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Abstract

This paper is devoted to obtaining an averaging principle for systems of slow-fast
stochastic differential equations, where the fast variable drift is periodically mod-
ulated on a fast time-scale. The approach developed here combines probabilistic
methods with a recent analytical result on long-time behavior for second order ellip-
tic equations with time-periodic coefficients.
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1 Introduction

Time-scales separation is a key property to investigate the dynamical behavior of
non-linear dynamical systems, with techniques ranging from averaging principles to
geometric singular perturbation theory. This property appears to be also crucial to
understand the impact of noise on such systems. A multi-scale approach based on
the stochastic averaging principle can be a powerful tool to unravel subtle interplays
between noise properties and non-linearities. More precisely, consider a system of
stochastic differential equations (SDEs) in Rp+q :

dxεt =
1

ε
g(xεt, y

ε
t )dt+

1√
ε
σ(xεt, y

ε
t )dBt (1.1)

dyεt = f(xεt, y
ε
t )dt (1.2)

with initial conditions xε(0) = x0 ∈ Rp, yε(0) = y0 ∈ Rq, and where yε is called the
slow variable, xε the fast variable, with f, g, σ smooth functions ensuring existence and
uniqueness for the solution (xε, yε), and Bt a p-dimensional standard Brownian motion.
Time-scale separation in encoded in the small parameter ε� 1.

In order to approximate the behavior of (xε, yε) for small ε, the idea of stochastic
averaging is to average out the equation for the slow variable with respect to the sta-
tionary distribution of the fast one. More precisely, one first assumes that, for each
y ∈ Rq fixed, the frozen fast SDE:

dxt = g(xt, y)dt+ σ(xt, y)dBt (1.3)
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is sufficiently mixing, typically exponentially, and admits a unique invariant measure,
denoted ρy(dx). Then, one defines the averaged vector field f̄ :

f̄(y) :=

∫
Rm

f(x, y)ρy(dx) (1.4)

and ȳ the solution of dȳ
dt = f̄(ȳ) with initial condition ȳ(0) = y0.

According to the regularity and dissipativity assumptions made on the coefficients
of the system, several convergence results have been proven in the literature, from
convergence in law [11], to convergence in probability [5] or strong convergence in
L2 [3, 14, 7]. Many other results have been developed since, extending the set-up to
the case where the slow variable has a diffusion component or to infinite-dimensional
settings [1] for instance, and also refining the convergence study, providing homoge-
nization results concerning the limit of ε−1/2(yε − ȳ) [9] or establishing large deviation
principles [6].

In terms of applications, analyzing the behavior of the deterministic solution ȳ can
help to understand useful dynamical features of the stochastic process (xε, yε). In par-
ticular, observing that the averaged vector field f̄ depends on the diffusion coefficient
σ can be the starting point for the understanding of stochastic bifurcations [13, 12].

However, fewer results are available in the case of non-homogeneous SDEs, that is
when the system is perturbed by an external time-dependent signal [10]. This setting
is particularly relevant to study models of learning in neuronal activity, which was the
original motivation for the present paper. In this class of models, neurons are intercon-
nected and the connections strengths evolve at a slower speed to account for synaptic
plasticity, leading to a high-dimensional periodically forced slow-fast SDE. An applica-
tion of the main result (Theorem 2.3) is developed in the particular context of learning
models in [2].

Hence we are interested in multiscale SDEs driven by an external time-periodic
input. Consider (xε, yε) solution of:

dxε =
1

ε

[
g(xε, yε,

t

ε
)

]
dt+

1√
ε
σ(xε, yε)dBt (1.5)

dyε = f(xε, yε)dt (1.6)

with t → g(x, y, t) ∈ Rp a τ -periodic function and ε ∈ R+. We consider the case where
ε is small, that is a strong time-scale separation between the fast variable xε ∈ Rp and
the slow one yε ∈ Rq, and a fast periodic modulation of the fast drift g(x, y, .). Notice
that the case of a slow periodic modulation would be less mathematically interesting,
since in this case the time variable t appearing in the fast drift g(x, y, t) could be treated
as an additional slow variable satisfying ṫ = 1. This case is fully covered by the classical
stochastic averaging principle described above. However, in our case of a fast modula-
tion, one needs to develop a new result, based on a fine understanding of the asymptotic
behavior of inhomogeneous Markov processes.

