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Abstract

This paper illustrates that the bootstrap of a partial sum given by i.i.d. copies of a

random variable X1 has to be dealt with care in general. It turns out that in various

cases a whole spectrum of different limit laws of the m(n) out of k(n) bootstrap can

be obtained for different choices of m(n)
k(n)

→ 0 whenever X1 does not lie in the domain

of attraction of a stable law. As a concrete example we study bootstrap limit laws

for the cumulated gain sequence of repeated St. Petersburg games. It is shown that

here a continuum of different semi-stable bootstrap limit laws occurs.
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1 Introduction

Consider an arbitrary i.i.d. sequence (Xi)i∈N of real valued random variables (r.v.).

At finite sample size k(n) the following question is of high interest. What can be said

about the distribution of the partial sum

Sk(n) =

k(n)∑
i=1

Xi

(or about Sk(n)/k(n) − µ if the mean µ exists) given the realizations of X1, . . . , Xk(n)?

In many cases this question can be attacked by Efron’s bootstrap, see Efron (1979),

or existing bootstrap modifications which are widely used tools in modern statistics.

However, as it is well known, Efron’s bootstrap may fail for heavy tailed X1. This paper
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The m(n) out of k(n) bootstrap for partial sums of St. Petersburg games

points out that also bootstrap modifications like the m(n) out of k(n) bootstrap can-

not solve the problem without further assumptions on X1 or the bootstrap sample size

m(n). In conclusion we will see that the bootstrap has to be applied with care in general

because it even may fail for partial sums of i.i.d. random variables.

To judge the quality of its approximation the bootstrap should at least be able to repro-

duce a limit distribution, when it exists, of a suitably normalized Sk(n). This question is

discussed throughout. To be concrete, the r.v. X1 could be the famous St. Petersburg

game

P (X1 = 2k) = 2−k for k ∈ N (1.1)

which describes the gain of 2k dollars in a fair coin tossing experiment when ”head“ falls

first at time k, see e.g. Feller (1968) and Section 4 for details. This popular example will

be used to explain how the bootstrap works. Note, that in connection with our general

question the distribution of X1 will of course be unknown. Now let Sn denote the total

gain of n repeated St. Petersburg games. It is worth noting, that these St. Petersburg

sums do not posses a limit distribution in the usual sense, i.e. there exists no random

variable S such that a suitably normalized Sn converges in distribution to S. However,

along subsequences such limit distributions exists. In particular, Martin-Löf (1985)

proved convergence in distribution

S2n

2n
− n d−→W as n→∞, (1.2)

where W = W1 is a member of a semi-stable Lévy process which is not stable since

its Lévy measure is discrete. Here and throughout the paper ”
d−→ ” and ”

d
= ” denote

convergence and equality in distribution, respectively. The asymptotics of the partial

sums Sk(n) were clarified in Csörgő and Dodunekova (1991) and Csörgő (2002, 2007,

2010).

There (see e.g. Theorem 1.1. in combination with the remark on page 241 in Csörgő,

2010) it is shown that the cardinality of all non-trivial distributional cluster points of

normalized partial sums is the continuum. In particular, we have

Sr(n)

r(n)
− log2(r(n))

d−→Wγ (1.3)

for subsequences r(n)→∞ such that

exp(2πi{log2(r(n))− blog2(r(n))c}) −→ exp(2πi{1 + log2(γ)}) for some 1/2 < γ ≤ 1,

where log2(·) denotes the logarithm to the base 2 and i the imaginary unit. In Section 4

we will see that all limit laws Wγ can be reached by the m(n) bootstrap of the partial

sum of k(n) = 2n consecutive St. Petersburg games. In Section 3 a whole spectrum of

conditional bootstrap limit laws is derived in the general set-up of i.i.d. variables. As

positive result it is shown that the bootstrap can reproduce the limit distribution up to

a shift and scale adjustment provided that m(n) is a subsequence of k(n).
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The m(n) out of k(n) bootstrap for partial sums of St. Petersburg games

To discuss the behaviour of the bootstrap for general X1 in more detail let

X∗1 , . . . , X
∗
m(n) (1.4)

be an m(n) out of k(n) bootstrap sample drawn with replacement from the entries

of the vector Xk(n) := (X1, . . . , Xk(n)). Below we will focus on the bootstrap of par-

tial sums, where the central question can be discussed in detail. In Efron’s case with

k(n) = m(n) = n Giné and Zinn (1989) showed that the bootstrap of the sample mean

is consistent if and only if X1 is in the domain of attraction of a normal law, see also

Csörgő and Mason (1989), Mammen (1992) or Janssen and Pauls (2003, Theorem 5(b))

who classified conditional limit laws of extended weighted bootstrap statistics. In con-

nection with heavy tailed distributions the low intensity bootstrap with reduced resam-

pling size m(n) = o(k(n)) has some advantages, see Swanepoel (1986), Deheuvels et al.

