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Abstract
We consider the interlacement Poisson point process on the space of doubly-infinite Zd -valued
trajectories modulo time-shift, tending to infinity at positive and negative infinite times. The set of
vertices and edges visited by at least one of these trajectories is the graph induced by the random
interlacements at level u of Sznitman [9]. We prove that for any u> 0, almost surely, the random
interlacement graph is transient.

1 Introduction

The model of random interlacements was recently introduced by Sznitman in [9]. Among other
results in [9], he proved that the random interlacement graph is almost surely connected. This
result was later refined in [6] and [7] by showing that every two points of the random interlace-
ment graph are connected via at most dd/2e random walk trajectories, and this number is optimal.
In this paper we further exploit the method of [7] in order to show that the graph induced by the
random interlacements is almost surely transient in dimensions d ≥ 3.

1.1 The model

Let W be the space of doubly-infinite nearest-neighbor trajectories in Zd (d ≥ 3) which tend to
infinity at positive and negative infinite times, and let W ∗ be the space of equivalence classes of
trajectories in W modulo time-shift. We write W for the canonical σ-algebra on W generated by
the coordinates Xn, n ∈Z, andW ∗ for the largest σ-algebra on W ∗ for which the canonical map π∗

from (W,W ) to (W ∗,W ∗) is measurable. Let u be a positive number. We say that a Poisson point
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measure µ on W ∗ has distribution Pois(u, W ∗) if the following properties hold: for a finite subset
A of Zd , denote by µA the restriction of µ to the set of trajectories from W ∗ that intersect A, and by
NA be the number of trajectories in Supp(µA), then µA =

∑NA
i=1 δπ∗(X i), where X i are doubly-infinite

trajectories from W parametrized in such a way that X i(0) ∈ A and X i(t) /∈ A for all t < 0 and for
all i ∈ {1, . . . , NA}, and

(1) The random variable NA has Poisson distribution with parameter ucap(A) (see (2.2) for the
definition of the cap(A)).

(2) Given NA, the points X i(0), i ∈ {1, . . . , NA}, are independent and distributed according to the
normalized equilibrium measure on A (see (2.8) for the definition).

(3) Given NA and (X i(0))
NA
i=1, the corresponding forward and backward paths are conditionally

independent, (X i(t), t ≥ 0)NA
i=1 are distributed as independent simple random walks, and

(X i(t), t ≤ 0)NA
i=1 are distributed as independent random walks conditioned on not hitting A.

Properties (1)-(3) uniquely define Pois(u, W ∗) as proved in Theorem 1.1 in [9]. In fact, Theo-
rem 1.1 in [9] gives a coupling of the Poisson point measures µ(u) with distribution Pois(u, W ∗)
for all u > 0, but we will not need such a general statement here. We also mention the following
property of the distribution Pois(u, W ∗), which will be useful in the proofs. It follows from the
above definition of Pois(u, W ∗).

(4) Let µ1 and µ2 be independent Poisson point measures on W ∗ with distributions Pois(u1, W ∗)
and Pois(u2, W ∗), respectively. Then µ1 +µ2 has distribution Pois(u1 + u2, W ∗).

We refer the reader to [9] for more details. For a Poisson point measure µ with distribution
Pois(u, W ∗), the random interlacement graph I = I (µ) (at level u) is defined as the subgraph of
Zd induced by µ, i.e., its vertices and edges are those that are traversed by at least one of the
random walks from Supp(µ). It follows from [9] that I is a translation invariant ergodic random
subgraph of Zd .
We consider the simple random walk on the graph I , with uniform edgeweights, i.e., at each step
the random walker moves to a uniformly chosen neighbor of the current vertex. We say that a
graph is transient if the simple random walk on the graph is transient. Since I is a translation
invariant ergodic random subgraph of Zd , it is transient with probability 0 or 1.

1.2 The result

Our main result is the following theorem.

Theorem 1. Let d ≥ 3 and u> 0. Let µ be a random point measure on W ∗ distributed as Pois(u, W ∗),
and P be the law of µ. Then, P-a.s., the random interlacement graph I = I (µ) is transient.