To obtain an averaging principle, one needs to understand the long time behavior of
the rescaled periodically forced SDE, for any y0 fixed :

dx = g(x, y0, t)dt+ σ(x, y0)dB(t)

Recently, in an important contribution [8], a precise description of the long time behav-
ior of inhomogeneous Markov diffusion processes has been obtained, using analytical
methods. In particular, conditions ensuring the existence of a periodic family of prob-
ability measures µ(t, dx) to which the law of x converges as time grows have been
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identified, together with a sharp estimation of the speed of mixing. These results are
at the heart of the extension of the classical stochastic averaging principle, that we
present here, to the case of periodically forced slow-fast SDEs. As a result, we obtain a
reduced equation describing the slow evolution of variable y in the form of an ordinary
differential equation:

dȳ

dt
= f̄(ȳ)

where f̄ is constructed as an average of f with respect to a specific probability measure,
that is precisely the time-average over one period of the periodic family µ(t, dx). We
prove the strong convergence in L2 over finite time intervals of the slow variable yε to
ȳ.

The paper is organized as follows. In the next section, we first recall the key theorem
from [8], before stating our main convergence result in Theorem 2.3. In Section 3, we
give the proof of our main result.

2 Main result

2.1 Preliminary : long-time behavior of inhomogeneous Markov diffusion pro-
cesses

We recall here the recent result from [8]. Consider Xs,x
t solution of the SDE:

dXs,x
t = g(Xx,s

t , t)dt+ σ(Xx,s
t )dWt, t > s (2.1)

Xs = x (2.2)

where g, σ are Lipschitz-continuous functions, and with the property that t → g(x, t) is
a τ -periodic function of time.
Under the following assumptions:

Assumptions 2.1. (i) The diffusion matrix σ is bounded:

∃Mσ > 0 s.t ∀x, ||σ(x)|| < Mσ (2.3)

and uniformly non-degenerate:

∃η0 > 0 s.t ∀x < σ(x)σ(x)′ξ, ξ >≥ η0||ξ||2, ∀ξ ∈ Rp (2.4)

(ii) There exists r0 < 0 such that for all t ≥ 0 and for all x ∈ Rp :

< ∇xg(x, t)ξ, ξ >≤ r0||ξ||2, ∀ξ ∈ Rp (2.5)

The following result holds:

Theorem 2.1. (cf. [8], Theorem 3.15)
There exist a unique τ -periodic family of probability measures {µ(s, .), s ∈ R}, such

that: ∫
x∈Rp

E [φ(Xs,x
t )]µ(s, dx) =

∫
x∈Rp

φ(x)µ(t, dx) (2.6)

Such a family is called an evolution system of measures.
Furthermore, under the strong dissipativity condition (ii), the convergence of the law
of X to µ is exponentially fast. More precisely, for any r ∈ (1,+∞) there exist M > 0

and ω < 0, such that for all φ ∈ Lr(Rp, µ(t, .)):∫
x∈Rp

||E [φ(Xs,x
t )]−

∫
x′∈Rp

φ(x′)µ(t, dx′)||rµ(s, dx) ≤Meω(t−s)
∫
x∈Rp

||φ(x)||rµ(t, dx)

(2.7)
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2.2 Main result : averaging principle

We consider the following system (Sε) of inhomogeneous stochastic differential equa-
tions, with fast periodic forcing:

dxεt =
1

ε
g

(
xεt, y

ε
t ,
t

ε

)
dt+

1√
ε
σ(xεt, y

ε
t )dWt (2.8)

dyεt = f(xεt, y
ε
t )dt (2.9)

with initial conditions (xε0, y
ε
0) = (x0, y0) ∈ Rp×Rq, and where the function g is τ -periodic

in time.
We are interested in describing the asymptotic behavior of (xε, yε) when ε→ 0.
We make the following assumptions.

Assumptions 2.2.

