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Large deviation exponential inequalities
for supermartingales
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Abstract

Let (X;, Fi)i>1 be a sequence of supermartingale differences and let S, = Zle Xi.
We give an exponential moment condition under which P(maxi<x<n Sk > n) =
O(exp{—C1n“}), n — oo, where a € (0,1) is given and C; > 0 is a constant. We
also show that the power « is optimal under the given moment condition.
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1 Introduction

Let (X;, F;)i>1 be a sequence of martingale differences and let Sj = Zle X, k> 1.
Under the Cramér condition sup, Ee/*i| < oo, Lesigne and Volny [9] proved that

P(S, >n) = O(exp{—Cin3}), n — oo, (1.1)

for some constant C; > 0. Here and throughout the paper, for two functions f and g,
we write f(n) = O(g(n)) if there exists a constant C' > 0 such that |f(n)| < Clg(n)| for
all n > 1. Lesigne and Volny [9] also showed that the power % in (1.1) is optimal even
for stationary and ergodic sequence of martingale differences, in the sense that there
exists a stationary and ergodic sequence of martingale differences (X;, F;);>1 such that
Eel X1l < 0o and P(S,, > n) > exp{—C,n?} for some constant C5 > 0 and infinitely many
n’s. Liu and Watbled [10] proved that the power % in (1.1) can be improved to 1 under
the conditional Cramér condition sup; ]E(e|X77| Fi—1) < C3, for some constant C3. It is
natural to ask under what condition

P(S, >n) = O(exp{—Cin“}), n— oo, (1.2)

where a € (0,1) is given and C > 0 is a constant. In this paper, we give some sufficient
conditions in order that (1.2) holds for supermartingales (Sk, Fk)i>1-

The paper is organized as follows. In Section 2, we present the main results. In
Sections 3-5, we give the proofs of the main results.
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2 Main Results

Our first result is an extension of the bound (1.1) of Lesigne and Volny [9].

Theorem 2.1. Let o € (0,1). Assume that (X;, F;);>1 is a sequence of supermartingale
differences satisfying sup; ]Eexp{|XZ-\12faa} < (4 for some constant Cy € (0,00). Then, for
allz > 0,

x 2a o
P (1?}?%{7:, Sy > nx) < C(a,z)exp {— (Z) n }, (2.1)

B 1 1 /3(1—a)\ =
C(a7x)—»2+—35Cﬁ <1Qa161_a+>$2 <2k¥> )

does not depend on n. In particular, with x = 1, it holds

where

1
> = ——n” . .
P <1r§n’§2{n Sk > n> O (exp{ 6 n }) , N — 00 (2.2)
Moreover, the power « in (2.2) is optimal in the class of martingale differences: for
each a € (0,1), there exists a sequence of martingale differences (X;, F;);>1 satisfying
supiEexp{|Xi|12%u} < oo and

P ( max S > n) > exp{-3n“~}, (2.3)

1<k<n
for all n large enough.

In fact, we shall prove that the power « in (2.2) is optimal even for stationary mar-
tingale difference sequences.

It is clear that when a = % the bound (2.2) implies the bound (1.1) of Lesigne and
Volny. A

Our second result shows that the moment condition SupiEeXp{|Xi|12—7aﬂ} < o0 in
Theorem 2.1 can be relaxed to sup, Eexp{(X;" )™=} < oo, where X, = max{X;,0}, if
we add a constraint on the sum of conditional variances

k

(She =Y E(XF|Fim).

i=1

Theorem 2.2. Let a € (0,1). Assume that (X;,F;);>1 is a sequence of supermartingale
differences satisfying sup; Eexp{(X; )=} < C for some constant C; € (0,00). Then,
for all z,v > 0,

P (S, > = and (S) < v* for some k € [1,n])
x2 o
< exp {—2(02 n %x%a) } +nCexp{—az“}. (2.4)

For bounded random variables, some inequalities closely related to (2.4) can be
found in Freedman [5], Dedecker [1], Dzhaparidze and van Zanten [3], Merlevede,
Peligrad and Rio [11] and Delyon [2].

