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Abstract

In this note we study a class of 2 x 2 Pdlya-Eggenberger urn models, with ball transition matrix
given by M = (9 :Z ), for arbitrary parameters b,c € IN, assuming the balancing condition d =
¢+ b. This urn model serves as a stochastic model in biology describing cannibalistic behavior of
populations. The special case b = ¢ = 1 and d = 2 was studied by Pittel [16] using asymptotic
approximation techniques, and more recently by Hwang et al. [10] using generating functions. We
obtain limit laws for the stated class of cannibal urns by using Pittel’s method, and also different
techniques.

1 Introduction

1.1 Urn models with a diminishing content

In this work we study Pélya-Eggenberger urn models with ball transition matrix M given by

0 -b

M= ( c —d )’ @
for arbitrary parameters b,c € IN = {1,2,...}, assuming that d = b + c¢. The dynamics of this urn
model can be described as follows. At the beginning the urn contains n white and m black balls.
At every discrete time step, we draw a ball at random from the urn, examine its color and put
it back into the urn and then add/remove balls according to the observed color by the following
rules. If the ball is white, then we remove b black balls from the urn, while if the ball is black,
then ¢ white balls are added, and d black balls are removed from the urn. The conditiond = b+c¢
implies that the urn is balanced, at every step the total number of balls in the urn decreases by
exactly b balls regardless of the color of the drawn ball. We are interested in the distribution of the
random variable X, ,,, counting the number of white balls, when the process stops, i.e. when the
number of black balls is below d, starting with n white and m black balls, respectively, with n > 0
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and m > d. Apparently, the process stops after a finite number of steps, and the number of black
balls is diminishing throughout the evolution of the urn. This urn model is part of a general setting
for PSlya-Eggenberger urns with a diminishing nature, described in detail in [10], see also [9].
For ordinary tenable urn models, where the process of drawing and adding/removing balls can be
repeated ad infinitum we refer the reader to [13, 14, 15], and also for some recent developments
to [2, 7,5, 6,11, 12, 20, 21]. A special instance of the class of urns with ball transition matrix
given by (1) is the so-called cannibal urn model, b = ¢ = 1 and d = 2. This urn model has
been introduced by R. E Greene, see [16], as a stochastic model in biology modelling cannibalistic
behavior in a population. It can be described as follows: a population consists of non-cannibals
and cannibals. At each time instant a non-cannibal is selected as a victim and consumed/removed
and after that a member of the remaining population (non-cannibals and cannibals) is selected at
random. If the selected individual is a cannibal it remains as a cannibal in the population, but if
the selected individual is a non-cannibal it changes its behavior and will become a cannibal. The
question is, when starting with n cannibals and m non-cannibals, what is the number of cannibals
in the population when all non-cannibals are removed? In the general case we assume that b
individuals are consumed at each discrete time step, and that ¢ individuals may become cannibals.
The general model improves upon the original model insofar as it takes into account the effects
of consuming more than one individual at each time step and how it effects the overall number
of cannibals. The original urn model, b = ¢ = 1 and d = 2, has been analyzed by Pittel [16].
His approach is based on asymptotic approximation; more precisely it consists of an asymptotic
approximation of the recurrence of the moment generating function of the random variable of
interest; we refer to the works of Pittel [17, 18, 19] concerning the numerous applications of this
versatile technique. Pittel obtained a normal limit law for X, ,, in a certain growth region of n
and m, namely the fraction p,, ,, = n/(n+ m) has to be bounded away from one, as N, , = n+m
tends to infinity. Recently, this model was treated by Hwang et al. [10] using generating functions,
obtaining limit laws for X,, ,, in every growth region of n and m. Unfortunately, the generating
functions approach of [10] is restricted to the special case b =c¢ =1 and d = 2. We give a brief
discussion of the difficulties of a generating functions approach in the last section of this work.

We will use the approach of Pittel [16] to obtain asymptotic normality of X, ,, in the general
model, assuming that the fraction p, ,, = n/(n+ m) is bounded away from one, as N, ,, =n+m
tends to infinity. Furthermore, we can also handle some other cases, where p,,, — 1 using
different techniques. More precisely, assuming that n — oo we prove that the distribution of X, ,
is asymptotically normal distributed for y/n < m < n?/3, is Poisson distributed for m ~ /n, and
degenerates for m < +/n. Unfortunately, we could not determine the limiting distribution of X, ,
in the region n*® < m < n.