1. Existence and uniqueness of a strong solution: We make standard Lipschitz and
linear growth assumptions on the coefficients, ensuring global existence and unique-
ness for (Sε) (cf. Thm 2.9 Ch. 5 in [4]). Note that one can replace the linear growth
assumption by a condition on the drift which prevents explosion of the solution.

2. Asymptotic periodic behavior: for all y ∈ Rq fixed, denote P yt0,x0
(t, x) the transition

density for the time-inhomogeneous diffusion process Xy
t solution of :

dXy
t = g(xt, y, t)dt+ σ(xt, y)dWt (2.10)

starting at x0 at t = t0. We assume that there exists a τ -periodic family of proba-
bility measures µy(., dx) such that the law of Xy

t becomes close to µy(., dx) expo-
nentially fast. This condition is ensured as soon as Assumptions 2.1 are satisfied
by g and σ uniformly in the variable y ∈ Rq. More precisely we assume:

∃Mσ > 0 s.t ∀(x, y) ∈ Rp+q , ||σ(x, y)|| < Mσ (2.11)

∃η0 > 0 s.t ∀(x, y) ∈ Rp+q , < σ(x, y)σ(x, y)′ξ, ξ >≥ η0||ξ||2, ∀ξ ∈ Rp (2.12)

and finally, there exists r0 < 0 such that for all t ≥ 0 and for all (x, y) ∈ Rp+q :

< ∇xg(x, y, t)ξ, ξ >≤ r0||ξ||2,∀ξ ∈ Rp. (2.13)

We also assume that the initial condition x0 belongs to the support of µy0(s, .) for
all s ∈ [0, τ).

3. Moment conditions. We further assume the following moment bounds:

sup
y∈Rq, s∈[0,τ)

∫
x∈Rp

||f(x, y)||2µy(s, dx) <∞ (2.14)

sup
t∈[0,T ],ε>0

E [||f(xεt, y
ε
t )||] <∞. (2.15)

Before stating the main result of this paper, we need to introduce the following defini-
tion.

Definition 2.2. We define the averaged vector field:

f̄(y) :=

∫
x∈R

f(x, y)µ̄y(dx) (2.16)

where

µ̄y(dx) :=
1

τ

∫ τ

0

µy(t, dx)dt. (2.17)
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Accordingly, we introduce ȳ the solution of :

dȳ

dt
= f̄(ȳ) (2.18)

with initial condition ȳ(0) = y0.
Then, under Assumptions 2.2, we have the following averaging principle:

Theorem 2.3. The following convergence result holds :

lim
ε→0

E

[
sup
t∈[0,T ]

||yεt − ȳt||
2

]
= 0 (2.19)

As a consequence, the convergence also holds in probability : for all T > 0 and δ > 0:

lim
ε→0

P

[
sup
t∈[0,T ]

||yεt − ȳt||
2
> δ

]
= 0 (2.20)

3 Proof of the averaging principle

The idea of the proof is to decompose the interval [0, t] into many disjoint subintervals
of size ∆ = 1/n. In each subinterval, the slow variable yε is almost constant and the fast
variable xε, by a time change, is well described by the long time behavior of the frozen
variable Xy

t . As we will see below the idea, introduced in [5], is to chose a subinterval
size that depends on ε, and that is small enough to control the discrepancy between the
fast variable and the frozen variable, yet large enough so that the frozen variable can
be described by asymptotically periodic measure µ.
We start by splitting [0, t] as the union of Lk = [kt/n, (k+1)t/n] for k = 0, ..., n−1. Within
each Lk we define x̂ε the strong solution of:

For kt/n < s ≤ (k + 1)t/n : dx̂εs =
1

ε
g(x̂εs, y

ε
kt/n,

s

ε
)ds+

1√
ε
σ(xεs, y

ε
kt/n)dWs

At s = kt/n : x̂εkt/n = xεkt/n

where Wt is the same Brownian path used in the definition of xε as the strong solution
xε of (Sε).
We write the difference yεt − ȳt as a sum:

yεt − ȳt =

∫ t

0

(
f(xεs, y

ε
s)− f̄(ȳs)

