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Abstract
We give characterisations for Brownian motion and continuous local martingales, using the cross-
ing tree, which is a sample-path decomposition based on first-passages at nested scales. These
results are based on ideas used in the construction of Brownian motion on the Sierpinski gasket
(Barlow & Perkins 1988). Using our characterisation we propose a test for the continuous martin-
gale hypothesis, that is, that a given process is a continuous local martingale. The crossing tree
gives a natural break-down of a sample path at different spatial scales, which we use to investigate
the scale at which a process looks like a continuous local martingale. Simulation experiments indi-
cate that our test is more powerful than an alternative approach which uses the sample quadratic
variation.

1 Introduction

It is well known that a process X , with X (0) = 0, is a continuous local martingale iff we can write
X

as
= B ◦ θ , where B is a Brownian motion and θ a continuous non-decreasing process, defined on

the same filtration. That is, a continuous local martingale is a continuous time-change of Brownian
motion. Moreover θ

as
= 〈X , X 〉, where 〈X , X 〉 denotes the quadratic variation process. (Note that in

what follows our Brownian motions will always start at 0.) The ‘only if’ part of this result is due
to Dambis [7] and Dubins & Schwarz [9] (see Revuz & Yor [22] Theorems V.1.6 and V.1.7). The
‘if’ part can be found in, for example, Revuz & Yor [22] Theorem V.1.5.
Time-changed Brownian motions have been proposed as models where so-called ‘volatility clus-
tering’ or ‘intermittency’ is observed, in particular in finance but notably also in turbulence and
telecommunications. Models that incorporate a continuous time-change of Brownian motion (pos-
sibly after taking logs and removing drift) include, for example, stochastic volatility models (Hull
& White [12]), fractal activity time geometric Brownian motion (Heyde [11]) and infinitely di-
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visible cascading motion (Chainais, Riedi & Abry [6]). We always take a ‘time-change’ to be with
respect to a non-decreasing process, possibly dependent on the past but not on the future, and
will use the terminology chronometer for such a process. (Some authors call this a subordinator,
however we will reserve this term for chronometers with stationary independent increments.)
Note that a continuous time-changed Brownian motion is not the same as a time-change of Brow-
nian motion that is continuous. That is, it is possible for B ◦ θ to be continuous even though θ
is not. From Monroe [18] we know that in general a time-changed Brownian motion is a semi-
martingale, and vice versa. In what follows when we write ‘continuous time-changed Brownian
motion’, X = B ◦ θ , we mean that θ (and thus X ) is continuous. Thus we exclude the class of
continuous semimartingales that are not local martingales, which includes for example Brownian
motion with drift, the Ornstein-Uhlenbeck process (the Vasicek model) and Feller’s square root
process (the Cox, Ingersoll & Ross model).
For a given process X , the continuous martingale hypothesis states that X is a continuous local
martingale, or equivalently that X − X (0) is a continuous time-changed Brownian motion. The
Dambis, Dubins & Schwarz characterisation suggests a method for testing the continuous martin-
gale hypothesis. We can estimate θ = 〈X , X 〉 using the sample quadratic variation (also called
the realised volatility, see for example Andersen et al. [1]), then test that the time-changed pro-
cess (X − X (0)) ◦ θ̂−1 behaves like Brownian motion. That is, we test that (X − X (0)) ◦ θ̂−1 has
independent Gaussian increments. Peters & de Vilder [21] and Andersen et al. [2] give financial
applications of this approach. Guasoni [10] also tests the continuous martingale hypothesis by
testing if (X − X (0)) ◦ θ̂−1 behaves like Brownian motion, but does so using local time at, and
excursions from, 0.
The principle result of this paper is a characterisation of continuous local martingales (Corollary
4, Section 2), based on the crossing tree, a path decomposition introduced by Jones & Shen [14].
This characterisation suggests a way of testing the continuous martingale hypothesis, which we
discuss in Section 3, and in Section 4 we present some preliminary results that indicate that this
test is more powerful than using the sample quadratic variation. Code for extracting the crossing
tree of a process can be found at www.ms.unimelb.edu.au/~odj.

2 Characterisations of BM and CLM using the crossing tree

In this section we describe the crossing tree then show that it can be used to give characterisations
of Brownian motion (BM) and continuous local martingales (CLM). Fix δ > 0. Our definitions
depend inherently on δ, but as it remains fixed throughout we will not include it in our notation.
Let X be a continuous process, then for all l ∈ Z we define crossing times (more precisely first
passage times) by putting T l

0 = 0 and

T l
j = inf{t > T l

j−1 : |X (t)− X (T l
j−1)|= 2lδ}

k(∞, l) = sup{k : T l
k <∞}.