1.2 Urn models and weighted lattice paths

It is well known that the evolution of urn models can be described by weighted lattice paths, see
e.g. Flajolet et al. [5]. Concerning our particular model (1) we have the following description. If
the urn contains n white balls and m black balls and we select a white ball (with probability mL-m)’
then this corresponds to a step from (m,n) to (m — b, n), to which the weight m’in is associated;
and if we select a black ball (with probability mLJrn), this corresponds to a step from (m,n) to
(m—d,n+ c) (with weight mlﬂ). The weight of a path after ¢ successive draws consists of the
product of the weight of every step. By this correspondence, the probability of starting at (m,n)
and ending at (j, k) is equal to the sum of the weights of all possible paths starting at state (m, n)
and ending at (j, k). The expressions so obtained for the probability are, although exact, often
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less useful for large m or n. Note that, strictly speaking, the description of cannibalistic behavior
described above does not fall directly in the scheme of urn models specified by (1); it is a slight
modification of the urn model, where the weight of a step from (m,n) to (m — b,n) (and thus

the probability) is given by - +:1—b and the weight of a step from (m,n) to (m —d,n + c) is given
m—b

y —2- (instead of weights —— and —-). However, both types of weights lead to the same
asymptotic behavior, and the proof is readily adapted. Therefore we opted to use the standard
Pélya-Eggenberger urn model weights.

1.3 Goal

Our main goal is to establish the asymptotic normality of X, ,, as n — oo and n/(n+m) is bounded
away from one (which excludes the case m = o(n)). Second, we show that assuming that n — oo
and p,,, — 1 the distribution of X, ,, is still asymptotically normal for intermediate m such that
V11 <€ m < n?3, is Poisson distributed for small m such that m ~ v/n, and degenerates for very
small m such that m = o(4/n). The proof technique of the asymptotic normality applied here in the
case of N, ,, — oo, with p,, ,, = n/(n + m) bounded away from one, follows closely the asymptotic
approximation proof method of Pittel of the original problem [16].

1.4 Notations and Overview

We use the notations N = {1,2,...} and IN, = {0,1,...}, and denote with Z, the convergence
in distribution. We use the abbreviations N, ,, = n+m and p, ,, = n/N, ,, = n/(n + m), and the
notations m < n, standing for m = o(n), n ~ m standing for m/n — 1, as n tends to infinity. For
sequences (n, m) = (n;, m;);en, by the formulation "p,, ,, is bounded away from one" we mean that
for any ¢ > O the inequality n;/(n; + m;) > 1 — € holds for only finitely many i. Throughout this
work we mostly drop the subscript i for the sake of simplicity. The notation yn < m < n*? for
n — oo means that we consider double sequences (n,m) = (n;, m;);ey With n; — 00, such that
both conditions m = o(n%*?) and +/n = o(m) are satisfied; this implies that m tends to infinity as
n — oo. In the next section we state the limiting distributions of X, ,,, specified according to the
growth of n and m. In Section 3 we establish the part concerning the normal limit of X, ,, for p,, ,,
bounded away from one. Section 4 contains the derivations of the limiting distribution results
for intermediate and small m. The last section is devoted to a brief discussion of an alternative
approach based on generating functions.

2 Results

In the following we will state the limiting distribution of the random variable X, ,,, counting the
number of white balls when the number of black balls is below d, with respect to the general
Cannibal urn model with ball transition matrix (1), starting with n white and m black balls.

Theorem 1. The limiting distribution of X, ,,, assuming that n — oo, is specified according to the
growth of m and n.

1. For m at least of order n, i.e. p, ,, = n/(n+ m) bounded away from one

Xom = Nym®(Pnm)
P o Tnm PP 2 4(0,1), (N =n+m);

X
e V Nn,m’l/)(pn,m)
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here ¢ (t) and Y (t) are given by

et™l, forb=c,

P(t) = b
s

and

c(t? =3t +3)e? 2 —cet™!, forb=c,

2b b
— (bc—2c?)t2—(b2—4c?)t—2c%—cb [ (bt+c(1-t)) \ b—¢ be [ (bt4c(1-t)) \ b—c
(1) = | be e (teh A och (el ) ey b (GeelON) P for ot ¢, o,

c(étz —Lt+ gt +1)+2 - §1<>g(z))(ur 12, for b= 2c.

2. For an intermediate m such that yn < m < n2/3,

Xn,m_n_% k%
— = #(0,1),

c2m?
2bn

x
Xn,m -

3. For small m such that m ~ An%, with A € R*, the random variable X =Xy, —n)/cis
asymptotically Poisson distributed with parameter A?/(2b),

x Lx XEP(AZ)
g = — ).
’ 2

n,m

4. For very small m such that m < v/n the distribution of X = (X, ,, —n) degenerates,
P{X =0}—1

The result stated in the first case of Theorem 1 can be extended as follows.