Adding a hypothesis on (S), to Theorem 2.2, we can easily obtain the following
Bernstein type inequality which is similar to an inequality of Merlevede, Peligrad and
Rio [12] for weakly dependent sequences.
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Corollary 2.3. Let o € (0,1). Assume that (X;, F;);>1 is a sequence of supermartingale
differences satisfying sup; Eexp{(X;")T™} < C) and ]Eexp{(%)ﬁ} < Cy for some
constants Cy,Cs € (0,00). Then, forall z > 0,

14+«
P < max Sj > n:v) < exp {—(xl)na} + (nCq1 4+ C) exp{—z*n*}. (2.5)

1<h<n 2(1+ 1z

In particular, with x = 1, it holds
P ( max S > n) = O(exp{—Cn“}), n— o0, (2.6)

1<k<n

where C' > 0 is an absolute constant. Moreover, the power « in (2.6) is optimal for the
class of martingale differences: for eacha € (0,1), there exists a sequence of martjngale
differences (X, F;);>1 satisfying sup; Eexp{(X;") 7=} < oo, sup,, Eexp{( ")1 "5} < o0
and

P <1211?§nsk > n> > exp{—3n®} 2.7)

for all n large enough.

Actually, just as (2.2), the power « in (2.6) is optimal even for stationary martingale
difference sequences.
In the i.i.d. case, the conditions of Corollary 2.3 can be weakened considerably,
see Lanzinger and Stadtmiiller [8] where it is shown that if Eexp{(X;)®} < oo with
€ (0,1), then

P (121]?%(” Sk > n) = O(exp{—Cyn®}), n— o0. (2.8)

3 Proof of Theorem 2.1
We shall need the following refined version of the Azuma-Hoeffding inequality.

Lemma 3.1. Assume that (X;,F;);>1 is a sequence of martingale differences satisfying
|X;| <1 foralli>1. Then, forallz >0,

22
> < —— . .
P (1I<HI?§n Sp > ac) < exp{ 2n} (3.1)

A proof can be found in Laib [7].
For the proof of Theorem 2.1, we use a truncating argument as in Lesigne and Volny
[9]. Let (X;, F;)i>1 be a sequence of supermartingale differences. Given u > 0, define

X, = Xilyx,<wy — E(Xilgx,<uy|Fi1),

Xi// = Xl]‘{\Xz|>u} - E(X21{|XL|>LL}“E 1)
k

)
k k
Spo= > X, Si=>_Xx!. sy Z (Xi|Fio1).
i=1

i=1 i=1

Then (X/, F;);>1 and (X, F;);>1 are two martingale difference sequences and Sj, =
S, + S+ 8. Lett € (0,1). Since S}’ <0, for any > 0,

IP(max Sk>az> < IP(max Sk—&—S/”>mt)+IP<max Sy >x(1—t)>

1<k<n 1<k< 1<k<
< P ( max S, > :Ut) +P ( max Sy > x(1 — t)) : (3.2)
1<k<n 1<k<n
ECP 17 (2012), paper 59. ecp.ejpecp.org
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Using Lemma 3.1 and the fact that | X/| < 2u, we have

x2t?
P ( max S), > a:t) < exp { } ) (3.3)

1<k<n 8nu?

Let Fy(z) = P(|X;| > ),z > 0. Since Eexp{|X;| 7"« } < C;, we obtain, for all z > 0,
Fi(@) < exp{~o ™5 JE exp{|X;] 5 } < Cy exp{—a7%).