By a level l crossing (equivalently size δ2l crossing) of the process X we mean a section of the
sample path between two successive crossing times T l

j−1 and T l
j plus the starting time and position

of the crossing, T l
j−1 and X (T l

j−1). Let C l
j be the j-th crossing of size δ2l . There is a natural tree

structure to the crossings, as each crossing of size δ2l can be decomposed into a sequence of
‘subcrossings’ of size δ2l−1. We identify vertices of the tree with crossings and link each level l
crossing with its level l − 1 subcrossings. This is illustrated in Figure 1. Define the crossing length
W l

k = T l
k − T l

k−1; orientation αl
k = sgn(X (T l

k+1)− X (T l
k)); and the number of subcrossings Z l

k.
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Figure 1: The crossing tree associated with a continuous sample path. Here δ = 1. In the left
frame, for l = 3 and 4, we have joined the points (T l

j , X (T l
j )); we see that the single level 4

crossing can be decomposed into a sequence of four level 3 crossings. In the right frame we have
plotted the points (T l

j ,δ2l) for all l, j ≥ 0, then, identifying crossing C l
j with its starting time T l

j−1,
we joined each point to the points corresponding to its subcrossings.

Subcrossing orientations come in pairs, either +−, −+, ++ or −−, corresponding respectively to
excursions up and down and direct crossings up and down. The subcrossings of a crossing can
be broken down into some variable number of excursions, followed by a single direct crossing,
where the orientation of the direct crossing is the same as the orientation of the crossing. Let
V l

j = 0 if the j-th level l excursion is up (+−) and V l
j = 1 if it is down (−+). Let kV (∞, l) be the

number of level l excursions. If k(∞, l)<∞ then kV (∞, l) = bk(∞, l)/2c− k(∞, l+1), otherwise
kV (∞, l) =∞.
Note that the crossing tree is not related to the excursion tree of Le Gall [17].

Theorem 1. Brownian motion is the unique continuous process B for which k(∞, l) =∞ for all l
a.s., and:

BM0 B(0) = 0;

BM1 The W l
k/(δ

24l) are identically distributed with mean 1 and finite variance, and for each l are
independent for k = 1, 2, . . .;

BM2 The Z l
k are i.i.d. for all l and k, with P(Z l

k = 2i) = 2−i , i = 1,2, . . .;

BM3 The V l
j are i.i.d. for all l and j, with P(V l

j = 0) = P(V l
j = 1) = 1/2.

Proof. This characterisation of Brownian motion, in terms of its crossings, is based on the con-
struction of Brownian motion on a nested fractal given by Barlow & Perkins [5] (see also Barlow
[4]). The idea of looking at Brownian motion at crossing times goes back to Knight [15] (see also
Knight [16] §1.3).
Given a Brownian motion B, it is clear that k(∞, l) =∞ for all l a.s., since Brownian motion visits
every point infinitely often with probability 1. Also, it follows from the strong Markov property
that for each l, the W l

k are i.i.d. It is well known that the crossing duration has mean δ24l and finite

variance. From the self-similarity of Brownian motion we have that W l
k/(δ

24l)
d
=W m

j /(δ
24m) for

all l, m, j, k, so BM1 holds.
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It also follows from the strong Markov property that the Z l
k are all independent. Moreover since

Brownian motion is statistically self-similar, they are identically distributed. The distribution of
Z l

k is just that of the time taken for a simple symmetric random walk X on Z to hit ±2, starting
at 0, which we now calculate. Let Sk, k = −1, 0,1, be the number of steps taken by X before
hitting ±2, starting at k. Put fk(t) = EtSk , then conditioning on the first step we get f0(t) =
(t/2) f1(t) + (t/2) f−1(t), f1(t) = t/2+ (t/2) f0(t), and by symmetry f−1 = f1. Solving for f0 we
get f0(t) = t2/(2− t2), which is exactly the probability generating function of the Z l

k, and so BM2
holds.

To see that BM3 holds, consider an up-crossing: the orientations of its subcrossings are the same
as the steps taken by a simple symmetric random walk X on Z, starting at 0 and conditioned to
hit 2 before −2. Given this, we see that BM3 follows from the strong Markov property, and the
fact that P(X (1) = 1 |X (0) = 0, X (2) = 0) = P(X (1) =−1 |X (0) = 0, X (2) = 0) = 1/2.

Now suppose that we are given a continuous process B, with an infinite number of crossings
at all levels, and satisfying conditions BM0–BM3. Put X l(k) = B(T l

k), and for l < m let N l,m

be the first time X l hits X m(1) (so N l,l+1 = Z l+1
1 ). Conditions BM2 and BM3 specify the dis-

tribution of {X l(0), . . . , X l(N l,l+1) |X l+1(0), X l+1(1)}, and thus by induction the distribution of
{X l(0), . . . , X l(N l,m) |X m(0), X m(1)}, for any l < m. (In the terminology of [5], the random walks
X l , l ∈ Z, are nested.) The arguments above show that we get precisely the same laws for the
subcrossing numbers and orientations if instead of X l we take the simple symmetric random walk
on δ2lZ, started at 0 and run it until it hits ±δ2m. That is, {X l(0), . . . , X l(N l,m) |X m(0), X m(1)}
is a simple symmetric random walk on δ2lZ, started at 0 and conditioned to hit X m(1) before
−X m(1).