Theorem 2. For N, , = n+m — oo with p, ,, = n/(n+ m) being bounded away from one

Xnm_Nnm n,m
« _“n, ’¢(p’))iﬂ(0,1)’

X
e VNam ¥ ()

with ¢ (t) and Y (t) as given in Theorem 1.

This includes in particular the cases n — oo, with m at least of order n, and the cases of fixed
n € IN and m tending to infinity.

Remark 1. We did not manage to obtain results for the missing region n®® < m < n. We
expect that the centered and normalized random variable X, ,, remains normal distributed in the
limit n — oo, by analogy with the results of [10], where the limiting distributions of the original
problem (b =c¢ =1, d = 2) were obtained using generating functions.

Remark 2. As observed by Pittel in the special case b = ¢ = 1 and d = 2, we anticipate that
E(X,,) is for large n compared to m close to n and the variance is close to zero. Indeed we have
¢(1) =1 and ¢(1) = 0. The case b = ¢ corresponds to the original cannibal urn problem, since
the ball transition matrix M reducesto M =b- (9 23).
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Remark 3. The results for the region m < n*/° basically say that (Xp,m — n)/c is asymptotically
Poisson distributed with parameter %. Our results in the region m < n*? can be extended to
the urn model with ball transition matrix M = (_0C :g), withc € N, d € N, = {0,1,...} and

b =c +d. As for the cannibal urn model one obtains a degenerate distribution for n — X, ,, when
m = o(+/n), a Poisson limiting distribution for (n — X, ,,)/c in the range m ~ An%, and a standard
normal limiting distribution for /n < m < n?/3.

3 Asymptotic normality by asymptotic approximation

In the following we will prove Theorem 2, which includes Theorem 1 case (1), using Pittel’s
approach [16] to the original problem b=c=1,d =2.

3.1 Recurrence relations

By definition of Pélya-Eggenberger urn models the random variable X, ,, satisfies the following
recursive distributional equation, which is obtained by considering the urn after the first draw
when starting with n white and m black balls.

I G ¢ el ). forn>0,m=>d,

n+c,m—>b?

Xom = 2
n, forn>0,m<d,

where I, ,, denotes the indicator variable of the event that a white ball is drawn,

m

IP‘{]In,m =1}= IP{]In,m =0} =

n+m’ n+m’

with I, ,, being independent of (X, ), >0 and (X;,m)n,mzm which are independent copies of each
other.

By (2), the Laplace transforms g, ,,(z) = E(e*nm) of X, satisfy a similar recurrence relation,
given as follows.

n

m
T N S&ntc,m— (Z)) forn>0,m=>d,
gn,m(Z) = (Tl + m) (Tl + m) 8n+ m—d (3)

e™, forn>0,m<d.

: gn,mfb(z) +

When b = ¢ one may start with b - n white and b - m black balls, reducing the problem essen-
tially to the original cannibal urn model. In order to prove asymptotic normality of X, ,, (suit-
ably centered and normalized) using asymptotic approximation techniques, see [16, 17, 18, 19],
we introduce an auxiliary sequence of random variables (Y, ,,), n>0, Whose Laplace transforms
hy m(z) = E(e*"nn) are given by

2

Z n
hn,m(z) = €exp (ZNn,m¢(pn,m) + ENn,mw(pn,m)); Pnm =

4

n+m’

with functions ¢ (t) and v (t) as given in Theorem 1. Clearly, the random variables Y, ,, are nor-
mal distributed with mean N, ,,¢(p, ) and variance N, ,,2)(p,, ). We will prove that h, ,,(z) =
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E(e*¥»m) almost satisfies a recurrence (3), see Lemma 1. The reason for this, as we shall see, is
that ¢(t), Y (t) is the solution of a system of differential equations (8) and (9). We will see that
for N, ,, = n+m — oo such that p, , is bounded away from 1, v(p,, ) is bounded away from
0, see Lemma 2, and that the Laplace transforms of X,, ,, and Y, ,,, are close enough to imply, see
Lemma 5, that X, ,, is asymptotically normal distributed with mean N, ,,¢(p, ) and variance
Ny m¥(pnm). Note that the assumption N, , = n +m — oo such that p, , is bounded away from
one includes cases n — oo and m at least of order n, but also other cases, i.e. arbitrary but fixed
ne N and m — oo.