)
ds

=

n−1∑
k=0

(I1,k + I2,k) +

∫ t

0

(f(x̂εs, y
ε
s)− f(x̂εs, ȳs)) ds

with

I1,k :=

∫ (k+1)t/n

kt/n

(f(xεs, y
ε
s)− f(x̂εs, y

ε
s)) ds

I2,k :=

∫ (k+1)t/n

kt/n

(
f(x̂εs, ȳs)− f̄(ȳs)

)
ds

We will show in Lemma 3.1 how to control the term I1,k in terms of n and ε, studying
the difference xε−x̂ε and using the Lipschitz property of f . To estimate the second term
I2,k, we will apply Lemma 3.2 below that shows how to take advantage of the results of
[8] (cf. section 2.1) so that I2,k will be of order O(

√
ε/n). From those estimates we will

be able to chose n(ε) to control the growth of yε − ȳ.
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Lemma 3.1. There exists a constant C > 0 such that:

sup
s∈[0,t]

E
[
||xεs − x̂εs||2

]
≤ C

(
1

ε2n3
+

1

εn2

)
exp

[
C

(
1

ε2n2
+

1

εn

)]
(3.1)

Proof. Let s ∈ [0, t]. There exists k = k(s) such that s ∈ Lk and we have:

xεs − x̂εs =
1

ε

∫ s

kt/n

(
g(xεu, y

ε
u, u/ε)− g(x̂εu, y

ε
kt/n, u/ε)

)
du

+
1√
ε

∫ s

kt/n

(
σ(xεu, y

ε
u)− σ(x̂εu, y

ε
kt/n)

)
dWu

Using Cauchy-Schwartz inequality for the deterministic integral and Ito isometry for
the stochastic one, we obtain:

E
[
||xεs − x̂εs||2

]
≤ 1

ε2
1

n

∫ s

kt/n

E||g(xεu, y
ε
u, u/ε)− g(x̂εu, y

ε
kt/n, u/ε)||

2du

+
1

ε

∫ s

kt/n

E||σ(xεu, y
ε
u)− σ(x̂εu, y

ε
kt/n)||2du

Now, using the Lipschitz property of g and σ, there exist K,K ′ > 0 such that:

E
[
||xεs − x̂εs||2

]
≤ K

ε2
1

n

∫ s

kt/n

E||xεu − x̂εu||2 + E||yεu − yεkt/n||
2du

+
K ′

ε

∫ s

kt/n

E||xεu − x̂εu||2 + E||yεu − yεkt/n||
2du

Since E||yεu − yεkt/n||
2 ≤ K ′′|u− kt/n| (by Assumption 2.2 (3.)) , we have:

E
[
||xεs − x̂εs||2

]
≤ K ′′

(
K

ε2
1

n
+
K ′

ε

)∫ s

kt/n

(u− kt/n)du

+

(
K

ε2
1

n
+
K ′

ε

)∫ s

kt/n

E||xεu − x̂εu||2du

≤ C

[(
1

ε2n3
+

1

εn2

)
+

(
1

nε2
+

1

ε

)∫ s

kt/n

E||xεu − x̂εu||2du

]
We conclude by applying Gronwall Lemma.

The previous Lemma will help us to chose n large enough such that the frozen variable
and the original fast variable would stay close. However, one is not allowed to take n
too large (i.e the interval spacing too small) since the ergodic mixing needs some time
to occur. The aim of next Lemma is to quantify this statement.
For t0 > 0, we define Xε,x,y

s solution of:

dXε,x,y
s =

1

ε
g(Xε,x,y

s , y, s/ε)ds+
1√
ε
σ(Xε,x,y

s , y)dWs (3.2)

for s > t0 and initial condition Xt0 = x.

Lemma 3.2. There exists a constant M such that for any ξ > 0, y ∈ Rq and z ∈ [0, τ ],
one can find a subsequence εk going to zero as k →∞ such that :∫

x∈Rp

E

∣∣∣∣∣
∣∣∣∣∣1ξ
∫ t0+ξ

t0

(f(Xεk,x,y
s , y)− f̄(y))ds

∣∣∣∣∣
∣∣∣∣∣
2
µ(z, dx) ≤ Mεk

ξ
(3.3)
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Proof. In this proof we will make an essential use of the convergence rate of the law of
the frozen process to its asymptotic time-periodic limit (cf. Section 2.1).