Now, from BM2 and BM3 we have that for any m ∈Z,

P(X m(1) = δ2m |X m(0) = 0)
= P(X m+1(1) = δ2m+1, X m(1) = δ2m |X m(0) = 0)
+P(X m+1(1) =−δ2m+1, X m(1) = δ2m |X m(0) = 0)

= 1
2
P(X m+1(1) = δ2m+1, X m(1) = δ2m | Zm+1

1 = 2, X m(0) = 0)

+ 1
2
P(X m+1(1) = δ2m+1, X m(1) = δ2m | Zm+1

1 > 2, X m(0) = 0)

+ 1
2
P(X m+1(1) =−δ2m+1, X m(1) = δ2m | Zm+1

1 = 2, X m(0) = 0)

+ 1
2
P(X m+1(1) =−δ2m+1, X m(1) = δ2m | Zm+1

1 > 2, X m(0) = 0)

= 1
2
P(X m+1(1) = δ2m+1 | Zm+1

1 = 2, X m(0) = 0)

+ 1
4
P(X m+1(1) = δ2m+1 |V m

1 = 0, Zm+1
1 > 2, X m(0) = 0)

+0

+ 1
4
P(X m+1(1) =−δ2m+1 |V m

1 = 0, Zm+1
1 > 2, X m(0) = 0)

= 1
2
P(X m+1(1) = δ2m+1 | Zm+1

1 = 2, X m+1(0) = 0) + 1
4
.

Similarly

P(X m+1(1) = δ2m+1 | Zm+1
1 = 2, X m+1(0) = 0)

= 1
2
P(X m+2(1) = δ2m+2 | Zm+2

1 = 2, Zm+1
1 = 2, X m+2(0) = 0) + 1

4
,
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whence iterating we get

P(X m(1) = δ2m |X m(0) = 0)
= 1

2nP(X m+n(1) = δ2m+n | Zm+n
1 = 2, . . . , Zm+1

1 = 2, X m+n(0) = 0) +
∑n

i=1
1

21+i

= 1
2
. (1)

Thus, removing the conditioning on X m(1), X l(k) is indistinguishable from a simple symmetric
random walk for k = 0, . . . , N l,m. But N l,m ≥ 2m−l , so sending m → ∞ we see that X l is just a
simple symmetric random walk on δ2lZ.
Let Y l(δ24l k) = X l(k), so that at times t ∈ δ24lZ+ we have Y l(t) ∈ δ2lZ. By linear interpo-
lation we can extend the definition of Y l(t) to all t ∈ R+. It is well known that as l → −∞,
Y l converges a.s. on the space of continuous sample paths to a Brownian motion, Y say [16]
§1.3. To see that Y

as
= B, take t = δ24mk for any m and k, then for all l < m we have

Y l(t) = X l(4m−l k) = B(T l
4m−l k
). By the strong law of large numbers, the law of the iterated

logarithm, and BM1, 1
n

∑n
i=1 W l

i /(δ
24l)

as→ 1 uniformly in l. Thus

T l
4m−l k

t
=

1

4m−l k

4m−l k
∑

i=1

W l
i

δ24l

as→ 1 as l →−∞,

which completes the proof.

Remark 2. 1. Our definition of Brownian motion includes the requirement B(0) = 0, but can
easily be generalised to allow B(0) to have a non-trivial distribution, provided it is independent
of B− B(0).

2. The definition of the crossing tree does not require X (0) = 0 and, as defined, the crossing tree
considers the process when it hits new points on the lattice X (0)+δ2lZ, for all levels l ∈Z. We
can just as easily consider lattices a+δ2lZ, by the simple modification of putting T l

0 = inf{t ≥
0 : X (t) ∈ a + δ2lZ}. Similarly, in addition to allowing B(0) 6= 0, our characterisation of
Brownian motion can be generalised to allow for lattices centred at an arbitrary point a. The
proof is essentially the same, but does require more care with the nested random walks X l , as
per [5] Theorem 2.14.

Clearly the V l
j and Z l

k are invariant under a continuous time-change, so a continuous local martin-
gale must satisfy BM2 and BM3. We show below that these properties characterise a continuous
local martingale, up to a shift at time 0. We will need the following lemma.

Lemma 3. Let {P(n)}∞n=0 be a supercritical Galton-Watson branching process, with P(0) = 1,
P(P(1) = 0) = 0, µ= EP(1)> 1 and EP(1) log P(1)<∞, then

lim
n→∞

max
0≤k≤P(n)

µ−n Ln
k = 0 a.s.,

where L0
1 = limn→∞µ

−nP(n) and Ln
k

d
= L0

1 is the analogous normed limit of the process descending
from individual k in generation n.