Using the martingale maximal inequality (cf. e.g. p. 14 in [6]), we get

1 n
"> (1 — < s 2, .
F (1?3%2 S 2 21 ﬂ) T 2(1-1)2 & B 4

It is easy to see that

oo
EX/? = - / t2dF;(t)
u

= u’Fy(u) + / 2tF;(t)dt

< C’luzexp{fu%}JrQCl/ texp{ft%}dt. (3.5)

u

Notice that the function g(t) = #3 exp{—tl%} is decreasing in [, +00) and is increasing
1

—a

in [0, 8], where 5 = (%)W If 0 < u < 8, we have

o0 2 B 2a o0 2a
/ texp{—ti-«}dt < / texp{—ti-a }dt + / t7243 exp{—t1-= }dt
u u B

IN

B )
/ teXp{—u%}dt+/ t2p3 exp{—B%}dt
u B

IN

3 0
5B exp{—ut=el. (3.6)

If 8 < u, we have

o0 2 e 2a
/ texp{—t1-a }dt / t723 exp{—t1-< }dt
u u

< /00 t~2u? eXp{—u%}dt
= u? exp{—u%}. (3.7)
By (3.5), (3.6) and (3.7), we get
EX/? < 3C)(u®+B?) exp{—ulz%a}. (3.8)
From (3.4), it follows that
P (113111?%{7; Sy >x(l— t)) < m(ﬁ + B?) exp{—uTa}. (3.9)

Combining (3.2), (3.3) and (3.9), we obtain

22 2 2 2a
IP<max Sk2x> < QGXP{ ! }JF(BTiC;l)z (quiQ)exp{ul“}.

1<k<n 8nu? 1 x2
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11—«
Taking t = % and u = (ﬁ) , we get, forall z > 0,
22\
P > < C, — =
(i 5e22) = cvonen{-(F) }

2
Cr(a,x) =2+ 35nC (1 + ﬁ) )

£L'20‘(167L)170‘ (EZ

where

Hence, forall z > 0,

T\ 2a o
P(1?}3§n5k2na€> < C’(oz,x)exp{— (Z) n },

1 1 /31—a)\ =

This completes the proof of the first assertion of Theorem 2.1.

Next, we prove that the power « in (2.2) is optimal by giving a stationary sequence
of martingale differences satisfying (2.3). We proceed as in Lesigne and Volny ([9], p.
150). Take a positive random variable X such that

where

2 .
P(X >z)= %exp{—xlz—ﬁ} (3.10)
14+ 212

for all z > 1. Using the formula Ef(X) = f(1) + [ f/(t)P(X > t)dt for f(t) =
exp{t%},t > 1, we obtain

e 1 o P
Eexp{XTs} =e+ ca / = dt < oo.
1

Assume that (¢;);>1 are Rademacher random variables independent of X, i.e. P(¢§; =
1) = IP(& = —1) = % Set Xi = Xfi, ]:0 = (T(X) and ]:z = O'(X, (fk)kzl’mﬂ‘). Then,
(Xi, Fi)i>1 is a stationary sequence of martingale differences satisfying

sup Bexp{|X;| 75 } = Eexp{ X 75 } < oo.

For 3 € (0,1), it is easy to see that

, ~es B8 1-5
IP(lrgn%XnSZZn)EIP(Snzn)ZlP(Z;&Zn)P(in )

Since, for n large enough,

P (Z& > nﬂ) > exp {—n*"1},
i=1

(cf. Corollary 3.5 in Lesigne and Volny [9]), we get, for n large enough,

2 o
P(max SiZn) > —ewexp{fnw*lf(nl*ﬂ)l%x}. (3.11)
1<k<n 1+ (nlfﬂ)ﬁ

Setting 28 — 1 = «, we obtain, for n large enough,

2
P ( max S; > n) > 7eexp{—2n“} > exp{—3n“},

1<k<n - nE=

which proves (2.3). This ends the proof of Theorem 2.1.
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4 Proof of Theorem 2.2

To prove Theorem 2.2, we need the following inequality.