3.2 An estimate for the Laplace transforms

Lemma 1. For fixed u > 0 and z € R such that an/nflzl <u for N, ,, — oo the Laplace transforms
hym(2) = E(e*¥»m), as defined in (4), according to the ¢ (t) and v(t) given in Theorem 1, satisfy

k
(k+1)

l o)
“hp(2) + *+D Rpyer-a(@) =hy(z)-e Ml

uniformly overd +1 <[l <N, , and 0<k <N, , — L

Remark 4. The functions ¢(t) and v(t), appearing in the definition (4) of h,, ,(z) = E(e*"),
are actually a priori unknown; they are determined via the differential equations (8) and (9) such
that the statement of Lemma 1 is true. However, in order to present the proof of the lemma above
in a clear manner it is beneficial to reverse the order of argumentation, making the proof more
transparent. The condition an,/,f|2| < u is natural with respect to the fact that we are interested,

see Lemma 5, in the normalized quantities h,, ,,(z /an,/rf) and g, ,,(z/N r}/nf)

Proof. In order to obtain the stated asymptotic expansions of ﬁhk)l,b(z) and @hkﬂykd (z) we
note first that

e ko ko piy —p +&
Kb =3 X T-b Ny —b 1- > ! Ny (1= =)
k1 ’ ki
: . 5
3 k+c Kk N c N bpy;+c (5)
Prtel-d = k+c+1-d h Nk,l —-b Nk,l -b ~ Pil Nkl(l - NL)
2 k,l

We apply Taylor’s theorem to the smooth functions ¢(t) and v(t), as defined in Theorem 1,

and obtain first order approximations of ¢ (py—), ¥(Pki—s) and ¢(Prrei—a), W(Prsei—a) at pi
valid for all k and [. The error term in the first order approximation is uniformly bounded for

all k and [, i.e. uniform upper bounds are given by (b + ¢)* - max,cfo11{1¢” (DI} - (b + 1)2/N,il
and (b + ¢)? - maxte[o,l]ﬂw//(t)'} -(b+ 1)2/NkZJ, respectively, due to the fact that 0 < p;; < 1,
Ny =k+1>d+1>b+1 and that ¢”(t) and ¥”(t) are continuous functions on [0,1]. By
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definition of h,, ,,(2), (4), we readily obtain

2
hk,l—b(z) = hk,l(z) 1 €Xp ( - Zb¢(Pk,z) +prk,l¢/(pk,l) - %b“k/)(lok,z))
2

z / 21
X exp (Ebpk,ﬂ/’ (o) + ﬁ(N—“)),
’ (6)
Bice-a(2) = hi () - exp (3(c — D)p (i) +2((d — pyy + )9 (i) ) %
22 22 , ]
xexp (5 (e = Do) + 5 (@ = Ipgy + W (o) +0( ),

where the error term is uniform in both k and [ due to our previous considerations. Subsequently,
we use the auxiliary quantities

At =b(prid" (o) — ¢ (o)), By = ((c —d)p(pr) + ((d = )py—y +)p" (k1))
Cri =b(pr1¥'(prs) — ¥ (o)), Diy = ((c=d(pr)+((d = )pry + )Y (1), (D)

in order to write (6) as

2

h (z) = hy (2) - ex (zA +Z—C +ﬁ(ﬂ))
kl—b k.l p ol Ty Skl Nei 5

2
z |z|
hiici—a(2) = hy (2) - exp (ZBk,z + =D + 0(—))-
2 Ny
We obtain by expansion at z =0

k .hk,l—b(z)_i_ l .hk—t-c,l—d(z)_
k+1 hg(z)  k+1 hgyz)

k z2 |z| l # il
_ exp (zAk,z + 5 G+ o( )) P (sz,l + Dyt + 0(]%))

k+1 Nt
Z2
=1+2(px A + (1 — P )Br) + E(Pk,l(Ai,z + Cry)

|z
+(1- Pk,z)(B;il + D))+ ﬁ(N—)-
k.l

The error term, obtained by third order Taylor approximation of exp(z2) and second order approx-
imation of exp(z), is again uniform in both k and [. Note again that by definition 0 < p;; <1, for
all k and [; moreover, we get uniform upper bounds for the quantities A ;, By ;, Cy; and Dy ; using
upper bounds for the absolute values of the functions ¢ (t), 1(t) and their derivatives on the unit
interval. Furthermore, we use the fact that |z| = ﬁ(%). The coefficient of z is zero,

PiiAki + (1 — pr)Biy =0, ®

since it is readily checked that the function ¢ (t), as given in Theorem 1, satisfies the differential
equation stated below on the interval [0, 1] with initial condition ¢ (1) = 1.

th(tdp'(t)— ¢(£)) + (1 —t)((c —d)p(t) + (t(d —c) +c)¢p'(t)) = 0.



