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Abstract

The purpose of this article is to study some asymptotic properties of the Λ-Wright-
Fisher process with selection. This process represents the frequency of a disad-
vantaged allele. The resampling mechanism is governed by a finite measure Λ on
[0, 1] and selection by a parameter α. When the measure Λ obeys

∫ 1

0
− log(1 −

x)x−2Λ(dx) < ∞, some particular behaviour in the frequency of the allele can oc-
cur. The selection coefficient α may be large enough to override the random genetic
drift. In other words, for certain selection pressure, the disadvantaged allele will
vanish asymptotically with probability one. This phenomenon cannot occur in the
classical Wright-Fisher diffusion. We study the dual process of the Λ-Wright-Fisher
process with selection and prove this result through martingale arguments.
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1 Introduction and main result

We recall here the basics about the Λ-Wright-Fisher process with selection. This
process represents the evolution of the frequency of a deleterious allele. When no se-
lection is taken into account, we refer the reader to Bertoin-Le Gall [3] and Dawson-Li
[5] who have introduced this process as a solution to some specific stochastic differ-
ential equation driven by a random Poisson measure. Recently Bah and Pardoux [1]
have considered a lookdown approach to construct a particle system whose empirical
distribution converges to the strong solution to

Xt = x+

∫
[0,t]×[0,1]×[0,1]

z
(
1u≤Xs− −Xs−

)
M̄(ds, du, dz)− α

∫ t

0

Xs(1−Xs)ds (1.1)

where M̄ is a compensated Poisson measureM on R+ × [0, 1]× [0, 1] whose intensity is
ds⊗du⊗z−2Λ(dz). Strong uniqueness of the solution to (1.1) follows from an application
of Theorem 2.1 in [5]. The process (Xt, t ≥ 0) should be interpreted as follows: it
represents the frequency of a deleterious allele as time passes. When α > 0, the logistic
term −αXt(1−Xt)dt makes the frequency of the allele decrease, this is the phenomenon
of selection. Heuristically, the equation (1.1) can be understood as follows:

• Denote the frequency of the allele just before time s by Xs−. If (s, u, z) is an atom
of the measureM, then, at time s,
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The impact of selection in the Λ-Wright-Fisher model

– if u ≤ Xs−, the frequency of the allele increases by a fraction z(1−Xs−)
– if u > Xs−, the frequency of the allele decreases by a fraction zXs−.

• Continuously in time, the frequency decreases due to the deterministic selection
mechanism.

Note that we are dealing with a two-allele model: at any time t, the advantageous allele
has frequency 1−Xt. The purely diffusive case is well understood (this is the classical
Wright-Fisher diffusion) and we exclude it from our study (see e.g. Chapters 3 and 5 of
Etheridge’s monography [8] for a complete study). We also mention that Section 5 of
Bah and Pardoux [1] incorporates a diffusion term in the SDE (1.1). Lastly, the process
(Xt, t ≥ 0) should be interpreted as one of the simplest models introducing natural se-
lection together with random genetic drift (that is, the random resampling governed by
Λ).

Plainly, the process (Xt, t ≥ 0) lies in [0, 1] and is a supermartingale. Therefore, the
process (Xt, t ≥ 0) has an almost-sure limit denoted by X∞. This random variable is
the frequency at equilibrium. Since 0 and 1 are the only absorbing states, the random
variable X∞ lies in {0, 1}. Moreover if α > 0, the supermartingale property yields that
for all x in [0, 1],

P[X∞ = 1|X0 = x] = E[X∞|X0 = x] < x.

Our main result is the following theorem.

Theorem 1.1. Let α? := −
∫ 1

0
log(1− x)Λ(dx)

x2 ∈ (0,∞]. Then,

1) if α < α? then for all x ∈ (0, 1), 0 < P[X∞ = 0|X0 = x] < 1,

2) if α? <∞ and α > α? then X∞ = 0 a.s.