First, by a time change, we observe that Xε,x,y
s has the same law as Xx,y

s/ε with Xx,y

solution of:
dXx,y

s = g(Xx,y
s , y, s)ds+ σ(Xx,y

s , y)dWs (3.4)

for s > t0
ε := tε and initial condition Xtε = x. Then denoting T = ξ/ε we have:

E

∣∣∣∣∣
∣∣∣∣∣1ξ
∫ t0+ξ

t0

(
f(Xε,x,y

s , y)− f̄(y)
)
ds

∣∣∣∣∣
∣∣∣∣∣
2


= E

∣∣∣∣∣
∣∣∣∣∣ 1

T

∫ tε+T

tε

(
f(Xx,y

s , y)− f̄(y)
)
ds

∣∣∣∣∣
∣∣∣∣∣
2


=
1

T 2

∫ tε+T

tε

∫ tε+T

tε

E
[(
f(Xx,y

s , y)− f̄(y)
)
.
(
f(Xx,y

r , y)− f̄(y)
)]
dsdr

=
1

T 2

∫ tε+T

tε

∫ tε+T

tε

(E [f(Xx,y
s , y)f(Xx,y

r , y)]− E [f(Xx,y
s , y)]E [f(Xx,y

r , y)]) dsds′

+

[
1

T

∫ tε+T

tε

(
E [f(Xx,y

s , y)]− f̄(y)
)
ds

]2

Let us denote Λ1 and Λ2 respectively the first and second term of the above sum. Using

a change of variable, and conditioning w.r.t Xs, we bound Λ1 as:

||Λ1|| =
2

T 2

∣∣∣∣∣
∣∣∣∣∣
∫ tε+T

tε

∫ T+tε−s

0

E
[(
E
[
f(Xx,y

s+z, y)|Xx,y
s

]
− E

[
f(Xx,y

s+z, y)
])
f(Xx,y

s , y)
]
dsdz

∣∣∣∣∣
∣∣∣∣∣

≤ 2

T 2

∫ tε+T

tε

∫ T+tε−s

0

∣∣∣∣E [(E [f(Xx,y
s+z, y)|Xx,y

s

]
− E

[
f(Xx,y

s+z, y)
])
f(Xx,y

s , y)
]∣∣∣∣ dsdz

Using Cauchy-Schwartz inequality to the integrand, we obtain:

∣∣∣∣E [(E [f(Xx,y
s+z, y)|Xx,y

s

]
− E

[
f(Xx,y

s+z, y)
])
f(Xx,y

s , y)
]∣∣∣∣

≤
(
E
[
||f(Xx,y

s , y)||2
]
E
[∣∣∣∣E [f(Xx,y

s+z, y)|Xx,y
s

]
− E

[
f(Xx,y

s+z, y)
]∣∣∣∣2])1/2

From Assumption 2.2 (3.), we know that E
[
||f(Xx,y

s , y)||2
]

will be uniformly bounded by

a constant C1. Furthermore, we deduce from Theorem 2.1 (cf. [8]) that

hz(x) := E
[∣∣∣∣E [f(Xx,y

s+z, y)|Xx,y
s

]
− E

[
f(Xx,y

s+z, y)
]∣∣∣∣2]

goes to zero exponentially fast in z. Indeed, we first use Eq. (2.6) which implies:∫
x∈Rp

hz(x)µ(tε, dx) =

∫
x′∈Rp

∣∣∣∣∣∣∣∣Ex′,s

[
f(Xy

s+z, y)
]
−
∫
x∈Rp

f(x, y)µ(s+ z, dx)

∣∣∣∣∣∣∣∣2 µ(s, dx′)

(3.5)
Then from Eq. (2.7), we conclude that there exist constants M,κ > 0 such that:∫

x∈Rp
hz(x)µ(tε, dx) ≤Me−κz

∫
x∈Rp

||f(x, y)||2µ(s+ z, dx) ≤MC1e
−κz (3.6)
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By Cauchy-Schwartz inequality, and since hz(x) ≥ 0:∫
x∈Rp

hz(x)1/2µ(tε, dx) ≤
(∫

x∈Rp
hz(x)µ(tε, dx)