(1993), Bickel et al. (1997), Cuesta-Albertos and Matrán (1998), del Barrio and Matrán

(2000), Bickel and Sakov (2005) and del Barrio et al. (2009a and b) to name only a few.

For non-normal but stable limit laws the low intensity bootstrap can be consistent but

the size m(n) may depend on the index α of stability. In any case Janssen and Pauls

(2003) showed under mild conditions that all conditional limit laws for the m(n) out of

k(n) bootstrap are infinitely divisible.

2 Notation and unconditional results

The next definition fixes all limit laws of our partial sums via a suitable normalization.

Definition 2.1. (a) The domain of partial limit laws PLL(X1) of X1 is the set of all

non-constant random variables Y such that there exists a sequence k(n) → ∞ and

constants an = an(k(n)) ∈ R, bn = bn(k(n)) > 0 with

k(n)∑
i=1

Xi

bn
− an

d−→Y as n→∞. (2.1)

(b) The random variable X1 is called universal or of Doeblin’s class if PLL(X1)

consists of all non-constant infinitely divisible random variables.

The introduced term PLL(X1) shall not be confused with the common notion of

partial domain of attraction of a random variable.

Remark 2.2. It is well known that all members Y of PLL(X1) are infinitely divisible.

The existence of universal random variables X1 has been shown by Doeblin, see Doeblin

(1940) and Feller (1971).

In the following a fixed sequence k(n)→∞ and the portion Xk(n) = (X1, ..., Xk(n)) of

our i.i.d. sequence is always regarded. In case that (2.1) holds one likes to bootstrap the

partial sum
∑k(n)
i=1 Xi. A suitable normalized bootstrap should then reproduce the limit Y

given in (2.1). However, in case that its limit Y is not normal Efron’s bootstrap cannot

reproduce this law and the same holds true for the m(n) bootstrap with moderate to

ECP 18 (2013), paper 91.
Page 3/10

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v18-2772
http://ecp.ejpecp.org/
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high resampling size m(n)
k(n) → c ∈ (0,∞] and bootstrap sample (1.4) which is well known.

Below it is shown that the m(n) out of k(n) bootstrap (referred as m(n) out of the

vector Xk(n)) with low resampling size m(n)
k(n) → 0 can reach the whole domain of partial

limit laws PLL(X1). Note, that for all Z ∈ PLL(X1) there exist some non-decreasing

sequence m(n) with m(n)→∞, m(n)
k(n) → 0 such that convergence in distribution

Sm(n)

βn
− αn

d−→Z (2.2)

holds for suitable norming constants αn, βn ∈ R, βn > 0. Notice, that m(n) can in

general not be chosen strictly increasing. Next, we show the equivalence between (2.2)

and its unconditional bootstrap counterpart for the same sequences m(n), βn and αn.

Note, that in most applications the limit (2.1) is typically assumed to exist.

However, the m(n) bootstrap under study only uses the vector Xk(n) from which the

resample is drawn. Below we therefore state the results as general as possible and

(2.1) is only supposed to hold if explicitly specified.

Proposition 2.3 (Unconditional convergence of the m(n) out of k(n) bootstrap).

(a) Consider the bootstrap sample (1.4) and suppose that (2.2) hold. Then we also have

unconditional convergence in distribution with the same normalizing sequences as in

(2.2) ∑m(n)
i=1 X∗i
βn

− αn
d−→Z. (2.3)

(b) Conversely, assume that (2.3) holds for the bootstrap sample (1.4). Then (2.2) also

holds.

(c) Suppose that (2.1) holds. Whenever {m(n)} ⊂ {k(n)} is a subsequence of k(n) then

the bootstrap partial sum in (2.3) converges to Z = Y for the choice αn = an′(m(n))

and βn = bn′(m(n)), where m(n) = k(n′).

Proof of Proposition 2.3. Part (a) is contained in Theorem 2.2 in del Barrio et al.