Remark 1.2. • Some Λ-Wright-Fisher processes with selection are absorbed in fi-
nite time (for instance the diffusive one). Such processes verify α? = ∞. More
precisely, Bah and Pardoux in Section 4.2 of [1] show that they are related to mea-
sures Λ satisfying the criterion of coming down from infinity. This will be discussed
at the beginning of Section 2.2.

• The condition
∫ 1

0
x−1Λ(dx) =∞ implies that −

∫ 1

0
log(1−x)x−2Λ(dx) =∞. One can

recognize the first integral condition as the dust-free criterion (see Lemma 25 and
Proposition 26 in Pitman’s article [16]). In other words, the dust-free condition en-
sures that the deleterious allele does not disappear with probability one. Namely,
it may survive in the long run with positive probability. It is worth observing that
some measure Λ verify −

∫ 1

0
log(1 − x)x−2Λ(dx) = ∞ and

∫ 1

0
x−1Λ(dx) < ∞. An

example is provided in the proof of Corollary 4.2 of Möhle and Herriger [15].

• Bah and Pardoux in Section 4.3 of [1] have obtained a first result on the impact of
selection. Namely they show that if α > µ :=

∫ 1

0
1

x(1−x)Λ(dx) then X∞ = 0 almost
surely. We highlight that the quantity µ is strictly larger than α?.

• Der, Epstein and Plotkin [6] and [7] obtain several results in the framework of
finite populations with selection. They announce the results of Theorem 1.1 in [7].
However their proofs treat only the case when Λ is a Dirac mass. Their method is
based on a study of the generator of (Xt, t ≥ 0) and differs from ours.

Except in the case of simple measures Λ, the expression of α? is rather complicated.
We provide a few examples.

Example 1.3. • Let x ∈ [0, 1] and c > 0, consider Λ = cδx. We have

α? : x 7→ −c log(1− x)/x2.
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The case x = 0 corresponds to the Wright-Fisher diffusion and we have α?(0) =∞.
When x = 1, we also have α?(1) =∞ (this is the so-called star-shaped mechanism).
Note that the map α? is convex and has a local minimum in (0, 1). Thus, in this
model (called the Eldon-Wakeley model, see e.g. Birkner and Blath [4]) the se-
lection pressure which ensures the extinction of the disadvantaged allele is not a
monotonic function of x.

• Let a > 0, b > 0, consider Λ = Beta(a, b) where Beta(a, b) is the unnormalized Beta
measure with density f(x) = xa−1(1− x)b−1.

– If a = 2, one can easily compute α?(b) =
∫∞

0
te−bt

1−e−t dt = ζ(2, b) (where ζ de-
notes the Hurwitz Zeta function).

– If b = 1 and a > 1, we have α?(a) =
∫∞

0
te−t(1− e−t)a−3dt. If a ≤ 1, α?(a) =∞.

The computation is more involved for general measures Beta, see Gnedin et al.
[11] page 1442.

A direct study of the process (Xt, t ≥ 0) and its limit based on the SDE (1.1) seems
a priori rather involved. The key tool that will allow us to get some information about
X∞ is a duality between (Xt, t ≥ 0) and a continuous-time Markov chain with values in
N := {1, 2, ...}. Namely consider (Rt, t ≥ 0) with generator L defined as follows. For
every g : N→ R:

Lg(n) =

n∑
k=2

(
n

k

)
λn,k[g(n− k + 1)− g(n)] + αn[g(n+ 1)− g(n)] (1.2)

with

λn,k =

∫ 1

0

xk(1− x)n−kx−2Λ(dx).

We have the following duality lemma:

Lemma 1.4. For all x ∈ [0, 1], n ≥ 1,

E[Xn
t |X0 = x] = E[xRt |R0 = n].

When no selection is taken into account, this duality is well-known (see for instance
the recent survey concerning duality methods of Jansen and Kurt [12]). Several works
incorporate selection and study the dual process. We mention for instance the work of
Neuhauser and Krone [13] in which the Wright-Fisher diffusion case is studied. For a
proof of Lemma 1.4, which relies on standard generator calculations, see Equation 3.11
page 21 in Bah and Pardoux [1].