590 Electronic Communications in Probability

Moreover, the coefficient of z2 also equals zero,
Pk,z(A?(,l +C)+ (1 - Pk,l)(Bzil +Dy) =0, )

since the function 1 (t), as given in Theorem 1, satisfies the differential equation stated below on
the interval [0, 1] with initial condition y)(1) =0

P ()t (b +c—d)+t(d = 2c)+¢) = (t)(t(b+c —d) +d —¢) = F(t),
with inhomogeneous part F(t) given by

F(t) = (t = 1)(¢'(0)(t(d — ) + ) + (c = d)p(£))*) — b2t (e (1) — p(¢))*.
Consequently, we get the result

ko heyop(2) U hge-a(®) |z |z]
st LK =14 0(—) = exp(0(—)). 10
k+l hk,l(z) k+l hk,l(z) (Nk,l) exp( (Nk,l)) ( )

O

Next we study the roots of the function v (t) in order to ensure that the random variable X,

defined by X ;’m = )M, is well defined for all n,m > 1.

VN ¥ (Prm)

Lemma 2. The function vy (t), as given in Theorem 1, has no roots in the half-open interval [0, 1).
Furthermore, Y(t) > 0 for t € [0,1) and 4(1) = 0.

Proof. We first consider the case b # ¢, 2c. The function 1)(t) is given by

27,2 2 2 2
Wt) = bc(bc 2c*)t* — (b* —4¢c*)t — 2c* —cb (bt +c(1 t)))”%+ bc ((bt +c(1 t)))ﬁ.
(b—2c)(b—c)t+c)? b b—2c b
It has a roots at t = 1 and another root at t = ¢/(c — b). In the case ¢ > b > 0 it follows that
¢/(c—b) > 1. If the converse is true b > ¢ > 0 then c¢/(c —b) < 0. Altogether, for b # c this implies
that c/(c—b) ¢ [0, 1]. Moreover, it can be shown by tedious but routine calculations that v(0) > 0,
and further 4(t) > 0 for t € (0, 1). Next we consider the case b = ¢ with 1(t) = cexp(t — 1)y, (t)
and 1,(t) = (t2 — 3t + 3)exp(t — 1) — 1. The function v(t) is zero exactly when 1 (t) is zero.
We note that 1;(0) = 3e™! — 1 > 0 and that 1;(1) = 0. Moreover, 1);(t) is strictly decreasing
on the interval (0, 1). By continuity of v, (t) the function 1;(t) has no root in [0, 1). Therefore,
the function 1 (t) has no root in [0,1). Similar arguments can be used for the remaining case
b=2c. O

Note that many computer algebra systems deliver a wrong solution for y(t). We remark the
special solutions for the cases b = ¢, and b = 2¢, can be obtained from the general solution v(t)
for b # c,2c by taking the appropriate limits.

An immediate application of Lemma 2 is the following result concerning the value ¥(p,, ).

Lemma 3. For N, ,, = n+m — oo, such that p, ,, = n/(n+ m) is bounded away from 1, the value
Y(pn,m) is bounded away from 0, with function v(t) as given in Theorem 1.
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3.3 Relating the Laplace transforms

We have proven in Lemma 1 that the Laplace transforms hn,m(z), as defined in (4), of the normal
distributed random variables Y, ,, almost satisfy the recurrence relation 3 with respect to an error
term as given in Lemma (1). The next result relates the Laplace transforms g, ,(z) = E(e*Xnm)
and h,, ,, = E(e*"»n) of the random variables X,, ,, and Y,, ,,.

Lemma 4. For fixed u > 0 and z € R such that Nr}/rf|z| < u, we have

gkl(z)—hkl(z)exp(ﬁ(|2|ZNO+ b )

uniformly over d <l <N, ,, and 0 <k <N, ,, — [, where k +1 =N, +ib, with 1 < N, <d.

Proof by induction. We proceed exactly along the lines of Pittel [16] by using induction with re-
spect to the total number of balls N, ,, contained in the urn. By definition of ¢(t) and v (t), see
Theorem 1, we have g, ,(z) = h,, o(2) for all n € IN. There exists a constant A > 0 such that for all
Ny <d

8nm(2) = exp(nz) < hy, ,(2) exp (Alz]).

The starting point for the induction is Ny, with 1 < N, < d. We assume now that the constant
A > 0 is large enough such that

811(2) S hy(z)exp (7&|Z|ZN +rb

and also

l (\Z\)
k+lhkl b(z)+k+lhk+cl d(z)<hk1(z) e Mkl

for all k € N and [ € N with k +1 = N, + ib, with 0 <i < j and j = j(N,,) with respect to
Npm = jb+Ny. Then we have for k +1 =N, ,, = jb+ N,

l
1-p(2) + k__l_lgk+c,l—d(z)

k
gri(z) = 1%k

l
(k—Hhkl 8(2) + 1 hire—a(2)) exp WZ'ZN —))

L M
No+rb | K+l

< hyi(z) exp (A|z|2 =) =hy(z)exp (A|z|2

Ny + rb
The other direction is proven as follows. There exists a constant A’ > 0 such that forall k+1 < d

hy (2) < g i(z)exp (A'z]).