(2009a) and part (c) is obvious. To prove (b) we write µn(j), j = 0, 1, . . . ,m(n) for

the number of indices i in {1, . . . , k(n)} such that Xi is selected exactly j times in the

bootstrap sample X∗1 , . . . , X
∗
m(n), with µn(j) = 0 if no index is selected j times. Ob-

serve that N(m(n)) =
∑m(n)
j=1 µn(j) is the number of different variables in the bootstrap

sample. Moreover, by Lemma 2.1 in del Barrio et al. (2009a) we have N(m(n))
m(n)

p−→ 1 as

n → ∞, where here and throughout “
p−→ “ stands for convergence in probability. On

the other hand we can write m(n) as

m(n) =

m(n)∑
j=1

jµn(j),

from which it follows that

m(n) ≥ µn(1) + 2

m(n)∑
j=2

µn(j) = N(m(n)) +

m(n)∑
j=2

µn(j)
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holds. Combining this with the above implies convergence
(∑m(n)

j=2 µn(j)
)
/m(n)

p−→ 0

in probability and this, in turn, that

µn(1)

m(n)

p−→ 1 (2.4)

holds. Let us now write ϕ for the characteristic function of the Xj ’s and Φ, Φn and ϕn

for the characteristic functions of Z,
∑m(n)

i=1 X∗i
βn

− αn and
Sm(n)

βn
− αn, respectively. Since

X1, . . . , Xm(n) are i.i.d. this implies by well known properties of characteristic func-

tions that ϕn(t) = e−iαntϕ(t/βn)m(n) holds. Conditioning on (µn(j)) the characteristic

function of
∑m(n)

i=1 X∗i
βn

− αn can be written as

Φn(t) = E

ϕ(t/βn)µn(1)e−iαnt

m(n)∏
j=2

Yj

 ,

where Yj = ϕ(jt/βn)µn(j) for j ≥ 2 and Yj = 1 for µn(j) = 0. By assumption, conver-

gence Φn(t) → Φ(t) holds for all t ∈ R as n → ∞. Fix t ∈ R and observe, that the

complex random variables ϕ(t/βn)µn(1) and e−iαnt
∏m(n)
j=2 Yj are tight since their abso-

lute values are bounded. Hence, by Prohorov’s theorem, any subsequence contains a

further subsequence, say n, such that both converge jointly in distribution

(
ϕ(t/βn)µn(1), e−iαnt

m(n)∏
j=2

Yj

)
d−→ (A(t), B(t))

to some random variables A(t) and B(t). But then, by (2.4), ϕ(t/βn)m(n) d−→A(t) and,

by dominated convergence, it follows that

Φ̃n(t) := E

ϕ(t/βn)m(n)e−iαnt

m(n)∏
j=2

Yj

 −→ E(A(t)B(t)) = Φ(t)

holds as n → ∞. This proves convergence Φ̃n(t) = ϕn(t)E
(∏m(n)

j=2 Yj

)
→ Φ(t) for all

t ∈ R as n→∞. Observing that E
(∏m(n)

j=2 Yj

)
is a characteristic function, we can apply

Theorem 4.9, p. 26, in Araujo and Giné (1980) to conclude that, for some sequence

α̃n, the sequence
Sm(n)

βn
− α̃n is tight. Passing again to convergent subsequences we

could use part (a) to see that we can take α̃n = αn and conclude that convergence

in distribution
Sm(n)

βn
− αn

d−→Z holds by the convergence of types theorem along this

subsequence. Noting that the limit does not depend on the particular subsequence the

proof is completed.

Remark 2.4. Proposition 2.3 has positive and negative aspects. If (2.1) holds part

(c) shows that the m(n) bootstrap can reproduce the limit law along subsequences of

k(n). However, if m(n) is not a subsequence of k(n) this is not true in general. In

particular, part (a) shows that if X1 is of Doeblin’s class the general m(n) out of Xk(n)

bootstrap of the partial sum can reproduce all infinitely divisible laws in the limit. Thus

the statistician has to handle the bootstrap with care in general.
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Recall that the bootstrap is a two step procedure, where first the data is observed

and then the bootstrap sample is drawn. Hence there are good reasons to study the con-

ditional bootstrap distribution of the underlying statistics given the data. For instance,

the quality of bootstrap tests or confidence intervals with estimated bootstrap quantiles

relies heavily on the asymptotic correctness of the conditional bootstrap distribution,

confer for instance Janssen and Pauls (2003). In the next section a conditional version

of Proposition 2.3 can be obtained.