Proof. The result follows directly from O’Brien [19] Theorem 1, noting that since EL0
1 < ∞ we

have that
∫ y

0
x dF(x) is slowly varying, where F is the c.d.f. of L0

1. It can also be proved using
extreme values statistics for Galton-Watson trees (Pakes [20]).
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Corollary 4. A continuous process X : [0,∞)→ R with k(∞, l) =∞ for all l a.s. is a continuous
time-change of Brownian motion, equivalently a continuous local martingale, if and only if

CLM0 X (0) = 0;

CLM1 The Z l
k are i.i.d. for all l and k, with P(Z l

k = 2i) = 2−i , i = 1, 2, . . .;

CLM2 The V l
j are i.i.d. for all l and j, with P(V l

j = 0) = P(V l
j = 1) = 1/2.

Proof. The ‘only if’ part is clear, since Z l
k and V l

j are unaffected by a continuous time-change.
We now show the ‘if’ part. Properties CLM0–CLM2 are enough for us to construct a so-called Em-
bedded Branching Process (EBP) process Y : [0,∞)→R, with continuous sample paths, Y (0) = 0,
and subcrossing family sizes and excursion orientations exactly the same as those of X . We give
the construction here, in a form suited to the current setting, but note that a more general form
of the construction can be found in Decrouez & Jones [8]. The method we use is due originally to
Knight [15] and Barlow & Perkins [5].
We first construct the first level 0 crossing of Y , from 0 to X (T 0

1 ). We need to define a number of
ancillary processes. For m ≤ 0 let Y m be a discrete process with steps of size 2m and duration 4m.
Put Y 0(0) = 0 and Y 0(1) = X (T 0

1 ), then construct Y m−1 from Y m by replacing step k of Y m by a
sequence of Zm

k steps of size 2m−1. These are the level m− 1 sub-crossings of crossing k at level
m. Since EZm

k = 4, the expected duration of the level 0 crossing of Y m−1 is 1.
By assumption the Zm

k are independent and identically distributed. The orientations of the level
m − 1 sub-crossings are determined by the V m−1

j and Zm
k . Each sequence of Zm

k sub-crossings
consists of (Zm

k − 2)/2 excursions followed by a direct crossing. If the parent crossing is up, then
the sub-crossings end up-up, otherwise they end down-down.
Let T

m
= inf{t : Y m(t) = X (T 0

1 )}. We extend Y m from 4mZ+ → 2mZ to R+ → R by linear
interpolation, where for t > T

m
we just put Y m(t) = X (T 0

1 ). The interpolated Y m has continuous
sample paths. We will show that with probability 1, as m→−∞ the sample paths of Y m converge
uniformly on any finite interval, whence the limiting sample paths are a.s. continuous.
For n≤ m let T

m,n
0 = 0 and T

m,n
k+1 = inf{t > T

m,n
k : Y n(t) ∈ 2mZ, Y n(t) 6= Y n(T

m,n
k )}. If Y n(T

m,n
k ) =

X (T 0
1 ) then we put T

m,n
k+1 = ∞. The T

m,n
k are the level m crossing times of Y n. The k-th level m

crossing duration of Y n is W
m,n
k = T

m,n
k − T

m,n
k−1. For each m and k, {4−nW

m,n
k }

−∞
n=m is a Galton-

Watson branching process, with offspring distribution given by the law of the Zm
k . Thus for each

m there exist i.i.d. continuous non-negative r.v.s W
m
k with mean 4m such that (see for example

Athreya & Ney [3])
W

m,n
k →W

m
k with probability 1.

Let T
m
k =

∑k
j=1 W

m
j = limn→−∞ T

m,n
k .

Fix ε,δ > 0 and T > 0. We will find a u such that for all r, s ≤ u≤ 0 and t ∈ [0, T]

|Y r(t)− Y s(t)| ≤ ε with probability 1−δ (2)

Given t ∈ [0, T], let k = k(t, n) be such that T
n
k−1 ≤ t < T

n
k, then for any r, s ≤ n

|Y r(t)− Y s(t)|
≤ |Y r(t)− Y r(T

n,r
k )|+ |Y

r(T
n,r
k )− Y s(T

n,s
k )|+ |Y

s(T
n,s
k )− Y s(t)|

= |Y r(t)− Y r(T
n,r
k )|+ |Y

s(T
n,s
k )− Y s(t)| (3)
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noting that Y r(T
n,r
k ) = Y s(T

n,s
k ) = Y n(k4n). Now, let j = j(T, u) be the smallest j such that

T
n,u
j > T , then as u→−∞, j(T, u)→ j(T )<∞ a.s., so we can choose a u such that for all q ≤ u

max
i≤ j

¦

|T
n,q
i − T

n
i |
©

<min
i≤ j

W
n
i with probability 1−δ.