Choosing the same N, as before, with 1 < N, < d, we assume now that the constant A’ > 0 is
large enough such that

hia(2) < gra(z)exp (X lle N5
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and also according to Lemma 1

hii—p(2) + ——hpye - d(Z)) - €Xp ( N,ldl) > hy 1 (2).

l
(k+l k+1
for all k € N and | € N with k +1 =N, +ib, with 0 <i < j. Then we have for k +1 =N, ,

k
hkl(z)_( T hy—p(2 )+

e a@) e (50

l
k+1

k l
< (g @+ gk+c1d(z))exp(x|z|ZN+rb

gri() exp (A|z|2

N—l—rb

We can write

1 N N
E(\y(j+1+?°)—qz(1+?°)),

j
ZN0+rb bZ

where ¥(t) = % logI'(t) denotes the Digamma function, see [1]. Using the asymptotic expansion
of the Digamma function ¥(n + 1) =logn + 1/n + 6(1/n?) and setting Npm =Ny + jb we get

N°+r

j
Z No+rb —logNnm,

r=1

O

Lemma 5. Assume that N,, ,, = n+ m tends to infinity, with p,, ,, bounded away from one. Then, for
_ Xom—Nom®(Pnm) -

every fixed z € R the Laplace transform of X == o) is given by
2 logN,,

* z
E(e™in) = expl(5) + O(———F—

QP(Pn m)\/ n,m

Proof. By Lemma 3 v(p, ) is bounded away from zero, and consequently the value of the ex-
pression 1/4/4(p,, ) is bounded. By definition of X = and g, ,(z), see (3), we have

N ¢ (Pnm)
E(e™n) = gn,m(m) ex _Zm\/#n,m)).

Using Lemma 4, the expansion of the Digamma function, and the definition of the h,, ,,(2), see (4),
we obtain

—— ®(Pnm)
—_ Nnm—’
v \/w(pn,m))

]E(exp(zX:’m)) =h

on ()
Ny (Pnm)

X exp (Q(M))

V Nn,mq:b(pn,m)
2 2

= exp (%) exp (ﬁ(ﬂ)) = exp (%) + o logNn,m ).

V Nn,mw(pn,m) V Nn,mw(pn,m)
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Corollary 1. The random variable X:,m is asymptotically normal distributed.

Proof. By Curtiss’ theorem [4] the pointwise convergence of the sequence of moment generat-
ing functions implies the weak convergence of the corresponding sequence of random variables.
Hence, by Lemma 5 we obtain the asymptotic normality of the random variable X~ . O

4 Proofs for the other regions

In order to prove the results in the cases two to four of Theorem 1, with n tending to infinity
and p,,, — 1, we proceed differently by studying directly the probabilities P{X,,,, = k}. The
distributional equation (2) implies the following recurrence relation for the probabilities P{X,, ,, =
k}.

n

]P{Xn’m = k} = (n + m)
Onk, forn=0,m<d.

m
Py =k} + —— P{Xppema =k}, n=0,m>d,
e (ntm) =~ rrem an

where 6, denotes the Kronecker delta function.

4.1 The degenerate case

We consider the fourth case of Theorem 1. In order to obtain a closed formula for P{X,, ,, = n}
we use the recursive description of the probabilities IP{X,, ,, = k} as stated in (11). The number of
white balls is non-decreasing, in other words P{X, .., =n} =0, for all £ > 1 and m > 0. Hence,
we get for k = n the simple recurrence relation

_n
B (n+m).

P{X, , =n} P{X,n-p=n}, m=>d, n>0.

This recurrence relation is readily solved and we get the following explicit expression for P{X,, ,, =
n}, valid for m > 0 and n > 0.

d m—d _
Y G S el S )

n
P{X,,=n}= = —
i o (n+m—£b) bLTdJ+11“(”T’”+1)

3
|

In order to obtain an asymptotic expansion of P{X, ,, = n} = P{X,,,, —n = 0} for n — oo and
m < /n we will use Stirling’s formula for the Gamma function

I(x) = (E)%( +%+ﬁ+ﬁ(%)), (12)

and the following expansion of (1 + %)" with respect to n tending to infinity and x = x(n),
x < n?3,
(1+2)" = exp (nlog(1+ ) = exp ( x2+0(x3)) (13)
) =exp(nlog ) =exp (x — o 3))-



