t

0

[d2(u)]2du
) 1

2
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for k = 1, 2 and t ∈ [0, T ). Then there is a constant c(4.14) > 0, depending at most on
(D, θ, q, T ), such that, for k, l ∈ {0, 1, 2},

A+ Φq

(
(T − t)

k−θ
2 dk(t)

)
∼c(4.14) A+ Φq

(
(T − t)

l−θ
2 dl(t)

)
. (4.14)

Proof of Theorem 3.1: We let d0(t) :=
√
T − t+ ‖MT −EFtP MT ‖Lp(P),

d1(t) := 1 + ‖∇v(t,Xt)‖Lp(P) and d2(t) := 1 +
∥∥D2v(t,Xt)

∥∥
Lp(P)

.

>From Lemma 4.2 we get that

d1(t) ≤ 1 + c(4.3)(T − t)−
1
2 ‖MT −EFtP MT ‖Lp(P) + c(4.3)(T − t)‖MT ‖Lp(P)

≤ (T − t)− 1
2 [1 + c(4.3) + c(4.3)T‖MT ‖Lp(P)]d

0(t).

>From Lemma 4.5 we get that

d2(t) ≤ 1 + c(4.10)

[‖g(XT )−EFtP g(XT )‖Lp(P)

T − t
+
√
T − t‖M∗‖Lp(P)

]
.

Using Remark 3.2(4) we have that

‖g(XT )−EFtP g(XT )‖Lp(P) ≤ 2e‖k‖∞T
[
‖k‖∞(T − t)‖MT ‖Lp(P) + ‖MT −EFtP MT ‖Lp(P)

]
.

Together with the previous estimate we obtain a c = c(c(4.10), k, T, ‖M∗‖Lp(P)) > 0 such
that d2(t) ≤ c(T − t)−1d0(t). >From

‖MT −EFtP MT ‖Lp(P) ≤ 2bp(P)eT‖k‖∞‖σ‖∞

∥∥∥∥∥(
∫ T

t

|∇v(s,Xs)|2ds
) 1

2

∥∥∥∥∥
Lp(P)

, (4.15)

which follows from (4.1) and Proposition 2.7, and Lemma 4.6 for s = 0 we get that

d0(t) ≤ [1 + c(4.15)]
(∫ T

t

[d1(s)]2ds
) 1

2

and d1(t) ≤ d1 + d2

(∫ t

0

[d2(r)]2dr
) 1

2

with constants d1 := 1+e‖k‖∞T
[
‖KX

0 ∇v(0, X0)‖Lp(P) + 2c(4.12)

√
dT‖MT ‖Lp(P)

]
and d2 :=

e‖k‖∞T c(4.12)

√
d. Hence Lemma 4.7 and Remark 3.2(4) yield Theorem 3.1.

References

[1] R. Avikainen. On irregular functionals of SDEs and the Euler scheme. Finance and Stochas-
tics, 13:381–401, 2009. MR-2519837

[2] A. Bonami and D. Lépingle. Fonction maximale et variation quadratique des martingales en
présence d’un poids. In Séminaire de Probabilités XIII, Univ. de Strasbourg, Lect. Notes
Math. 721, pages 294–306. Springer, 1979. MR-0544802

[3] A. Friedman. Partial differential equations of parabolic type. Prentice-Hall, 1964. MR-
0181836

[4] C. Geiss and S. Geiss. On approximation of a class of stochastic integrals and interpolation.
Stoch. Stoch. Rep., 76(4):339–362, 2004. MR-2075477

[5] C. Geiss, S. Geiss, and E. Gobet. Generalized fractional smoothness and Lp-variation of
BSDEs with non-Lipschitz terminal condition. Stochastic Processes and their Applications,
122(5):2078–2116, 2012. MR-2921973

[6] S. Geiss and M. Hujo. Interpolation and approximation in L2(γ). Journal of Approximation
Theory, 144:213–232, 2007. MR-2293387

ECP 19 (2014), paper 35.
Page 13/14

ecp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=2519837
http://www.ams.org/mathscinet-getitem?mr=0544802
http://www.ams.org/mathscinet-getitem?mr=0181836
http://www.ams.org/mathscinet-getitem?mr=0181836
http://www.ams.org/mathscinet-getitem?mr=2075477
http://www.ams.org/mathscinet-getitem?mr=2921973
http://www.ams.org/mathscinet-getitem?mr=2293387
http://dx.doi.org/10.1214/ECP.v19-2786
http://ecp.ejpecp.org/


Fractional smoothness and diffusion processes

[7] E. Gobet and R. Munos. Sensitivity analysis using Itô-Malliavin calculus and martingales.
Application to stochastic control problem. SIAM Journal of Control and Optimization,
43:5:1676–1713, 2005. MR-2137498

[8] E. Gobet and A. Makhlouf. L2-time regularity of BSDEs with irregular terminal functions.
Stochastic Processes and their Applications, 120:1105–1132, 2010. MR-2639740

[9] E. Gobet and A. Makhlouf. The tracking error rate of the Delta-Gamma hedging strategy.
Mathematical Finance, 22(2):277–309, 2012. MR-2897386

[10] E. Gobet and E. Temam. Discrete time hedging errors for options with irregular pay-offs.
Finance and Stochastics, 5(3):357–367, 2001. MR-1849426

[11] S. Geiss and A. Toivola. Weak convergence of error processes in discretizations of stochastic
integrals and Besov spaces. Bernoulli, 15:925–954, 2009. MR-2597578

[12] S. Geiss and A. Toivola. On fractional smoothness and Lp-approximation on the Wiener
space. arXiv:1206.5415, 2012. To appear in Annals Prob. as "On fractional smoothness and
Lp-approximation on the Gaussian space".

[13] P. Imkeller and G. dos Reis. Path regularity and explicit convergence rate for BSDE with trun-
cated quadratic growth. Stochastic Processes and their Applications, 120:348–379, 2010.
MR-2584898

[14] M. Izumisawa and N. Kazamaki. Weighted norm inequalities for martingales. Tôhoku Math.
Journal, 29:115–124, 1977. MR-0436313

[15] N. Kazamaki. Continuous exponential martingales and BMO, volume 1579 of Lecture Notes
in Mathematics. Springer-Verlag, Berlin, 1994. MR-1299529

[16] H. Kunita. Stochastic flows and stochastic differential equations. Cambridge Studies in
Advanced Mathematics. 24. Cambridge: Cambridge University Press, 1997. MR-1472487

[17] P. Protter. Stochastic integration and differential equations. Springer Verlag, second edition,
2004. MR-2020294

ECP 19 (2014), paper 35.
Page 14/14

ecp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=2137498
http://www.ams.org/mathscinet-getitem?mr=2639740
http://www.ams.org/mathscinet-getitem?mr=2897386
http://www.ams.org/mathscinet-getitem?mr=1849426
http://www.ams.org/mathscinet-getitem?mr=2597578
http://arXiv.org/abs/1206.5415
http://www.ams.org/mathscinet-getitem?mr=2584898
http://www.ams.org/mathscinet-getitem?mr=0436313
http://www.ams.org/mathscinet-getitem?mr=1299529
http://www.ams.org/mathscinet-getitem?mr=1472487
http://www.ams.org/mathscinet-getitem?mr=2020294
http://dx.doi.org/10.1214/ECP.v19-2786
http://ecp.ejpecp.org/

	Introduction
	Setting
	The result
	Proof of Theorem 3.1
	References