The main ingredient of the proof of Theorem 1 is Proposition 1. For x , y ∈ Zd and a positive

integer r, we write x
I∩B(r)
←→ y if there is a nearest-neighbor path in I that connects x and y and

uses only vertices of I from the l∞-ball of radius r centered at the origin. (In particular, x and y
must be vertices in I ∩ B(r).)

Proposition 1. Let d ≥ 3 and u > 0. Let I be the random interlacement graph at level u. There
exist constants c = c(d, u)> 0 and C = C(d, u)<∞ such that for all R≥ 1,

P






I ∩ B(R) 6= ;,

⋂

x ,y∈I∩B(R)

§

x
I∩B(2R)
←→ y

ª






≥ 1− C exp

�

−cR1/6
�

. (1.1)
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Remark 1. The exponent 1/6 is not optimal, but suffices for the proof of Theorem 1. In fact,
Theorem 1 follows if the probability in (1.1) tends to 1, as R→∞, faster than any polynomial.

Remark 2. Random interlacements were defined on arbitrary transient graphs in [10]. It was
proved in [11] that for any transient transitive graph G, the interlacement graph on G is almost
surely connected for all u> 0 if and only if G is amenable. The following question arises naturally:
does Theorem 1 hold for any transient amenable transitive graph?

2 Notation and facts about Green function and capacity

In this section we collect most of the notation, definitions and facts used in the paper. For a ∈ R,
we write |a| for the absolute value of a, bac for the integer part of a, and dae for the smallest
integer not less than a. For x ∈ Zd , we write |x | for max

�

|x1|, . . . , |xd |
�

. For a set S, we write |S|
for the cardinality of S. For R> 0 and x ∈Zd , let B(x , R) = {y ∈Zd : |x − y| ≤ R} be the l∞-ball
of radius R centered at x , and B(R) = B(0, R). We denote by 1(A) the indicator of event A, and by
E[X ; A] the expected value of random variable X1(A).
Throughout the paper we always assume that d ≥ 3. For x ∈ Zd , let Px be the law of a simple
random walk X on Zd with X (0) = x . We write g(·, ·) for the Green function of the walk: for
x , y ∈ Zd , g(x , y) =

∑∞
t=0 Px[X (t) = y]. We also write g(·) for g(0, ·). The Green function is

symmetric and, by translation invariance, g(x , y) = g(y − x). It follows from [2, Theorem 1.5.4]
that for any d ≥ 3 there exist a positive constant cg = cg(d) and a finite constant Cg = Cg(d) such
that for all x and y in Zd ,

cg min
�

1, |x − y|2−d
�

≤ g(x , y)≤ Cg min
�

1, |x − y|2−d
�

. (2.1)

Definition 2.1. Let K be a subset of Zd . The energy of a finite Borel measure ν on K is

E (ν) =
∫

K

∫

K

g(x , y)dν(x)dν(y) =
∑

x ,y∈K

g(x , y)ν(x)ν(y).

The capacity of K is

cap(K) =
�

inf
ν
E (ν)

�−1

, (2.2)

where the infimum is over probability measures ν on K . (We use the convention that ∞−1 = 0,
i.e., cap(;) = 0.)

The following properties of the capacity immediately follow from (2.2):

Monotonicity: for any K1 ⊂ K2 ⊂Zd , cap(K1)≤ cap(K2); (2.3)

Subadditivity: for any K1, K2 ⊂Zd , cap(K1 ∪ K2)≤ cap(K1) + cap(K2); (2.4)

Capacity of a point: for any x ∈Zd , cap({x}) = 1/g(0). (2.5)

It will be useful to have an alternative definition of the capacity.

Definition 2.2. Let K be a finite subset of Zd . The equilibrium measure of K is defined by

eK(x) = Px [X (t) /∈ K for all t ≥ 1]1(x ∈ K), x ∈Zd . (2.6)
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The capacity of K is then equal to the total mass of the equilibrium measure of K:

cap(K) =
∑

x

eK(x), (2.7)

and the unique minimizer of the variational problem (2.2) is given by the normalized equilibrium
measure

eeK(x) = eK(x)/cap(K). (2.8)

(See, e.g., Lemma 2.3 in [1] for a proof of this fact.)