594 Electronic Communications in Probability

Application of (12) and (13) gives for m = o(4/n) the asymptotic expansions

ntm

n+m m—d (%) b

_| m=d n+m
L b J /27'[ n+m (%) 5o+ /_27'5
z » I +1)~ ; :
eb /= b 354/%

=

By combining the stated asymptotic expansion we obtain the result

m=d -
R Grated et |
P{X,,=n}= — ~1, orequivalently P{X,,—n=0}~1.

pUF (M 4 1)

4.2 The Poisson case

We study the third case of Theorem 1 and derive a closed formula for P{X,,, = n + ck}, for
arbitrary k > 0, from the recurrence relation 11 using combinatorial arguments with respect to
the weighted lattice path description of the evolution of the urn model, see Subsection 1.2. This
allows to determine exactly the numerator r(n, m, k) and the denominator s(n,n, k) of P{X, ,, =
n+ck} = r(n,m,k)/s(n,n,k). The probability P{X, ,, = n + ck} corresponds to all possible
evolutions of the urn starting with n white balls and m black balls and ending with n + ¢ - k white
balls. The increase of ¢ - k white balls corresponds to exactly k draws were a black ball is chosen,
in all other draws a white ball is chosen. In each of these k draws we add ¢ white balls and remove
d = b + ¢ black balls. First we have to determine the number of draws until the evolution of the
urn stops with respect to the initial configuration of n white and m black balls. Since the evolution
of the urn continues until m < d and we assume that there are exactly k draws were a black ball
is chosen and consequently d black balls removed, we have [@J + 1 draws were a white

ball is chosen. Consequently, there are a total of ij + 1 + k draws until the evolution of

the urn stops. Due to the fact that the urn is balanced, —b = ¢ — d, the denominator s(n,n, k) of
P{X, n, =n+ ck} is given by the closed formula

[m—(l;)+1)d J+k Lm—(k-%—l)d

b J+1+kl—~(n+_m +1)
s(n,n, k)= (n+m-—1b)= — b .
g (e — [ - k)

(14)

The k events that a black ball is drawn, which leads to an addition of ¢ white balls and the removal
of d black balls, occur during the [@J +1+k draws: the first draw of a black ball can happen

at stage £; + 1 of the evolution of the urn, with 0 < ¢; < L@J. The upper bound is due to

the fact that we still have to draw k — 1 black balls until the evolution of the urn stops, i.e. m < d.
The second draw of a black ball can happen at stage ¢, + £, + 2 of the evolution of the urn, with
0=<¢, =< I_m_deJ —£,. Similar arguments provide the possible ranges for all of the k draws of
black balls. Each of such event of drawing a black ball happens with probability proportional to
the number of blacks balls in the urn. Hence, the numerator r(n, n, k) of P{X, , = n+ck} is given
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by
I. (k+l)dj Lm de Zl

r(n,m,k) = Z (m—bey) Z (m—d—bl, — bl,)..

LdeJ—(él+~~+ék71) (15)
> (m=(k=1)d=b(l;+ - +{_y))

=0

xnh(n+e)...(n+ (k= 1)c)(n+ ko) 5

I N B (oY A9

We observe that r(n, m, k) is for arbitrary but fixed k > 0 asymptotically given by

G L23E-t,
r(n,m, k) ~ nt" 5+ D1 (m=bt)) D (m—d-bt;—bly)...
£,=0 £,=0

L2 = ++r)

DT (m—(k=1)d = bl +--+ ).

=0

We will use Euler’s summation formula, see i.e. [8], to obtain the leading term with respect to m
in the expression above. It is more instructive to slightly extend the “sum”-notation, and rewrite
the expression for the numerator in the following way

m -4 L _dk=1)
b b b
m—(k+1)d
Com e S 6 3 b X e 09
smomleld ) =Rk =R

By application of Euler’s summation formula we obtain the leading term

k m (k+1)dJ+l k d d 2k Lm_(k-H)dJ"'lbk

r(n,m, k) ~ nt t1t2 Ltdty .. dty = FerTon b
m—(k+1)d
— HL7“J+1

bk2kk!”
By our assumptions n — oo and m ~ A/n, we get further
2k

lnxf(k+l)dJ+1
bk2kk! ' ’

r(n,m, k) ~

n

An asymptotic analysis of the denominator using Stirling’s formula (12) and (13) finally gives the

desired result

2k a2

P{X,,, =n+ck}~ k=o.

bk 2kk1 © "

4.3 The intermediate case

Our results for the region m ~ +/n show that (X, ,, —n)/c is asymptotically Poisson distributed
with parameter A = A(n,m) = m?/(2bn). Our aim is to extend this result to the region v/n <



596 Electronic Communications in Probability

m < n?/3. It seems difficult to extend this result beyond m ~ n??, due to the expansion of the

denominator s(n, m, k) with respect to 13. Moreover, the results of [10] suggest that for m = o(n)
the expectation satisfies the expansion

cm? m?®
E(Xpm)=n+ 2bn + ﬁ(F)
We will use the following well known result concerning the asymptotic normality of Poisson dis-
tributed random variables [3].

