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Abstract

Let (Xi,Fi)i≥1 be a sequence of supermartingale differences and let Sk =
∑k
i=1Xi.

We give an exponential moment condition under which P(max1≤k≤n Sk ≥ n) =
O(exp{−C1n

α}), n → ∞, where α ∈ (0, 1) is given and C1 > 0 is a constant. We
also show that the power α is optimal under the given moment condition.
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1 Introduction

Let (Xi,Fi)i≥1 be a sequence of martingale differences and let Sk =
∑k
i=1Xi, k ≥ 1.

Under the Cramér condition supiEe
|Xi| <∞, Lesigne and Volný [9] proved that

P(Sn ≥ n) = O(exp{−C1n
1
3 }), n→∞, (1.1)

for some constant C1 > 0. Here and throughout the paper, for two functions f and g,
we write f(n) = O(g(n)) if there exists a constant C > 0 such that |f(n)| ≤ C|g(n)| for
all n ≥ 1. Lesigne and Volný [9] also showed that the power 1

3 in (1.1) is optimal even
for stationary and ergodic sequence of martingale differences, in the sense that there
exists a stationary and ergodic sequence of martingale differences (Xi,Fi)i≥1 such that
Ee|X1| <∞ and P(Sn ≥ n) ≥ exp{−C2n

1
3 } for some constant C2 > 0 and infinitely many

n’s. Liu and Watbled [10] proved that the power 1
3 in (1.1) can be improved to 1 under

the conditional Cramér condition supiE(e
|Xi||Fi−1) ≤ C3, for some constant C3. It is

natural to ask under what condition

P(Sn ≥ n) = O(exp{−C1n
α}), n→∞, (1.2)

where α ∈ (0, 1) is given and C1 > 0 is a constant. In this paper, we give some sufficient
conditions in order that (1.2) holds for supermartingales (Sk,Fk)k≥1.

The paper is organized as follows. In Section 2, we present the main results. In
Sections 3-5, we give the proofs of the main results.
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2 Main Results

Our first result is an extension of the bound (1.1) of Lesigne and Volný [9].

Theorem 2.1. Let α ∈ (0, 1). Assume that (Xi,Fi)i≥1 is a sequence of supermartingale

differences satisfying supiE exp{|Xi|
2α

1−α } ≤ C1 for some constant C1 ∈ (0,∞). Then, for
all x > 0,

P

(
max

1≤k≤n
Sk ≥ nx

)
≤ C(α, x) exp

{
−
(x
4

)2α
nα
}
, (2.1)

where

C(α, x) = 2 + 35C1

(
1

x2α161−α
+

1

x2

(
3(1− α)

2α

) 1−α
α

)
does not depend on n. In particular, with x = 1, it holds

P

(
max

1≤k≤n
Sk ≥ n

)
= O

(
exp{− 1

16
nα}

)
, n→∞. (2.2)

Moreover, the power α in (2.2) is optimal in the class of martingale differences: for
each α ∈ (0, 1), there exists a sequence of martingale differences (Xi,Fi)i≥1 satisfying

supiE exp{|Xi|
2α

1−α } <∞ and

P

(
max

1≤k≤n
Sk ≥ n

)
≥ exp{−3nα}, (2.3)

for all n large enough.

In fact, we shall prove that the power α in (2.2) is optimal even for stationary mar-
tingale difference sequences.

It is clear that when α = 1
3 , the bound (2.2) implies the bound (1.1) of Lesigne and

Volný.
Our second result shows that the moment condition supiE exp{|Xi|

2α
1−α } < ∞ in

Theorem 2.1 can be relaxed to supiE exp{(X+
i )

α
1−α } < ∞, where X+

i = max{Xi, 0}, if
we add a constraint on the sum of conditional variances

〈S〉k =

k∑
i=1

E(X2
i |Fi−1).

Theorem 2.2. Let α ∈ (0, 1). Assume that (Xi,Fi)i≥1 is a sequence of supermartingale
differences satisfying supiE exp{(X+

i )
α

1−α } ≤ C1 for some constant C1 ∈ (0,∞). Then,
for all x, v > 0,

P
(
Sk ≥ x and 〈S〉k ≤ v2 for some k ∈ [1, n]

)
≤ exp

{
− x2

2(v2 + 1
3x

2−α)

}
+ nC1 exp{−xα}. (2.4)

For bounded random variables, some inequalities closely related to (2.4) can be
found in Freedman [5], Dedecker [1], Dzhaparidze and van Zanten [3], Merlevède,
Peligrad and Rio [11] and Delyon [2].

Adding a hypothesis on 〈S〉n to Theorem 2.2, we can easily obtain the following
Bernstein type inequality which is similar to an inequality of Merlevède, Peligrad and
Rio [12] for weakly dependent sequences.