As a simple corollary of the above definition, we get

Px
�

HK <∞
�

=
∑

y∈K

g(x , y)eK(y), for x ∈Zd . (2.9)

Here, we write HK for the first entrance time in K , i.e., HK = inf{t ≥ 0 : X (t) ∈ K}. We will
repeatedly use the following bound on the capacity of B(0, R) in d ≥ 3 (see (2.16) on page 53 in
[2]): there exist constants cb = cb(d)> 0 and Cb = Cb(d)<∞ such that for all positive R,

cbRd−2 ≤ cap (B(0, R))≤ CbRd−2. (2.10)

Finally, we will often use in the proofs the following large deviation bounds for the Poisson dis-
tribution, which can be proved using the exponential Chebyshev enequality. Let ξ be a random
variable which has Poisson distribution with parameter λ, then

P [λ/2≤ ξ≤ 2λ]≥ 1− 2e−λ/10. (2.11)

Throughout the text, we write c and C for small positive and large finite constants, respectively,
that may depend on d and u. Their values may change from place to place.

3 Proof of Theorem 1

We recall the following result about an equivalent characterization of the transience of simple
random walk on a graph. The statement and proof of a more general theorem about an equivalent
characterisation of the transience of reversible Markov chains can be found on page 398 of [3].

Lemma 1. Let G = (V, E) denote a countable, simple graph in which the degree of each vertex is
finite. The simple random walk on G is transient if and only if there exist real numbers (u(x , y))x ,y∈V
with the following properties:

(i) u(y, x) =−u(x , y) and u(x , y) 6= 0 only if {x , y} ∈ E,

(ii)
∑

x∈V

�

�

�

∑

y∈V u(x , y)
�

�

�<∞ and
∑

x∈V

�

∑

y∈V u(x , y)
�

6= 0,

(iii)
∑

x∈V

∑

y∈V u(x , y)2 <∞.

We refer to a function (u(x , y))x ,y∈V satisfying (i) as a flow on G and u(x , y) as the amount of net
flow from vertex x to vertex y . We say that

∑

y∈V u(x , y) is the net influx at vertex x . Condition
(ii) states that the influxes are absolutely summable (this can be thought of as a relaxation of
Kirchoff’s law) and that there is a nonzero net influx into the network. Condition (iii) says that
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the Thompson energy of the flow is finite. We are going to prove Theorem 1 by constructing such
a flow on the graph I .
Denote by Sd the d-dimensional Euclidean unit sphere. Given v ∈ Sd and ε ∈ (0, 1), we define the
graph I (v,ε) by

I (v,ε) = I ∩
∞
⋃

n=1

B(nv, nε). (3.1)

The set
⋃∞

n=1 B(nv, nε) is roughly shaped like a paraboloid with an axis parallel to v. We denote
by C∞(v,ε) the maximal subgraph of I (v,ε) in which every connected component is infinite. (If
I (v,ε) does not contain an infinite connected component, we set C∞(v,ε) = ;.)

Lemma 2. For any u> 0 and 0< ε < 1, we have

P





⋃

M≥1

¦

∀ v ∈ Sd : B(M)∩C∞(v,ε) 6= ;
©



= 1. (3.2)

Proof. For any z ∈Zd , define the events

Az =

¨

∀ x , y ∈ I ∩ B(z,
1

4
|z|ε) : x

I∩B(z, 1
2
|z|ε)

←→ y

«

, Bz =
�

I ∩ B(z,
1

8
|z|ε) 6= ;

�

.