The process (Rt, t ≥ 0) is clearly irreducible and its properties are related to those
of (Xt, t ≥ 0). The following lemma is crucial in our study.

Lemma 1.5. 1) If (Rt, t ≥ 0) is positive recurrent then the law of X∞ charges both
0 and 1.

2) If (Rt, t ≥ 0) is transient then X∞ = 0 almost surely.

Proof of Lemma 1.5. Recall that (Xt, t ≥ 0) is positive, bounded and converges almost
surely. We first establish 1). Assume that the process (Rt, t ≥ 0) is positive recurrent.
To conclude that the law of X∞ charges both 0 and 1, we use Lemma 1.4. Hence, we
have

P[X∞ = 1|X0 = x] = E[X∞|X0 = x] ≥ E[Xn
∞|X0 = x] = E[xR∞ |R0 = n] ≥ xn0

En0
[Tn0

]
> 0,
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where R∞ is a random variable with law, the stationary distribution of (Rt, t ≥ 0) and
Tn0

is the first return time to state n0 of the chain (Rt, t ≥ 0). We prove now 2). Assume
that the process (Rt, t ≥ 0) is transient. Plainly, applying the dominated convergence
theorem in Lemma 1.4 with n = 1, we have

E[X∞|X0 = x] = lim
t→∞

E[xRt |R0 = 1] = 0, since Rt −→
t→∞

∞ a.s.

Thus, X∞ = 0 almost surely.

Similarly to the block counting process of a Λ-coalescent, the process (Rt, t ≥ 0) has
a genealogical interpretation. Roughly speaking, it counts the number of ancestors of a
sample of individuals as time goes towards the past. Two kinds of events can occur:

1 A coalescence of lineages. When there are n lineages, it occurs at rate

φ(n) =

n∑
k=2

(
n

k

)
λn,k, (1.3)

2 A branching (a birth) event (modelling selection). When there are n lineages, the
process jumps to n+ 1 at rate αn.

When a lineage splits in two, this should be understood as two potential ancestors. We
refer the reader to Sections 5.2 and 5.4 of [8], and also to Etheridge, Griffiths and Taylor
[9] where a dual coalescing-branching process is defined for a general Λ mechanism.

2 Coming down from infinity and study of (Rt, t ≥ 0)

Rather than working with the process satisfying the SDE (1.1), we will work on the
continuous-time Markov chain (Rt, t ≥ 0). Denote ν(dx) := x−2Λ(dx) and define for all
n ≥ 2,

δ(n) := −n
∫ 1

0

log

(
1− 1

n
[np− 1 + (1− p)n]

)
ν(dp). (2.1)

The maps n 7→ δ(n) and n 7→ δ(n)/n are both non-decreasing and δ(n)/n ↑ α?. For the
proof of these monotonicity properties we refer the reader to the proof of Lemma 4.1
and to Corollary 4.2 in [15].

Firstly, we need to say a word about coalescents and coming down from infinity.
Then, we deal with the proof of Theorem 1.1. We will adapt some arguments due to
Möhle and Herriger [15] and use Lemma 1.5.

2.1 Revisiting the coming-down from infinity for the Λ-coalescent

A nice introduction to the Λ-coalescent processes is given in Chapter 3 of Berestycki
[2]. Denote the number of blocks in a Λ-coalescent by (Rt, t ≥ 0). Started from n, this
process has the generator L, defined in (1.2), with α = 0. An interesting property is that
this process can start from infinity. We say that the coming down from infinity occurs
if almost surely for any time t > 0, Rt < ∞, while R0 = ∞. In this case, (Rt, t ≥ 0)

will be actually absorbed in 1 in finite time. The arguments that we use to establish
Theorem 1.1 are mostly adapted from technics due to Möhle and Herriger [15]. They
have established a new condition for Ξ-coalescents (meaning coalescents with simulta-
neous and multiple collisions) to come down from infinity. Their criterion is based on
a new function which corresponds to δ in the particular case of Λ-coalescents. Their
work relies mostly on linear random recurrences. We give here a proof in a "martingale
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fashion" for the simpler setting of Λ-coalescents.