Lemma 4.1 ([4], Remark 2.1). Assume that (X;, F;);>1 are supermartingale differences
satisfying X; < 1 for all« > 1. Then, for all x,v > 0,

2
P (S}, > = and (S);, < v? f kelln]) < x} 4.1
(Sk > = and (S)), < v* for some [ n])_exp{ 20+ 10) (4.1)

Assume that (X;, F;);>1 are supermartingale differences. Given u > 0, set

k k
Xz/ = Xll{X1SU}7 Xz// = Xll{Xz>u}a Sl,g = ZX: and Sllﬁl = ZXZH

i=1

Then, (X/, F;)i>1 is also a sequence of supermartingale differences and S, = S}, + S},.
Since (S")r < (S)k, we deduce, for all x,u,v > 0,

P (S, > z and (S)x for some k € [1,n])
P (S, > x and (S)y

+P (S > 0 and (S)y

IN
I/\ I/\

v?
v* for some k € [1,n))
< v? for some k € [1,n))

< P (S, > and (S"), <v®for some k € [1,n]) + P (121135 Sy > 0) . (4.2)

Applying Lemma 4.1 to the supermartingale differences (X;/u, F;),-,, we have, for all
T, u,v >0, -

2
P(S), > x and (S");, < v? for some k € [1,n]) < exp {—W} . (4.3)

Using the exponential Markov’s inequality and the condition T exp{(X," )ﬁ} < (Ch, we
get

> < ;
P (1@1% Sy > o) < Z]P(XZ > u)

< Y Bew{(¥H)r —ur)
< nC; exp{—uﬁ }. (4.4)
Combining the inequalities (4.2), (4.3) and (4.4) together, we obtain, for all x,u,v > 0,
P(S), > 2 and (S); < v? for some k € [1,n))

2172 _a
<exp{_2(v2_|_;)'ru)} +n01 exp{—ulfa}. (45)

Taking u = z'~%, we get, for all z,v > 0,
P(Sy > x and (S); < v? for some k € [1,n])

x? o
< eXP{Q(UQ‘i‘él’Q_Q)} + nCq exp{—x“}. (4.6)

This completes the proof of Theorem 2.2.
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5 Proof of Corollary 2.3.

To prove Corollary 2.3 we make use of Theorem 2.2. It is easy to see that

P ( max Sj > nx) < P ( max Sy > nzx, (S), < m)2>

1<k<n 1<k<n

+P ( max Sy > nx, (S), > nv2>
1<k<n

IN

P(S), > nz and (S);, < nv? for some k € [1,n))
+P ((S)n > nv?). (5.1)

By Theorem 2.2, it follows that, for all z,v > 0,

2
z a
P 5e2m) < vl i)

+nCy exp {—xn*} + P((S),, > nv?),

o

Using the exponential Markov’s inequality and the condition E exp{( <Sn>" )T-a } < Cy, we
get, for all v > 0,

(S)n) o 5
n

P ((S), >m?) < Eexp{<( )Tma —w >} < Cyexp{—v?T5}.

1

Taking v = (nx) =, we obtain, for all z > 0,

z1+o¢
P max Xy > nx < expy ————n% p + (nC1 + Cy) exp{—x*n°},
<1§k§n b= ) - p{ 2(1+%x) } (nCy 2) expi }
which gives inequality (2.5).
Next, we prove that the power « in (2.6) is optimal. Let (X;, F;);>1 be the sequence
of martingale differences constructed in the proof of the second assertion of Theorem
2.1. Then &= — x2,

(o3 ]_ (o3
supEexp{(X;')ﬁ} = iEexp{Xﬁ} < 0

and

(S)n

supEexp{( )&}:Eexp{Xf—aﬂ}<oo.

Using the same argument as in the proof of Theorem 2.1, we obtain, for n large enough,

> > —3n%
P<1gll?§n5k_n) > exp{—-3n*}.

This ends the proof of Corollary 2.3.
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