)1/2

(3.7)

so that:∫
x∈Rp

||Λ1||µ(tε, dx) ≤ C
1/2
1

2

T 2

∫ T+tε

tε

∫ T+tε−s

0

∫
x∈Rp

(hz(x))1/2µ(tε, dx)dzds

≤ C
1/2
1

2

T 2

∫ T+tε

tε

∫ T+tε−s

0

(∫
x∈Rp

hz(x)µ(tε, dx)

)1/2

dzds

≤ C1M
1/2 2

T 2

∫ T+tε

tε

(∫ T+tε−s

0

e−κz/2dz

)
ds

= 4C1M
1/2

[
1

κT
− 2

κ2T 2
(1− e−κT/2)

]
= O(

1

T
) = O(ε/ξ)

Furthermore, one remarks that the above bound holds for any ε sufficiently small, say
ε < ε0, in particular any ε ∈ [ε1, ε0] where ε1 is such that t0

ε1
= t0

ε0
+ τ . Because of

the time periodicity of µ, one concludes that the obtained bound is also valid for any∫
x∈Rp ||Λ

1||µ(z, dx), with z ∈ [0, τ). Notice that in the bound we have obtained, ε is such
that z = t0

ε [τ ].
The second term Λ2 also goes to 0, as O(1/T 2) because E [f(Xx,y

s , y)] is asymptotically
periodic, which ends the proof.

In the following Lemma, we establish a link between the law of xεt, denoted P εt and
the law µȳt(z, .), for some z ∈ [0, τ). To this end, we need first to introduce an ap-
propriate distance between two probability measures, namely the Kantorovich distance
here.

Definition 3.3. If P and Q are two probability measures on Rp, one defines:

d(P,Q) := sup
Lip(h)≤1

∣∣∣∣∫ hdP −
∫
hdQ

∣∣∣∣ (3.8)

where the supremum is taken over all Lipschitz functions h : Rp → R such that |h(x)−
h(y)| ≤ ||x− y||.

Lemma 3.4. With the above notations, for any t > 0 and any ε > 0, there exists a
constant C = C(t) > 0 (independent of ε) such that

d(P εt , µ
ȳt(z, .)) ≤ C

(
E

[∫ t

0

||yεs − ȳs|| ds
]

+ e−κt/ε
)

(3.9)

with z ≡ t
ε [τ ].

Proof. The idea of the proof is to decompose the distance d(P εt , µ
ȳt(z, .)) using the tri-

angular inequality as follows:

d(P εt , µ̄
ȳt) ≤ d(P εt , P̃

ε
t ) + d(P̃ εt , µ

ȳt(z, .)) (3.10)

where P̃ εt is the law of x̃εt solution of the SDE:

dx̃εs =
1

ε
g(x̃εs, ȳs, s/ε)ds+

1√
ε
σ(x̃εs, ȳs)dBs (3.11)

for s > 0, with initial condition x̃ε0 = x. Let us study both terms of the sum:

ECP 18 (2013), paper 51.
Page 8/12

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v18-1975
http://ecp.ejpecp.org/


Double averaging principle

• First, from Theorem 2.1 (cf. [8]), we deduce that there exists a constant M > 0

such that:
d(P̃ εt , µ

ȳt(z, .)) ≤Me−κt/ε (3.12)

Indeed, by a time-change u = s/ε, one remarks that P̃ εt is also the law of X t
ε

solution of:
dXu = g(Xu, ȳt, u)du+ σ(Xu, ȳt)dBu

The long-time behavior of the above SDE (corresponding ε → 0 and t fixed) is
described by Theorem 2.1, implying that the law of Xu converges exponentially
fast to µȳt(u[τ ], .) as u becomes large. Therefore, the law P̃ εt also converges expo-
nentially fast to µȳt(z[τ ], .). Notice that, since the left hand side of inequality (2.7)
involves an average over µ, the constant M appearing in (3.12) shall depend on
the initial condition x.