The next lemma is lifted from Lemma 4.1 in [15], however we provide a proof for
the sake of completeness. Let n ≥ 2 and x ∈ (0, 1). We consider the auxiliary random
variable Yn(x) with law:

P[Yn(x) = l] = 1l=n(1− x)n +
(
n
l−1

)
(1− x)l−1xn−l+1 for every l ∈ {1, ..., n}.

Lemma 2.1. 1) E[Yn(x)] = n(1− x) + 1− (1− x)n,

2) δ(n)
n =

∫ 1

0
− logE[Yn(x)/n]ν(dx) ≤

∑n
j=2− log

(
n−j+1
n

) (
n
j

)
λn,j .

Proof of lemma 2.1. The first statement is obtained by binomial calculations and is left
to the reader, see Remark 7.2.2 for Λ-coalescent and Equation (2) in [15]. We focus on
the second statement. We have The first statement is obtained by binomial calculations
and is left to the reader, see Remark 7.2.2 for Λ-coalescent and Equation (2) in [15]. We
focus on the second statement. We have

δ(n)

n
=

∫ 1

0

− logE[Yn(x)/n]ν(dx)

≤
∫ 1

0

E[− log(Yn(x)/n)]ν(dx) by the Jensen inequality (− log is convex)

=

n−1∑
k=1

− log

(
k

n

)∫ 1

0

P[Yn(x) = k]ν(dx)

=

n−1∑
k=1

− log

(
k

n

)(
n

n− k + 1

)
λn,n−k+1

=

n∑
k=2

− log

(
n− k + 1

n

)(
n

k

)
λn,k.

Theorem 2.2 (Möhle, Herriger [15]). Let Λ be a finite measure on [0, 1] without mass
at 0. The Λ-coalescent comes down from infinity if and only if∑

k≥2

1

δ(k)
<∞.

Furthermore, we have

E[T ] ≤ 2

∞∑
k=2

1

δ(k)
,

where T := inf{t ≥ 0;Rt = 1}.

Proof of Theorem 2.2. Schweinsberg [17] established that a necessary and sufficient
condition for the coming down from infinity is the convergence of the series

∑
l≥2

1
ψ(l)

where

ψ(l) :=

l∑
k=2

(
l

k

)
λl,k(k − 1) =

∫ 1

0

[lx− 1 + (1− x)l]x−2Λ(dx). (2.2)

We easily observe that for all n ≥ 2, δ(n) ≥ ψ(n). Therefore the divergence of the series∑
1

δ(n) entails that of
∑

1
ψ(n) and we just have to focus on the sufficient part (for a proof
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of the necessary part based on martingale arguments, we refer to Section 6 of [10]).
Assume

∑
1

δ(n) <∞, consider the function

f(l) :=

∞∑
k=l+1

k

δ(k)
log

(
k

k − 1

)
.

This function is well defined since k
δ(k) log

(
k
k−1

)
∼

k→∞
1/δ(k). The generator of the block

counting process corresponds to L with α = 0, thus we study

Lf(l) =

l∑
k=2

(
l

k

)
λl,k[f(l − k + 1)− f(l)].

We have

f(l − k + 1)− f(l) ≥ l

δ(l)

l∑
j=l−k+2

log

(
j

j − 1

)
=

l

δ(l)
[log(l)− log(l − k + 1)]

and then

Lf(l) ≥ l

δ(l)

l∑
k=2

(
l

k

)
λl,k

[
− log

(
l − k + 1

l

)]
.

By Lemma 2.1, we have

l∑
k=2

(
l

k

)
λl,k

[
− log

(
l − k + 1

l

)]
≥ δ(l)/l.

We deduce that Lf(l) ≥ 1 for every l ≥ 2. Then, since f(Rt) −
∫ t

0
Lf(Rs)ds is a martin-

gale, by applying the optional stopping theorem at time Tn∧k where Tn := inf{t;Rt = 1}
when R0 = n, we get:

E[f(RTn∧k)] = f(n) + E

[∫ Tn∧k

0

Lf(Rs)ds

]
≥ f(n) + E[Tn ∧ k]

Letting k →∞ and using the fact that f is decreasing, we obtain that

E[Tn] ≤ f(1)− f(n).