3 Conditional partial limit laws for the low intensity bootstrap

The following notation is used throughout. L(X) stands for the distribution of the

random variable X and L(Y |X) for the conditional distribution of the random variable

Y given X. Let d be a distance on the set of distributions on R that metrizes weak

convergence, e.g. the Prohorov distance, see Section 11.3 in Dudley (2002) for more

details. Given the data, our main theorem shows that also the conditional distribution of

the low resampling m(n) out of k(n) bootstrap from the scheme Xk(n) = (X1, . . . , Xk(n))

can reach every limit law L(Z) with Z ∈ PLL(X1). Note, that for the scheme (2.2) we

may assume without loss of generality the representation of its infinitely divisible limit

distribution as L(Z) = N(0, σ2)∗cτPois(η), where the probability measure cτPois(η), τ >

0 has characteristic function exp(
∫
R/{0} e

itx− 1− itx1{|x| ≤ τ}dη(x)), see e.g. del Barrio

et al. (2009a). Here τ is a continuity point of η. Moreover, we introduce the centering

variables

Xn,τ =
1

k(n)

k(n)∑
i=1

Xi

βn
1

{∣∣∣∣Xi

βn

∣∣∣∣ ≤ τ} . (3.1)

Theorem 3.1 (Conditional convergence of the m(n) out of k(n) bootstrap).

Suppose that (2.2) holds with m(n) → ∞ and m(n)
k(n) → 0 as n → ∞. Consider the m(n)

bootstrap sample X∗1 , . . . , X
∗
m(n) out of Xk(n) from (1.4). Then the following conditional

bootstrap limit laws (a) and (b) hold for the same normalizing coefficients βn and αn as

in (2.2):

(a) We have convergence

d
(
L
(m(n)∑
i=1

X∗i
βn
−m(n)Xn,τ |Xk(n)

)
,L(Z)

)
p−→ 0 (3.2)

in probability as n→∞.

(b) The centering variables (3.1) can be substituted by αn, i.e. we have convergence

d
(
L
(m(n)∑
i=1

X∗i
βn
− αn|Xk(n)

)
,L(Z)

)
p−→ 0 (3.3)

in probability as n→∞.

(c) Conversely, the conditional convergence (3.3) implies convergence in distribution

Sm(n)/βn − αn
d−→Z, i.e. (2.2). Moreover, the conditional convergence (3.2) implies

(2.2) with αn := E(m(n)Xn,τ ).
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Proof of Theorem 3.1. Part (a) follows from Theorem 4.2 in Del Barrio et al. (2009a).

To prove (b) we first show that m(n)Xn,τ can be substituted by its mean. Recall that a

necessary condition for the convergence (2.2) is

In = V ar

m(n)∑
i=1

Xi

βn
1

{∣∣∣∣Xi

βn

∣∣∣∣ ≤ τ}
 = m(n)V ar

(
X1

βn
1

{∣∣∣∣X1

βn

∣∣∣∣ ≤ τ}) = O(1),

see Gnedenko and Kolmogorov (1968, p.116). Hence V ar(m(n)Xn,τ ) = m(n)
k(n) In → 0 as

n→∞. Consequently we have unconditional convergence

m(n)Xn,τ − E(m(n)Xn,τ )
p−→ 0 (3.4)

in probability as n→∞. Together with part (a) this implies

d
(
L
(m(n)∑
i=1

X∗i
βn
− E(m(n)Xn,τ )|Xk(n)

)
,L(Z)

)
p−→ 0

as n → ∞ according to a twofold application of the subsequence principle for conver-

gence in probability, see e.g. Theorem 9.2.1 in Dudley (2002). Note, that this is first

achieved along almost sure convergent subsequences of (3.4).

Since conditional convergence implies unconditional convergence, see e.g. Lemma 1.2

in Csörgő and Rosalsky (2003) or Janssen and Pauls (2003), we also have convergence

in distribution

m(n)∑
i=1

X∗i
βn
− E(m(n)Xn,τ )

d−→Z (3.5)

as n → ∞. Comparing (3.5) with Proposition 2.3 we obtain αn − E(m(n)Xn,τ ) −→ 0 by

the convergence of types theorem. Hence we can replace E(m(n)Xn,τ ) by αn to obtain

(b).

To prove (c) note that conditional convergence (3.3) implies unconditional convergence

(2.3). Hence the result follows from the converse part of Proposition 2.3. Now suppose

that (3.2) holds. In this case the above computations prove that the centering part of

(3.2) can be substituted by its mean and the result follows as for (3.3).