• Second, the distance d(P εt , P̃
ε
t ) can be controlled by the spread between yε and ȳ:

d(P εt , P̃
ε
t ) ≤ CE

[∫ t

0

||yεs − ȳs|| ds
]

(3.13)

Indeed,

|E [h(x̃εt)− h(xεt)]| ≤ E [||x̃εt − xεt||] (3.14)

≤ K

[∫ t

0

E ||yεs − ȳs|| ds+

∫ t

0

E ||x̃εs − xεs|| ds
]

(3.15)

Applying Gronwall Lemma to E [||x̃εt − xεt||] gives:

E [||x̃εt − xεt||] ≤ KeKt
∫ t

0

E ||yεs − ȳs|| ds

implying (3.13) with C = KeKt.

We are now able to conclude the proof of the averaging principle:

Proof of Theorem 2.3

Proof. Equipped with Lemmas 3.1 and 3.2, we are now able to select the value of n(ε)

so that the subintervals size ∆(ε) would be:

• sufficiently small to be able to approximate xε by x̂ε during a time ∆(ε), that is we
want the right hand size of Eq. (3.1) goes to 0 when ε→ 0

• sufficiently large for the mixing to occur: each I2,k is of order O(
√
ε/n(ε)) (from

Lemma 3.2 with ξ = 1/n(ε)) and we have to sum them n(ε) times, that is we want√
εn(ε)→ 0.

To this end, we set:

n(ε) =
1

ε ln(1/ε)h

and plugging this expression in Eq. (3.1), we obtain that: if 2h − 1 < 0 then the right
hand side of Eq. (3.1) goes to 0 when ε → 0. So we choose h = 1/4 for instance.
Obviously, the second requirement εn(ε) → 0 is also satisfied. So with this choice of
n(ε), by Lemma 3.1 and using the Lipschitz property of f , we deduce that

lim
ε→0

sup
t∈[0,T ]

E

[
||
∫ t

0

(f(xsf
ε, yεs)− f(x̂εs, y

ε
s)ds||

]
= 0
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We want to to control each:

Ĩ2,k =

∫ (k+1)t/n

kt/n

(f(x̂εs, ȳkt/n)− f̄(ȳkt/n))ds

In fact, Lemma 3.2 does not control exactly E

[∣∣∣∣∣∣Ĩ2,k∣∣∣∣∣∣2] since the initial value x̂εkt/n,

which is equal to xεkt/n, is not exactly distributed according to µȳkt/n(z, x) for z ∈ [0, τ),

nor according to µ̄ȳkt/n(x). So one cannot directly apply Lemma 3.2. However, the
law of xεkt/n is shown in Lemma 3.4 to be close in some sense to µȳkt/n(z, x) for some
z ∈ [0, τ). More precisely we obtain:

E

[∣∣∣∣∣∣Ĩ2,k∣∣∣∣∣∣2] = Eν

[∣∣∣∣∣∣Ĩ2,k∣∣∣∣∣∣2]+Rεkt/n ≤Mε/n+Rεkt/n

where ν = µȳkt/n(z, .) with z = kt
εn [τ ] and with

Rεkt/n ≤ C
(
E

[∫ t

0

||yεs − ȳs||
2
ds

]
+ e−

κkt
nε

)
where each e−

κkt
nε goes to zero as ε→ 0 since n is chosen such that nε→ 0.

As for s ∈ Lk we have ||ȳs − ȳkt/n|| ≤ K/n so that ||I2,k − Ĩ2,k|| is of order 1/n2 since∫ 1/n

0
sds = 1/2n2. Using Gronwall Lemma, we deduce that

lim
ε→0

sup
t∈[0,T ]

E
[
||yεt − ȳt||

2
]

= 0 (3.16)

Finally, one applies Prop A.2 (Appendix) to conclude the proof. Indeed, ∆yεt = yεt − ȳt is
continuous in the sense that there exists K > 0 such that:

sup
ε>0

E

[
sup

t∈[0,T−h]

sup
r,s∈[t,t+h]

|∆yεr −∆yεs|

]
≤ Kh

A Strong convergence and regularity

Let (xε(t))t∈[0,T ] a family of real valued stochastic processes, with ε a positive param-
eter. We are looking for a condition such that

lim
ε→0

sup
t∈[0,T ]

E[|xε(t)|] = 0 ⇒ lim
ε→0

E[ sup
t∈[0,T ]

|xε(t)|] = 0 (A.1)

In general, it is not true. Indeed, consider the following counter-example. Let j be
a random integer chosen uniformly from 0, ..., n − 1. Let xn(t) be a piecewise linear
function on [0, 1] as follows:

• xn(t) = 0 if t /∈ Jn where Jn = [j/n, (j + 1)/n]

• If t ∈ Jn, then the graph of xn(t) has a "tent shape": it vanishes at each endpoint
and increases linearly with slope 2n as we move toward the midpoint so that it
takes value 1 at the midpoint.