Recall that Tn ↑ T a.s when n → ∞. The result follows by the monotone convergence
theorem.

2.2 Proof of Theorem 1.1

Consider first the case when Λ verifies
∑∞
k=2 1/δ(k) <∞. Recall that δ(k)/k −→

k→∞
α?.

In that case, by Theorem 2.2, the associated coalescent comes down from infinity and
one has α? =∞.
Bah and Pardoux [1] have established (Theorem 4.3) that the absorption of the process
(Xt, t ≥ 0) in finite time is almost sure if and only if the underlying Λ-coalescent comes
down from infinity. In order to establish this property, they use a "lookdown approach".
By Theorem 2.2, one can restate their result as follows: if

∑∞
k=2 1/δ(k) <∞ then there

exists an almost surely finite time ζ, such that for all t ≥ ζ, Xt = Xζ . Furthermore,
Proposition 4.4 in [1] states that for all x ∈ (0, 1), 0 < P[Xζ = 0|X0 = x] < 1.

It remains to establish Theorem 1 when
∑∞
k=2 1/δ(k) = ∞. We highlight that Lemmas

2.3 and 2.4 below are valid for α? ∈ (0,∞]. By convention, if α? =∞, then 1/α? = 0.
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Lemma 2.3. Define the function

f(l) :=

l∑
k=2

k

δ(k)
log

(
k

k − 1

)
.

Then, with the generator L of (Rt, t ≥ 0) defined in (1.2), we have for all l ≥ 2

Lf(l) ≤ −1 + αl/δ(l).

Proof of Lemma 2.3. By definition,

Lf(l) =

l∑
k=2

(
l

k

)
λl,k[f(l − k + 1)− f(l)] + αl[f(l + 1)− f(l)].

We have f(l − k + 1) − f(l) = −
∑l
j=l−k+2

j
δ(j) log

(
j
j−1

)
, and since (j/δ(j), j ≥ 2) is

decreasing, for all j ≤ l, j/δ(j) ≥ l/δ(l). Therefore

f(l − k + 1)− f(l) ≤ − l

δ(l)

l∑
j=l−k+2

log

(
j

j − 1

)
= − l

δ(l)
log

(
l

l − k + 1

)
.

We deduce that

Lf(l) ≤ − l

δ(l)

l∑
k=2

(
l

k

)
λl,k log

(
l

l − k + 1

)
+ α

l + 1

δ(l + 1)
l log

(
1 +

1

l

)
︸ ︷︷ ︸

≤1

≤ l

δ(l)

l∑
k=2

(
l

k

)
λl,k log

(
l − k + 1

l

)
︸ ︷︷ ︸

≤−δ(l)/l

+α
l + 1

δ(l + 1)

≤ −1 + α
l

δ(l)
.

The second inequality holds by Lemma 2.1.

The following lemma tells us that if
∑∞
k=2 1/δ(k) = ∞ and α < α? ∈ (0,∞], then

(Rt, t ≥ 0) is positive recurrent. Applying Lemma 1.5 yields the first part of Theorem
1.1.

Lemma 2.4. Assume
∑∞
k=2 1/δ(k) =∞ and α < α?. Then, there exists n0, such that for

all n ≥ n0, En[Tn0 ] <∞, where

Tn0 := inf{s ≥ 0;Rs < n0}.

Thus, the process (Rt, t ≥ 0) is positive recurrent.

Proof of Lemma 2.4. Recall that φ(k) was defined in (1.3). Clearly δ(k) ≥ φ(k). More-
over one can check that

∑∞
k=2

1
φ(k) = ∞ entails that

∑∞
k=2

1
φ(k)+αk = ∞ (apply for in-

stance Lemma 10 in [17] or see Section 6 page 373 of [10]). We deduce that the process
(Rt, t ≥ 0) is non-explosive. For every N ∈ N, define

fN (l) := f(l)1l≤N+1.