ECP 17 (2012), paper 59.
Page 2/8

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v17-2318
http://ecp.ejpecp.org/


Exponential inequalities for supermartingales

Corollary 2.3. Let α ∈ (0, 1). Assume that (Xi,Fi)i≥1 is a sequence of supermartingale

differences satisfying supiE exp{(X+
i )

α
1−α } ≤ C1 and E exp{( 〈S〉nn )

α
1−α } ≤ C2 for some

constants C1, C2 ∈ (0,∞). Then, for all x > 0,

P

(
max

1≤k≤n
Sk ≥ nx

)
≤ exp

{
− x1+α

2
(
1 + 1

3x
)nα}+ (nC1 + C2) exp{−xαnα}. (2.5)

In particular, with x = 1, it holds

P

(
max

1≤k≤n
Sk ≥ n

)
= O (exp{−C nα}) , n→∞, (2.6)

where C > 0 is an absolute constant. Moreover, the power α in (2.6) is optimal for the
class of martingale differences: for each α ∈ (0, 1), there exists a sequence of martingale
differences (Xi,Fi)i≥1 satisfying supiE exp{(X+

i )
α

1−α } <∞, supnE exp{( 〈S〉nn )
α

1−α } <∞
and

P

(
max

1≤k≤n
Sk ≥ n

)
≥ exp{−3nα} (2.7)

for all n large enough.

Actually, just as (2.2), the power α in (2.6) is optimal even for stationary martingale
difference sequences.

In the i.i.d. case, the conditions of Corollary 2.3 can be weakened considerably,
see Lanzinger and Stadtmüller [8] where it is shown that if E exp{(X+

1 )α} < ∞ with
α ∈ (0, 1), then

P

(
max

1≤k≤n
Sk ≥ n

)
= O (exp{−Cα nα}) , n→∞. (2.8)

3 Proof of Theorem 2.1

We shall need the following refined version of the Azuma-Hoeffding inequality.

Lemma 3.1. Assume that (Xi,Fi)i≥1 is a sequence of martingale differences satisfying
|Xi| ≤ 1 for all i ≥ 1. Then, for all x ≥ 0,

P

(
max

1≤k≤n
Sk ≥ x

)
≤ exp

{
−x

2

2n

}
. (3.1)

A proof can be found in Laib [7].
For the proof of Theorem 2.1, we use a truncating argument as in Lesigne and Volný

[9]. Let (Xi,Fi)i≥1 be a sequence of supermartingale differences. Given u > 0, define

X ′i = Xi1{|Xi|≤u} − E(Xi1{|Xi|≤u}|Fi−1),
X ′′i = Xi1{|Xi|>u} − E(Xi1{|Xi|>u}|Fi−1),

S′k =

k∑
i=1

X ′i, S′′k =

k∑
i=1

X ′′i , S′′′k =

k∑
i=1

E(Xi|Fi−1).

Then (X ′i,Fi)i≥1 and (X ′′i ,Fi)i≥1 are two martingale difference sequences and Sk =

S′k + S′′k + S′′′k . Let t ∈ (0, 1). Since S′′′k ≤ 0, for any x > 0,

P

(
max

1≤k≤n
Sk ≥ x

)
≤ P

(
max

1≤k≤n
S′k + S′′′k ≥ xt

)
+ P

(
max

1≤k≤n
S′′k ≥ x(1− t)

)
≤ P

(
max

1≤k≤n
S′k ≥ xt

)
+ P

(
max

1≤k≤n
S′′k ≥ x(1− t)

)
. (3.2)
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Using Lemma 3.1 and the fact that |X ′i| ≤ 2u, we have

P

(
max

1≤k≤n
S′k ≥ xt

)
≤ exp

{
− x

2t2

8nu2

}
. (3.3)

Let Fi(x) = P(|Xi| ≥ x), x ≥ 0. Since E exp{|Xi|
2α

1−α } ≤ C1, we obtain, for all x ≥ 0,

Fi(x) ≤ exp{−x
2α

1−α }E exp{|Xi|
2α

1−α } ≤ C1 exp{−x
2α

1−α }.