Thus for any q ≤ u, with probability 1−δ we have

T
n,q
k−2 < t < T

n,q
k+1

and
|Y q(t)− Y q(T

n,q
k )|= |Y

q(t)− Y n(k4n)| ≤ 3 · 2n

since Y q(T
n,q
k−2) = Y n((k − 2)4n), Y q(T

n,q
k+1) = Y n((k + 1)4n) and in three steps Y n can move at

most distance 3 · 2n. Applying this to (3) proves (2), taking n small enough that 6 · 2n ≤ ε. Thus
as ε and δ are arbitrary, Y n converges to some (necessarily continuous) Y uniformly on all closed
intervals [0, T], with probability 1.
By construction Y (T

m
k ) = X (T m

k ) for all m≤ 0 and T m
k ≤ T 0

1 .
Clearly our construction can be used to construct the first level m crossing of Y , for any m, and
the constructions are nested. That is, when constructing the first level m+ 1 crossing, the first
sub-crossing at level m is exactly what we would obtain were we to start at level m. For m≥ n let
Zm,n

j ≥ 2m−n be the number of level n crossings that make up the j-th level m crossing. For m ≥ 0

we have that T
m
1 =

∑Zm,0
1

k=1 W
0
k ≥

∑2m

k=1 W
0
k. Thus, since the W

0
k are i.i.d. non-negative random

variables with mean 1, T
m
1 →∞ a.s., and so we can extend our construction of Y to [0,∞).

From the embedded branching process we know that the random variables W
m
k /4

m are identically
distributed, and for each m are independent for k = 1,2, . . .. Moreover, as the offspring distribution
has finite variance, so does W

m
k /4

m (see for example Athreya & Ney [3]). A constant rescaling of
time is enough to ensure that EW

m
k /(δ

24m) = 1, whence by Theorem 1, Y is Brownian motion
(up to a constant rescaling of time).

By construction we have Y (T
l
k) = X (T l

k). Thus defining θ(T l
k) = T

l
k we get, for t = T l

k, Y (θ(t)) =
X (t). By assumption T l

∞ := limk→∞ T l
k = ∞, thus for any t ∈ [0,∞) we can find a sequence

{k(t, l)}−∞l=∞ such that for all l, t ∈ [T l
k(t,l)−1, T l

k(t,l)). We use this to extend θ to [0,∞), by putting

θ(t) = liml→−∞ T
l
k(t,l).

The result now follows provided that θ is continuous. Suppose that θ has a jump at t. Since
X is continuous, W l

k(t,l) > 0 for all t ∈ [0, T∞). Thus for all l, 0 < θ(t+)− θ(t−) ≤ θ(T l
k(t,l))−

θ(T l
k(t,l)−2) =W

l
k(t,l)+W

l
k(t,l)−1. This contradicts Lemma 3, and so θ has no jumps, with probability

1.
Finally, by construction we have that Y (θ(t)) and θ(t) are Ft measurable, where {Ft} is the
filtration generated by X .

Remark 5. 1. It is possible to have k(∞, l) = ∞ for all l even if X is only defined on a finite
interval. That is, we can have T∞ := liml→−∞ T l

∞ <∞. If the process does explode in this way,
then our construction of Y and θ still works, though of course our representation of X (t) as
time-changed Brownian motion only holds for t ∈ [0, T∞).

2. If k(∞, l) <∞ for some (and thus a.s. all) l, then for a continuous local martingale we have
that CLM1 holds for k = 1, . . . , k(∞, l) and CLM2 holds for j = 1, . . . , kV (∞, l). We can still
define T∞ = liml→−∞ T l

k(∞,l) (a non-decreasing sequence), and we see that X is necessarily a
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process stopped at this time. To obtain a converse in this situation we need to replace CLM2 by
the stronger statement that, for each l, the orientations αl

k are i.i.d. with equal probabilities of
up and down. The reason for this is that we can no longer use the argument of (1) to infer the
orientation distribution from the excursion distribution. Given the orientations it is still possible
to construct the Brownian motion Y , but only up to T∞ = θ(T∞). However, since X is stopped
at T∞, this is enough to show that X is still a continuous time change of Brownian motion.

3 The continuous martingale hypothesis

The characterisation of Corollary 4 suggests a method for testing the continuous martingale hy-
pothesis. Given a process X and a choice of δ, the subcrossing numbers Z l

k and excursions V l
j are

easily obtained. We need to check that they are independent and follow the distributions specified
by CLM1 and CLM2.
In practice a continuous process X is never completely observed. Typically we get observations at
either regularly spaced times or whenever the process moves a fixed distance (for example tick-
by-tick financial data). We deal with this by choosing δ so that, with high probability, we observe
all the level 0 (size δ) crossings. We then consider crossings at levels 0, 1, 2, etc., as large as the
data allows. Of course, the number of observed crossings decreases as the level increases. Note
that we observe the V l

j at levels 0,1, 2, . . ., but the Z l
k are only observed at levels 1, 2, . . ..