Lemma 6. Assume that the sequence of random variables (X,),c is Poisson distributed with pa-
rameter A,, where A, — 00 as t tends to infinity. Then X,, suitably centralized and normalized, is
asymptotically normal distributed,

P{X, <A, +x-1/A}— ®(x), forx€eR,

x  _ad C o .
where ®(x) = \/%7 f € 2 du denotes the standard normal distribution function.

By Lemma 6 and we have to show that (X,,,, —n)/c is asymptotically Poisson distributed with
parameter A = A(n, m) = m?/(2bn),

_ k
pien Tl < gy (e ?—f)(l +o(1)),

c

for k = A+x-+/A, with arbitrary but fixed x € R. Then, an application of Lemma 6 proves the nor-
mal limit. Since we already know that the probabilities P{X, ,, —n < ck} = r(n,m,k)/s(n,m, k),
with r(n, m, k) and s(n, m, k) given by (15) and (14), respectively, the remaining obstacle is to re-
fine our previous results and to obtain a uniform bound on the error term in the expansion of the
numerator r(n,m, k) (15) and the denominator s(n, m, k) (14), with respectto 1 <k < A+x-+/A
and A = A(n,m) = m?/(2bn). First we observe that

—(k

A" < bt ) L (n+ (k — 1)) (n + k)l T

< (n+ ko)

for all choices of £1, ..., £, uniformly for k < A+ x - /A, and arbitrary but fixed x € R. We obtain
the uniform asymptotic expansion

3
m=(k+1)d

m—(k+ m
nti(n+ o)z, (n+ (k — 1)e)e(n+ ko)l ™5 H-Tim b — gl ™54 (1 4 (=),
n

By application of Euler’s formula we get

d d(k-1
GL—5 ljey— 41

b b m2k m3
k = — —
D D D NS e )
G- =R Le=5 -1

uniformly for k < A+ x - vA. Consequently, we get the required uniform expansion of the numer-
ator r(n,m,k) (15). Using similar uniform expansion of the denominator s(n,m, k), as given in
(14), and combining the two estimates, we finally obtain

k Af 3
Pon—n<c-kp= (et )0+ 0’(%)),
=0 ©°
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which implies that (X, ,,—n)/c is asymptotically Poisson distributed with parameter A = A(n, m) =
m?/(2bn), where A — oo as n tends to infinity, with v/n < m < n?*?. Lemma 6 then gives the
desired result

P n,m_n< m? m? _ m®
{7 o tX E}_<I>(x)(1+o(1))(1+0(¥))Nq’(x)-

5 Exact solvability - An outlook

As mentioned in the introduction Hwang et al. [10] obtained simple expressions for the exact
probability distribution of X, ,, in the case of the original cannibal urn model b = ¢ = 1 and
d = 2, which allows to give a complete description of the limiting distributions of X, ,,,. We obtain
from (2) the following recurrence for the probability generating function f, ,,(v) = E(v*un) =

Yoo Py m = k}vE of X, .

fn+cm d(v) fornZO,mZd

Fam() = (n+m) Sumen(Y )+( +m) ’ 17)

fao(@)=v", forn>0,m<d.

Concerning explicit solutions, such recurrences can be treated with ordinary (bivariate) generating
functions leading to first order partial differential equations, see [9, 10]. However, a big problem is
that inhomogeneous part is not determined by the initial conditions, due to the terms f,, . ,,_q(V).
The easiest way to overcome this deficit is to restrict the number of white balls to multiples of ¢ and
to study modified probability generating functions fn,m(v) of X, m, defined by fn,m(v) = # fenm().
One gets y y ;

(cn+m)fy () = enfy oy () + M+ Dfiy g (V) for m>d.

The generating function H(z,w) = Zn>0 Do d fn’m(v)z”w’" satisfies a second order partial differ-
ential equation

wiH,, (z,w) + (dw? + cz(w® — 1)H,(z,w) — wH,,(z,w) = B(z,w, V),

where the inhomogeneous part B(z,w, v) is now fully specified by the initial conditions,

d-1 d-1
B(z,w,v) = cvze”*wb Z wm 4+ wive?? Z(m +d)w™.
m=b m=0

We have already seen in the normal limit part of the main result, Theorem 1, that the case b =
¢ =1 and d = 2 is somewhat special. Indeed, for b = ¢ =1 and d = 2 one may use additional
weights ("J;m) /(m+1) in order to reduce the problem to a first order partial differential equation,
whereas for b # ¢ this is not possible.
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