The resulting function xn(t) is piecewise linear on [0, 1], bounded by 1 and the slope of
any linear segment is bounded by 2n. Then, for each t, E[|xn(t)|] ≤ 1/n since xn(t) 6= 0

only with probability 1/n and 0 ≤ xn(t) ≤ 1. However, E[supt∈[0,1] |xn(t)|] = 1 since
supt∈[0,1] |xn(t)| = 1 for every outcome.

We show below that if one controls the continuity of xε uniformly on [0, T ] then the
implication becomes true.
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Definition A.1. For any h > 0, we define the modulus of continuity of a trajectory
(x(t))t∈[0,T ] by:

ωx(h) := sup
t∈[0,T−h]

sup
r,s∈[t,t+h]

|x(r)− x(s)| (A.2)

The main result is then the following:

Proposition A.2. Suppose that:

1. there exists φ(ε) such that sup
t∈[0,T ]

E[|xε(t)|] ≤ φ(ε)→ 0 as ε→ 0

2. sup
ε>0

E [ωxε(h)] ≤ c(h) with lim
h→0

c(h) = 0

Then:
E[ sup
t∈[0,T ]

|xε(t)|] ≤ inf
δ∈(0,1)

{
φ(ε)δ + c(Tφ(ε)1−δ)

}
(A.3)

Proof. From Lemma A.5, we have for all n ∈ N∗:

E[ sup
t∈[0,T ]

|xε(t)|] ≤ (n+ 1)φ(ε) + c(T/n) (A.4)

Choosing n dependent on ε as n(ε) + 1 = φ(ε)δ−1 for a constant δ ∈ (0, 1) we obtain:

E[ sup
t∈[0,T ]

|xε(t)|] ≤ φ(ε)δ + c(Tφ(ε)1−δ) (A.5)

so that:
E[ sup
t∈[0,T ]

|xε(t)|] ≤ inf
δ∈(0,1)

{
φ(ε)δ + c(Tφ(ε)1−δ)

}
(A.6)

Remark A.3. Under assumptions 1. and 2., we have in particular

lim
ε→0

E[ sup
t∈[0,T ]

|xε(t)|] = 0

Remark A.4. In the case c(h) = O(hα) and φ(ε) = O(εγ) one finds that

E[ sup
t∈[0,T ]

|xε(t)|] = O(εµ) with µ =
γα

1 + α

In fact we have found a bound µ on the convergence rate of supt∈[0,T ] |xε(t)| in L1 as a
function of the averaged uniform Hölder exponent α and the uniform convergence rate
γ of E[|xε(t)|]. If the trajectories are very smooth, then α is large and µ is close to γ. If
the trajectories are only uniformly Lipschitz-continuous (in the sense α = 1), then the
bound µ is half of γ.

To establish Prop. A.2 we have used the following inequality:

Lemma A.5. For all n ∈ N∗, we have the following inequality:

E[ sup
t∈[0,T ]

|x(t)|] ≤ (n+ 1) sup
t∈[0,T ]

E[|x(t)|] + E [ωx(T/n)] (A.7)

Proof. Denote S := sup
t∈[0,T ]

|x(t)|. For n ∈ N∗, consider a sequence of n + 1 points tk =

kT/n for 0 ≤ k ≤ n in the inverval [0, T ], and denote Sn := max
0≤k≤n

|x(tk)|.
Then S − Sn ≥ 0 and

E[S − Sn] ≤ E [ωx(T/n)] (A.8)

Finally:

E[S] = E[Sn] + E[S − Sn] (A.9)

≤ (n+ 1) max
0≤k≤n

E[|x(tk)|] + c(T/n) (A.10)
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