Fix a level l and let N(l) be the number of level l crossings observed and let M(l) = bN(l)/2c −
N(l + 1) be the number of level l excursions. If the continuous martingale hypothesis holds then
the {Z l

k}
N(l)
k=1 will be i.i.d. 2+ 2Geometric(1/2), and the {V l

j }
M(l)
j=1 will be i.i.d. Bernoulli(1/2).

Under CLM1 and CLM2, the sequences {Z l
k}

N(l)
k=1 and {V l

j }
M(l)
j=1 are independent from one level to

the next, so we could combine them to obtain larger samples. However, there is an advantage
to testing each level separately. For modelling purposes often the question we ask is not, “is this
process a continuous local martingale?”, but, “at what scales (if any) does the process look like
a continuous local martingale?” For example, for high frequency financial data it is generally
believed that at small time scales (minutes) log-prices can exhibit micro-structure, such as anti-
persistence, but at large time scales (days) they look like a continuous local martingale (after
removing any trend). Furthermore, for a large class of diffusion processes, as the time scale on
which you observe the diffusion decreases, the diffusion component will increasingly dominate
the drift component, so that it becomes to look like a continuous local martingale. (We discuss
this in the appendix.) The crossing tree gives a natural break-down of a process at different
spatial scales. We can convert these to approximate temporal scales by considering the expected
or average crossing duration for a given level.

3.1 Testing the distribution and independence of the Z l
k

We use a χ2-test to compare the empirical distribution of the {Z l
k}

N(l)
k=1 against the distribution given

in CLM1, that is 2+ 2 Geometric(1/2). For small values of N(l) we used Monte-Carlo estimation
to obtain the distribution of the test statistic.
To test the independence of the {Z l

k}
N(l)
k=1 we compared the empirical joint distribution of (Z l

k, Z l
k+1)

with its known distribution under the null, again using a χ2 test. The joint distribution test can
reject either from bi-variate dependence or a departure from the hypothesised marginal geometric
distribution. Using a variety of simulated diffusion processes, we applied the test to {Z l

k}
N(l)
k=1 and
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Figure 2: Estimates of the Type I error (LHS) and Power (RHS) for our tests of the distribution
(dist. test) and independence (joint dist. test) of the Z l

k, at levels l = 1, 2, 3. Tests were performed
at the 5% significance level. On the LHS we used 1,000 sample paths of Brownian motion, each
consisting of 1,250 level-0 crossings. On the RHS we used 1,000 sample paths of an Ornstein-
Uhlenback process with drift parameter α = 10 and diffusion paramter σ = 1, each consisting of
5,000 level-0 crossings of size δ = 0.062945. This choice of δ is such that the expected duration
of each sample path is 20. The vertical bars denote 95% confidence intervals for the Monte-Carlo
estimates.

a randomly permuted copy, and consistently found a much greater rejection rate for the non-
permuted process, suggesting that that the test is more sensitive to deviations from the null due
to dependence rather than distribution.

3.2 Testing the distribution and independence of the V l
k

Under the continuous martingale hypothesis, for each l the sequence {V l
k }k is an i.i.d. Bernoulli(1/2)

sequence. The marginal distribution can be tested using
∑

k V l
k , which has a Binomial(N(l), 0.5)

distribution under the null. Independence can be tested using the runs test (Wald & Wolfowitz
[25]).

4 Numerical results

Simulation experiments were used to check the Type I error and estimate the power of our tests
against various diffusion alternatives. For brevity we only present here a single alternative, where
the process X is an Ornstein-Uhlenbeck process. For full details of the simulation tests we per-
formed see the working paper (Jones & Rolls [13]).
All of our experiments showed that tests based on the V l

k had very little power, especially when
compared to tests based on the Z l

k. Accordingly we have not presented any test results based
on the V l

k here. In the appendix we show that CLM2 holds for any continuous time-change of
Brownian motion with drift, which suggests that the V l

k are insensitive to changes in the drift of a
diffusion.
To check the Type I error we simulated the crossings of Brownian motion. As Brownian motion is
self-similar the scale has no effect, and we arbitrarily take δ = 1. Samples consisting of 1,250 level-
0 crossings were used. Using a significance level of 5%, the Z l

k were tested for distribution and
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independence at levels 1, 2 and 3. Mean rejection rates were estimated using 1,000 independent
sample paths, and are presented in the left-hand panel of Figure 2. The Type I error is in around
5% in each case, as expected.
To get an idea of the power of these tests we considered as an alternative the Ornstein-Uhlenbeck
process, given by

dX (t) =−αX (t)d t +σdW (t) (4)