It follows from the Borel-Cantelli lemma and Proposition 1 that P(lim infz∈Zd Az ∩ Bz) = 1, i.e.,
almost surely the number of z ∈Zd for which Az ∩ Bz does not occur is finite.
Note that there exists an integer m such that for every v ∈ Sd , there exists a Zd -valued sequence
(zi)∞i=1 with z1 ∈ B(m) and |zi | → ∞, such that for all i, (a) B(zi ,

1
2
|zi |ε) ⊂

⋃∞
n=1 B(nv, nε) and

(b) B(zi ,
1
8
|zi |ε) and B(zi+1, 1

8
|zi+1|ε) are subsets of B(zi+1, 1

4
|zi+1|ε). Indeed, one can take, for

example, a discrete approximation of the Rd -valued sequence ((i + i0)v)∞i=1 for large enough i0.
(Note that i0 can be chosen independent of v.)
Let M be an almost surely finite random variable such that, for all v ∈ Sd and i ≥ M , the events
Azi

and Bzi
hold. Then, for all i ≥ M , I ∩ B(zi ,

1
8
|zi |ε) 6= ;, and every vertex in I ∩ B(zi ,

1
8
|zi |ε) is

connected to every vertex in I ∩ B(zi+1, 1
8
|zi+1|ε) by a path in I (v,ε). This implies (3.2).

Definition 3.1. It follows from Lemma 2 that we can almost surely assign (in a measurable way)
to every v ∈ Sd a (random) simple nearest-neighbor path wv = (wv(n))∞n=0 in the graph I (v,ε).
In particular, for all n 6= m ∈N, wv(n) 6= wv(m), and limn→∞ |wv(n)|=∞.

Our construction of the flow u with finite energy is analogous to the proof of Pólya’s theorem in
[4]. For every v ∈ Sd define (uv(x , y))x ,y∈I to be the unit flow that goes from wv(0) to ∞ along
the simple path wv , more precisely let uv(x , y) = −uv(y, x) = 1 if wv(n) = x and wv(n+ 1) = y
for some n ∈N and, otherwise, let uv(x , y) = 0. With this definition we have

∑

y∈I
uv(x , y) = 1[x = wv(0)]. (3.3)

Note that for any v ∈ Sd the flow uv satisfies (i) and (ii) of Lemma 1, but fails to satisfy (iii).
We define the flow u as the average of the flows uv with respect to v, more precisely let

u(x , y) :=

∫

Sd

uv(x , y)dλ(v)
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where λ is the Haar measure on Sd normalized to be a probability measure.
Now we check that u is a flow with finite energy on I , i.e., the conditions of Lemma 1 hold.
The function u inherits property (i) from the flows uv . From (3.3) it readily follows that we have
∑

y∈I u(x , y)≥ 0 for all x ∈ I and that
∑

x∈I

�

∑

y∈I u(x , y)
�

= 1 holds, from which (ii) follows.
It only remains to show that the energy of u is finite, i.e., (iii) holds. Note that u(x , y) 6= 0 only if
|x − y|= 1. We have

|u(x , y)| ≤
∫

Sd

|uv(x , y)|dλ(v)≤
∫

Sd

1[ x ∈
∞
⋃

n=1

B(nv, nε) ]dλ(v)≤ C
(|x |ε)d−1

|x |d−1
. (3.4)

Now choose 0< ε < 1
4

in Definition 3.1. The corresponding flow u has finite energy:

∑

x∈Zd

∑

y∈Zd

u(x , y)2 ≤
∞
∑

n=1

∑

|x |=n

∑

|x−y|=1

u(x , y)2
(3.4)
≤ C

∞
∑

n=1

∑

|x |=n

n2(ε−1)(d−1)

d≥3
≤ C

∞
∑

n=1

n4ε−2 <∞.

Therefore, the flow u satisfies the conditions of Lemma 1, which proves Theorem 1.

4 Proof of Proposition 1

4.1 Bounds on the capacity of certain collections of random walk trajecto-
ries

The aim of this subsection is to prove Lemma 6 (with Φ(X N , T ) defined in (4.2)), which will be
used in the proof of Lemma 7.
The following lemma is proved in [7] for d ≥ 5, see Lemma 3 there. The cases d = 3, 4 can be
proved similarly. Therefore, we state this lemma without proof.

Lemma 3. Let (x i)i≥1 be a sequence in Zd , and let X i be a sequence of independent simple random
walks on Zd with X i(0) = x i . Let

F(n, d) =







n1/2 if d = 3,

log n if d = 4, and
1 if d ≥ 5.