Using the martingale maximal inequality (cf. e.g. p. 14 in [6]), we get

P

(
max

1≤k≤n
S′′k ≥ x(1− t)

)
≤ 1

x2(1− t)2
n∑
i=1

EX ′′i
2. (3.4)

It is easy to see that

EX ′′i
2 = −

∫ ∞
u

t2dFi(t)

= u2Fi(u) +

∫ ∞
u

2tFi(t)dt

≤ C1u
2 exp{−u

2α
1−α }+ 2C1

∫ ∞
u

t exp{−t
2α

1−α }dt. (3.5)

Notice that the function g(t) = t3 exp{−t
2α

1−α } is decreasing in [β,+∞) and is increasing

in [0, β], where β =
(

3(1−α)
2α

) 1−α
2α

. If 0 < u < β, we have

∫ ∞
u

t exp{−t
2α

1−α }dt ≤
∫ β

u

t exp{−t
2α

1−α }dt+
∫ ∞
β

t−2t3 exp{−t
2α

1−α }dt

≤
∫ β

u

t exp{−u
2α

1−α }dt+
∫ ∞
β

t−2β3 exp{−β
2α

1−α }dt

≤ 3

2
β2 exp{−u

2α
1−α }. (3.6)

If β ≤ u, we have ∫ ∞
u

t exp{−t
2α

1−α }dt =

∫ ∞
u

t−2t3 exp{−t
2α

1−α }dt

≤
∫ ∞
u

t−2u3 exp{−u
2α

1−α }dt

= u2 exp{−u
2α

1−α }. (3.7)

By (3.5), (3.6) and (3.7), we get

EX ′′i
2 ≤ 3C1(u

2 + β2) exp{−u
2α

1−α }. (3.8)

From (3.4), it follows that

P

(
max

1≤k≤n
S′′k ≥ x(1− t)

)
≤ 3nC1

x2(1− t)2
(u2 + β2) exp{−u

2α
1−α }. (3.9)

Combining (3.2), (3.3) and (3.9), we obtain

P

(
max

1≤k≤n
Sk ≥ x

)
≤ 2 exp

{
− x

2t2

8nu2

}
+

3nC1

(1− t)2

(
u2

x2
+
β2

x2

)
exp{−u

2α
1−α }.
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Taking t = 1√
2

and u =
(

x
4
√
n

)1−α
, we get, for all x > 0,

P

(
max

1≤k≤n
Sk ≥ x

)
≤ Cn(α, x) exp

{
−
(
x2

16n

)α }
,

where

Cn(α, x) = 2 + 35nC1

(
1

x2α(16n)1−α
+
β2

x2

)
.

Hence, for all x > 0,

P

(
max

1≤k≤n
Sk ≥ nx

)
≤ C(α, x) exp

{
−
(x
4

)2α
nα
}
,

where

C(α, x) = 2 + 35C1

(
1

x2α161−α
+

1

x2

(
3(1− α)

2α

) 1−α
α

)
.

This completes the proof of the first assertion of Theorem 2.1.
Next, we prove that the power α in (2.2) is optimal by giving a stationary sequence

of martingale differences satisfying (2.3). We proceed as in Lesigne and Volný ([9], p.
150). Take a positive random variable X such that

P (X > x) =
2e

1 + x
1+α
1−α

exp
{
−x

2α
1−α

}
(3.10)

for all x > 1. Using the formula Ef(X) = f(1) +
∫∞
1
f ′(t)P(X > t)dt for f(t) =

exp{t
2α

1−α }, t ≥ 1, we obtain

E exp{X
2α

1−α } = e+
4e α

1− α

∫ ∞
1

t
3α−1
1−α

1 + t
1+α
1−α

dt <∞.

Assume that (ξi)i≥1 are Rademacher random variables independent of X, i.e. P(ξi =
1) = P(ξi = −1) = 1

2 . Set Xi = Xξi, F0 = σ(X) and Fi = σ(X, (ξk)k=1,...,i). Then,
(Xi,Fi)i≥1 is a stationary sequence of martingale differences satisfying

sup
i
E exp{|Xi|

2α
1−α } = E exp{X

2α
1−α } <∞.

For β ∈ (0, 1), it is easy to see that

P

(
max

1≤k≤n
Si ≥ n

)
≥ P (Sn ≥ n) ≥ P

(
n∑
i=1

ξi ≥ nβ
)
P
(
X ≥ n1−β

)
.

Since, for n large enough,

P

(
n∑
i=1

ξi ≥ nβ
)
≥ exp

{
−n2β−1

}
,

(cf. Corollary 3.5 in Lesigne and Volný [9]), we get, for n large enough,

P

(
max

1≤k≤n
Si ≥ n

)
≥ 2e

1 + (n1−β)
1+α
1−α

exp
{
−n2β−1 − (n1−β)

2α
1−α

}
. (3.11)

Setting 2β − 1 = α, we obtain, for n large enough,

P

(
max

1≤k≤n
Si ≥ n

)
≥ 2e

1 + n
1+α
2

exp {−2nα} ≥ exp {−3nα} ,

which proves (2.3). This ends the proof of Theorem 2.1.
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4 Proof of Theorem 2.2

To prove Theorem 2.2, we need the following inequality.