with diffusion parameter σ = 1 and drift parameter α = 10 (here W is a standard Brownian
motion). Using a crossing size of δ = 0.062945 we simulated 1,000 independent datasets, each
with 5,000 level-0 crossings and implemented our test. These parameters were used for compar-
ison with Vasudev [24], who used datasets with 5,000 equally spaced observations on the time
interval (0,20], imagining twenty years worth of daily data. Our choice of δ is such that the ex-
pected time to make 5,000 crossings is 20, which seems the most reasonable choice to allow direct
comparisons between the methods. (The value of δ was found numerically.)
The observed rejection rate from the two tests applied to the Z l

k, l = 1, 2,3, are given in the right-
hand panel of Figure 2. For both of our tests the power increases with the level, even though
the sample size decreases with the level. So at level 3, about 50% of the datasets are rejected
by the distribution (dist.) test and 97% are rejected by the independence (joint dist.) test. The
increase in power across levels occurs because at small scales the diffusion dominates the drift,
and the process looks like (continuous time-changed) Brownian motion. This observation is in
fact applicable to a wide class of diffusions, as we show in the appendix.
For comparison, we also implemented a test using the sample quadratic variation (Peters & de
Vilder [21], Andersen et al. [2], Vasudev [24]). (See Jones and Rolls [13] for additional details
of our implementation.) The idea of the test is, for a process X (t) = B(θ(t)), to estimate the
quadratic variation θ and then test if the increments of X ◦θ̂−1 appear to be a random sample from
a N(0,σ2) distribution. In our case we test using the Kolmgorov-Smirnov (KS) and the Cramér-von
Mises (CVM) tests. This approach requires one to choose a length∆t for the time increments to be
tested. Vasudev [24] searches for the increment length that makes the increments of X◦θ̂−1 appear
most like they are from a normal distribution, and the power is unreasonably reduced. Peters &
de Vilder [21] and Andersen et al. [2] address this issue by choosing an (arbitrary) increment
length and then arguing why it is reasonable. Instead, we test over a range of increment lengths
for which we know the Type 1 error is reasonable. We have found empirically that the Type 1
error is high if the increment length is too short, and also that even within a reasonable range
of increment lengths the power can vary substantially. We report results for the increment length
most favourable to the test, that is, with the highest power. We leave unanswered the question
of how to select the increment length a priori, but feel this is a drawback to using the estimated
quadratic variation.
We applied the tests to 1,000 datasets, each having 5,000 evenly spaced observations on the time
interval (0,20]. Using tests with a 5% significance level, 87.5% of the datasets were rejected by
the CVM test, and 70.4% were rejected using the KS test. (Not surprisingly, Vasudev reports lower
rejection rates for identical parameters: 52% for CVM, and 31% for KS.) Our joint distribution test
is clearly more powerful in this setting.
For an additional comparison (not shown for brevity), we performed similar simulations using
1,000 datasets, but with α= 1. We used a crossing size δ = 0.63220, so that the expected time to
make 5,000 crossings is 20. Since the mean reversal is less apparent than for α= 10 the rejection
rates are smaller, with 7.4% of the datasets rejected by the distribution test and 7.6% rejected by
the independence test. Rejection rates using the quadratic variation test were 0.4% (KS) and 0.2%
(CVM), which are considerably smaller. So the tests using Z l

k again show more power.
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In Rolls and Jones [23] the authors report on the application of the crossing-tree test to five high
frequency foreign exchange rate datasets.

A Small scale diffusive behaviour

We take a closer look at the orientation of subcrossings, and show that, to some extent, at small
scales diffusions look like continuous local martingales.
If X is a continuous regular diffusion on some interval, given by

dX (t) = A(X (t))d t + B(X (t))dW (t), (5)

where W is standard Brownian motion, B > 0 and A are locally bounded Borel functions, then X
has a scale function s, defined on the interior of the range of X by

d

d x
s(x) = exp

(

−2

∫ x

x0

(A(u)/B2(u))du

)

,

for some arbitrary x0 (see for example [22] pp. 278–290).
For x ∈ δZ define

pδ(x) = P(X (T
0
k+1) = x +δ |X (T 0

k ) = x).

Given the scale function we can easily simulate the sequence of level-0 crossing points {X (T 0
k )}k

using the fact that, for x ∈ δZ and (x −δ, x +δ) in the interior of the range of X ,

pδ(x) =
s(x)− s(x −δ)

s(x +δ)− s(x −δ)
. (6)

For Brownian motion we just get pδ(x) = 1/2 while for the OU process (4) we get pδ(x) =
∫ x

x−δ eαu2/σ2
du/
∫ x+δ

x−δ eαu2/σ2
du, which must be calculated numerically.

Lemma 6. For a continuous strong Markov process X , if pδ(x) is constant in x and 6= 0 or 1, then
the {V 0

k }k are i.i.d. Bernoulli(1/2).