By Dynkin’s formula, the process(
fN (Rt)−

∫ t

0

LfN (Rs)ds, t ≥ 0

)
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is a martingale. One can easily check that LfN (l) = Lf(l) if l ≤ N . For any ε > 0 there
exists n0 such that for all l ≥ n0,

l

δ(l)
≤ 1

α?
+ ε. (2.3)

Let n0 ≤ n ≤ N and consider the stopping time SN := inf{s ≥ 0;R(s) ≥ N + 1}. We
apply the optional stopping theorem to the bounded stopping time Tn0 ∧ SN ∧ k and
obtain

En[fN (RTn0∧SN∧k)] = fN (n) + E

[∫ Tn0∧SN∧k

0

LfN (Rs)ds

]

≤ fN (n) + E

[∫ Tn0∧SN∧k

0

(
−1 + α

Rs
δ(Rs)

)
ds

]

≤ fN (n) + E

[∫ Tn0∧SN∧k

0

(
−1 + α(

1

α?
+ ε)

)
ds

]
= fN (n) +

( α
α?
− 1 + εα

)
E[Tn0 ∧ SN ∧ k].

The first inequality follows from the equality LfN (l) = Lf(l) when l ≤ N and from
Lemma 2.3. The second inequality follows from (2.3). For small enough ε, 1− α

α?−εα > 0,
thus

(1− α

α?
− εα)︸ ︷︷ ︸

>0

E[Tn0 ∧ SN ∧ k] ≤ fN (n)− En[fN (RTn0∧SN∧k)] ≤ fN (n),

On the one hand, since the process is non-explosive, SN −→
N→∞

∞ almost surely and

therefore, for all n ≥ n0

(1− α

α?
− εα)E[Tn0 ∧ k] ≤ f(n).

On the other hand, by letting k →∞ we get

E[Tn0 ] ≤ Cf(n) for all n ≥ n0

with C a constant depending only on ε.

In order to get statement 2) of Theorem 1.1, we will apply the second part of Lemma
1.5. Namely, we show that if α > α?, then (Rt, t ≥ 0) is transient.

Lemma 2.5. If α > α? then Rt −→
t→∞

∞ almost surely.

Proof of Lemma 2.5. Consider that α > α?. Let f : l 7→ l, we have

Lf(l) = −
l∑

k=2

(
l

k

)
λl,k(k − 1) + αl = −ψ(l) + αl,

where ψ(k) is defined in (2.2). It is readily checked that ψ(l) ≤ δ(l), moreover the map
l→ δ(l)/l is increasing, thus

Lf(l) ≥ −δ(l) + αl = l(α− δ(l)/l) ≥ l(α− α?).

Therefore the process (e−(α−α?)tRt, t ≥ 0) is a positive submartingale. On the one hand,
if the process is unbounded then obviously Rt −→

t→∞
∞. On the other hand, if the process

is bounded, then it converges almost surely to a variable which is positive with positive
probability. On this event, Rt −→

t→∞
∞. Actually since the Markov chain is irreducible,

we have Rt −→
t→∞

∞ almost surely.
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We end this article by observing a link between the threshold α? and the first mo-
ment of a subordinator.

Remark 2.6. Assume α? <∞. Then, the corresponding Λ-coalescent process has dust,
meaning that it has infinitely many singleton blocks at any time. As time passes, the
asymptotic frequency of the singleton blocks altogether is given by a process (D(t), t ≥
0) with values in ]0, 1] such that

(D(t), t ≥ 0) = (exp(−ξt), t ≥ 0)

where ξ is a subordinator with Laplace exponent

φ(q) =

∫ 1

0

[1− (1− x)q]x−2Λ(dx).

We refer the reader to Proposition 26 in Pitman [16]. An interesting feature, easily
checked, is that α? = E[ξ1]. Hence one could expect some fluctuations in (Rt, t ≥ 0)

when considering the critical case α = α?. This case is a priori more involved and will
be studied in a future work.

Let us also mention that several authors (Gnedin et al. [11] and Lagerås [14] for
instance) have studied coalescents with a dust component through the theory of regen-
erative compositions.
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