Remark 3.2. It is remarkable that for the conditional set-up again all variables Z ∈
PLL(X1) can be reached by suitable m(n) out of Xk(n) bootstrap schemes. In particular,

all infinitely divisible Z will be bootstrap limit laws if X1 is of Doeblin’s class. This

observation supplements the results from Janssen and Pauls (2003) who showed that

conditional bootstrap limit laws are always infinitely divisible.

4 Bootstrap limit laws for the St. Petersburg game

Note, that the limit r.v. Y in (2.1) is a member Y = Y1 of a uniquely determined

Lévy process (Yt)t≥0. Obviously, every Yt is a member of the set of partial limit laws
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PLL(X1) and it is easy to see that (2.2) may hold with L(Z) = L(Yt) for suitable slow

sample sizes m(n) → ∞ with m(n)
k(n) → 0. The following result is already hidden in del

Barrio et al. (2009a) and explains the popularity of the m(n) out of k(n) bootstrap for

stable limit laws.

Proposition 4.1. Suppose that (2.1) holds and consider an arbitrary m(n) out of Xk(n)

bootstrap scheme with m(n)
k(n) → 0, such that

∑m(n)
i=1 X∗i has a non degenerate uncondi-

tional limit law ξ (depending on the choice of m(n)) after some suitable normalization.

Suppose that L(Y ) in (2.1) can be reproduced up to a shift and scale transformation

by L(ξ) for all possible m(n) out of k(n) bootstrap limit laws, i.e. we have equality in

distribution

Y
d
=

ξ

b
− a for some a = a(ξ), b = b(ξ). (4.1)

Then Y is already a stable r.v..

Proof of Proposition 4.1. Recall that Y = Y1 is stable whenever Y
d
= Yt

bt
− at holds for

suitable coefficients so that the result follows from Theorem 3.1.

Observe that in the stable case the conditional correctness of the m(n) out of k(n)

bootstrap is only a matter of proper normalization.

Now we turn to the famous St. Petersburg game. Consider (1.3) for γ ∈ (1/2, 1], where

we may assume without restrictions that r(n)
k(n) → 0 holds. We now put m(n) = r(n).

Remark 4.2. (a) The r(n) out of Xk(n) bootstrap reproduces Wγ in the conditional and

unconditional sense, i.e. we have

d
(
L
( 1

r(n)

r(n)∑
i=1

X∗i − αn|Xk(n)

)
,L(Wγ)

)
p−→ 0,

where Wγ is defined in (1.3) and αn = log2(r(n)) holds.

(b) Now consider the special case of the Martin–Löf limit law L(W1). In this case we

have that the m(n) out of k(n) = 2n bootstrap can reach every distribution in {L(Wγ) :

γ ∈ (1/2, 1]} ⊂ PLL(X1) in the limit for adequate choices of subsequences m(n), where

X1 is as in (1.1).

Example 4.3 (Generalized St. Petersburg games). Csörgő (2002) has analyzed a broa-

der class of games, the so called generalized St. Petersburg(α, p) games, that allow for

biased coins and different payoffs, see also Csörgő (2007), Gut (2010) and Pap (2011)

for other occurrences of this generalization. Similarly to the classical case, semi-stable

infinitely divisible laws show up as cluster points of normalized partial sums. As above

the m(n) bootstrap may reproduce these limits.

Finally we like to discuss the bootstrap for general semi-stable limit distributions.

Example 4.4 (General semi-stable limit distributions).

Let (Xt)t≥0 be an r-semi-stable Lévy process, 0 < r < 1, i.e. a Lévy process with the

property that there exists 0 < c 6= 1 such that for all ` ∈ N there exists d` ∈ R with
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Xr`
d
= X1

c`
− d`, see e.g. Sato (1999) . In this case the domain of partial limit laws of

X1 contains every Xt, i.e. we have Xt ∈ PLL(X1) for all t > 0. To accept this consider

independent copies (X
(i)
t )t≥0 of (Xt)t≥0 and note that we have for all m(n)

Xm(n)r`
d
=

m(n)∑
i=1

X
(i)

r`
d
=

m(n)∑
i=1

X
(i)
1

c`
− d`m(n).

Hence choosing m(n),` = `(n) → ∞ such that m(n)r` → t > 0 we have convergence in

distribution ∑m(n)
i=1 X

(i)
1

c`(n)
− d`(n)m(n)

d−→Xt.

Now, an application of Theorem 3.1 implies that the m(n) bootstrap obtained from

X̃(k(n)) = (X
(1)
1 , . . . , X

(k(n))
1 ) can reach any distribution L(Xt) with t > 0 in the limit.
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