Lemma 4.1 ([4], Remark 2.1). Assume that (Xi,Fi)i≥1 are supermartingale differences
satisfying Xi ≤ 1 for all i ≥ 1. Then, for all x, v > 0,

P
(
Sk ≥ x and 〈S〉k ≤ v2 for some k ∈ [1, n]

)
≤ exp

{
− x2

2(v2 + 1
3x)

}
. (4.1)

Assume that (Xi,Fi)i≥1 are supermartingale differences. Given u > 0, set

X ′i = Xi1{Xi≤u}, X ′′i = Xi1{Xi>u}, S′k =

k∑
i=1

X ′i and S′′k =

k∑
i=1

X ′′i .

Then, (X ′i,Fi)i≥1 is also a sequence of supermartingale differences and Sk = S′k + S′′k .
Since 〈S′〉k ≤ 〈S〉k, we deduce, for all x, u, v > 0,

P
(
Sk ≥ x and 〈S〉k ≤ v2 for some k ∈ [1, n]

)
≤ P

(
S′k ≥ x and 〈S〉k ≤ v2 for some k ∈ [1, n]

)
+P

(
S′′k ≥ 0 and 〈S〉k ≤ v2 for some k ∈ [1, n]

)
≤ P

(
S′k ≥ x and 〈S′〉k ≤ v2 for some k ∈ [1, n]

)
+ P

(
max

1≤k≤n
S′′k ≥ 0

)
. (4.2)

Applying Lemma 4.1 to the supermartingale differences (X ′i/u,Fi)i≥1, we have, for all
x, u, v > 0,

P(S′k ≥ x and 〈S′〉k ≤ v2 for some k ∈ [1, n]) ≤ exp

{
− x2

2(v2 + 1
3xu)

}
. (4.3)

Using the exponential Markov’s inequality and the condition E exp{(X+
i )

α
1−α } ≤ C1, we

get

P

(
max

1≤k≤n
S′′k ≥ 0

)
≤

n∑
i=1

P(Xi > u)

≤
n∑
i=1

E exp{(X+
i )

α
1−α − u

α
1−α }

≤ nC1 exp{−u
α

1−α }. (4.4)

Combining the inequalities (4.2), (4.3) and (4.4) together, we obtain, for all x, u, v > 0,

P(Sk ≥ x and 〈S〉k ≤ v2 for some k ∈ [1, n])

≤ exp

{
− x2

2(v2 + 1
3xu)

}
+ nC1 exp{−u

α
1−α }. (4.5)

Taking u = x1−α, we get, for all x, v > 0,

P(Sk ≥ x and 〈S〉k ≤ v2 for some k ∈ [1, n])

≤ exp

{
− x2

2(v2 + 1
3x

2−α)

}
+ nC1 exp{−xα}. (4.6)

This completes the proof of Theorem 2.2.
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5 Proof of Corollary 2.3.

To prove Corollary 2.3 we make use of Theorem 2.2. It is easy to see that

P

(
max

1≤k≤n
Sk ≥ nx

)
≤ P

(
max

1≤k≤n
Sk ≥ nx, 〈S〉n ≤ nv2

)
+P

(
max

1≤k≤n
Sk ≥ nx, 〈S〉n > nv2

)
≤ P(Sk ≥ nx and 〈S〉k ≤ nv2 for some k ∈ [1, n])

+P
(
〈S〉n > nv2

)
. (5.1)

By Theorem 2.2, it follows that, for all x, v > 0,

P

(
max

1≤k≤n
Sk ≥ nx

)
≤ exp

{
− x2

2
(
nα−1v2 + 1

3x
2−α

)nα}
+nC1 exp {−xαnα}+ P(〈S〉n > nv2),

Using the exponential Markov’s inequality and the condition E exp{( 〈S〉nn )
α

1−α } ≤ C2, we
get, for all v > 0,

P
(
〈S〉n > nv2

)
≤ E exp

{(
(
〈S〉n
n

)
α

1−α − v2
α

1−α

)}
≤ C2 exp{−v2

α
1−α }.

Taking v = (nx)
1−α
2 , we obtain, for all x > 0,

P

(
max

1≤k≤n
Xk ≥ nx

)
≤ exp

{
− x1+α

2
(
1 + 1

3x
)nα}+ (nC1 + C2) exp{−xαnα},

which gives inequality (2.5).
Next, we prove that the power α in (2.6) is optimal. Let (Xi,Fi)i≥1 be the sequence

of martingale differences constructed in the proof of the second assertion of Theorem
2.1. Then 〈S〉nn = X2,

sup
i
E exp

{
(X+

i )
α

1−α
}
=

1

2
E exp{X

α
1−α } <∞

and

sup
n
E exp

{
(
〈S〉n
n

)
α

1−α

}
= E exp{X

2α
1−α } <∞.

Using the same argument as in the proof of Theorem 2.1, we obtain, for n large enough,

P

(
max

1≤k≤n
Sk ≥ n

)
≥ exp {−3nα} .

This ends the proof of Corollary 2.3.
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