Proof. Excursions are equiprobable if for all x ∈ δZ

P
�

X (T 0
k+1) = x +δ |X (T 0

k ) = x , X (T 0
k+2) = x

�

=
1

2
.

That is,
pδ(x)(1− pδ(x +δ))

pδ(x)(1− pδ(x +δ)) + (1− pδ(x))pδ(x −δ)
=

1

2
,

which clearly holds if pδ(x) is constant and non-degenerate. If pδ(x) does not depend on x , then
from the strong Markov property the crossing orientations {α0

k}k and thus the excursions must be
independent.

An immediate consequence of this result is that CLM2 holds for any continuous time-change of
Brownian motion with drift. The next lemma shows that for a large class of diffusions, CLM1 and
CLM2 hold approximately at small scales. That is, locally at small scales, these diffusions look
like continuous local martingales. For this result we need to consider the effect of changing δ,
and so we will write Zn

k (δ) for the k-th level-n subcrossing number and V n
k (δ) for the k-th level-n

excursion type, when level-0 crossings are of size δ.
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Lemma 7. Suppose X is a continuous regular diffusion of the form (5), with X (0) = x0 and a scale
function s continuously differentiable in a neighbourhood of x0. Then for any fixed n and sequence
δk → 0, we have that {Z1

j (δk)}nj=1 converges in distribution to i.i.d. 2+ 2 Geometric(1/2) r.v.s, and
{V 0

j (δk)}nj=1 converges in distribution to i.i.d. Bernoulli(1/2) r.v.s, as k→∞.

Proof. First note that from the strong Markov property, the {Z1
j (δk)}nj=1 are always independent,

as are the {V 0
j (δk)}nj=1.

Consider the subcrossing numbers. From the strong Markov property we have that the distribution
of Z1

j (δk) is determined by (a j,k, b j,k, c j,k) := (pδk
(X j,k), pδk

(X j,k−δk), pδk
(X j,k+δk)), where X j,k =

X (T 1
j (δk)). Specifically, the probability generating function of Z1

j (δk) is t2(1−a−b+ab+ac)/(1−

t2(a+b−ab−ac)). Thus, by the continuous mapping theorem, if (a j,k, b j,k, c j,k)
d→ (1/2, 1/2, 1/2)

as k → ∞, then Z1
j (δk) converges in distribution to a r.v. with generating function t2/(2− t2),

which is the generating function for a 2+ 2 Geometric(1/2) r.v.
From (6) and the mean value theorem we have that pδ(x) = s′(x1)/(2s′(x2)), where x1 ∈ (x−δ, x)
and x2 ∈ (x −δ, x +δ). Since s′ is continuous in a neighbourhood of x0, and by definition strictly
positive, we can find h> 0 such that pδ(x)→ 1/2 as δ→ 0, uniformly over x ∈ [x0 − h, x0 + h].
Let Mn(δ) = max{|X (T 1

j (δ)) − x0|}nj=1, then Mn(δ) ≤ n · 2δ and so Mn(δ) ≤ h for all δ small

enough. Thus (a j,k, b j,k, c j,k)
as→ (1/2, 1/2, 1/2), which establishes the result for the subcrossing

numbers.
For the excursions, life is complicated by the fact that the j-th level 0 excursion could fall in
any level 1 crossing. Suppose that it occurs in the l-th level 1 crossing, then the distribution of
V 0

j (δk) is determined by (u j,k, v j,k, w j,k) := (pδk
(X l,k), pδk

(X l,k − δk), pδk
(X l,k + δk)), where X l,k =

X (T 1
l (δk)). In this case P(V 0

j (δk) = 0) = u(1−w)/(u(1−w)+(1−u)v), and so if (u j,k, v j,k, w j,k)
d→

(1/2, 1/2, 1/2) as k→∞, then V 0
j (δk) converges in distribution to a Bernoulli(1/2) r.v.

For a given δ, let N be the smallest number of level 1 crossings required to give n level 0 excursions
(noting that each level 1 crossing will produce ≥ 0 excursions and a single direct crossing). Let Aδ
be the event that MN (δ)> h, then for ω ∈ Aδ there are at most n− 1 level-0 excursions on the δ-
lattice, before exiting [x0−h, x0+h]. Let m= bh/(2δ)c then forω ∈ Aδ we have at least m−n+1
of Z1

1 (δ), . . . , Z1
m(δ) equal to 0. Since pδ(x)→ 1/2 as δ→ 0, uniformly for x ∈ [x0 − h, x0 + h],

for any ε > 0 and δ small enough we have P(Aδ)≤
� m

n−1

�

(1/2+ ε)m−n+1→ 0 as δ→ 0. It follows

immediately that (u j,k, v j,k, w j,k)
d→ (1/2, 1/2, 1/2), which establishes the result for excursions.
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