Then for all positive integers N and n, we have

E





N
∑

i, j=1

2n
∑

s,t=n+1

g
�

X i(s), X j(t)
�



≤ C
�

NnF(n, d) + N2n3−d/2
�

. (4.1)

Let (X i(t) : t ≥ 0)i≥1 be a sequence of nearest-neighbor trajectories onZd , and X N = (X1, . . . , XN ).
For positive integers N and T , we define the subset Φ(X N , T ) of Zd as

Φ(X N , T ) =
N
⋃

i=1

�

X i(t) : 1≤ t ≤ T
	

. (4.2)
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Lemma 4. Let X i be a sequence of independent simple random walks on Zd with X i(0) = x i . There
exists a positive constant c such that for any sequence (x i)i≥1 ⊂Zd and for all positive integers N and
T,

cap
�

Φ(X N , T )
�

≤
N T

g(0)
, and Ecap

�

Φ(X N , T )
�

≥ c min
�

N T

F(T, d)
, T

d−2
2

�

, (4.3)

where the function F is defined in Lemma 3.

Remark 3. Heuristically, Ecap
�

Φ(X N , T )
�

is at least cN T
F(T,d)

when the random walks in X N are

well separated, and at least cap(B(cT 1/2))
(2.10)
≥ cT

d−2
2 when the set Φ(X N , T ) saturates the ball

B(cT 1/2).

Proof. The proof of this lemma is similar to the proof of Lemma 4 in [7], so we give only a sketch
here. (Note that the definition of Φ(X N , R) in [7] is different from the one in (4.2).)
The upper bound on the capacity of Φ(X N , T ) follows from (2.4) and (2.5). Let n= bT/2c. By the
definition of the capacity (2.2) and the Jensen inequality,

Ecap
�

Φ(X N , T )
�

≥ N2n2



E





N
∑

i, j=1

2n
∑

s,t=n+1

g(X i(s), X j(t))









−1

.

The lower bound in (4.3) now follows from Lemma 3.

As a corollary of Lemma 4 we obtain the following lemma.

Lemma 5. Let X i be a sequence of independent simple random walks on Zd with X i(0) = x i . There
exists a positive constant c such that for any sequence (x i)i≥1 ⊂Zd and for all positive integers N and
T,

P
�

cap
�

Φ(X N , T )
�

≥ c min
�

N T

F(T, d)
, T

d−2
2

��

≥
c

(log T )2
. (4.4)

Proof. Remember the Paley-Zygmund inequality [5]: Let ξ be a non-negative random variable
with finite second moment. For any θ ∈ (0, 1), P[ξ≥ θEξ]≥ (1− θ)2 [Eξ]2 /E[ξ2].
We first consider the case d = 3. Note that in this case, min

�

N T
F(T,d)

, T
d−2

2

�

= T 1/2. Since

Φ(X N , T )⊇ Φ(X 1, T ), by (2.3), it suffices to show that

P
�

cap
�

Φ(X 1, T )
�

≥ cT 1/2
�

≥ c.

It follows from (4.3) that Ecap
�

Φ(X 1, T )
�

≥ cT 1/2. On the other hand, the set Φ(X 1, T ) is con-
tained in B(X1(0), M), where M = max{|X1(t)− X1(0)| : 1 ≤ t ≤ T}. Therefore, by (2.3) and

(2.10), cap
�

Φ(X 1, T )
�

≤ C M . In particular, since EM2 ≤ C T , we have E
h

cap
�

Φ(X 1, T )
�2
i

≤
C T . The result now follows from the Paley-Zygmund inequality.
Let d ≥ 4. An application of the Paley-Zygmund inequality and (4.3) gives

P
�

cap
�

Φ(X N , T )
�

≥ c min
�

N T

F(T, d)
, T

d−2
2

��

≥
c min

�

N T
F(T,d)

, T
d−2

2

�2

N2T 2 . (4.5)

We distinguish two cases. If min
�

N T
F(T,d)

, T
d−2

2

�

= N T
F(T,d)

, the result immediately follows from

(4.5) and the definition of F . Otherwise, if min
�

N T
F(T,d)

, T
d−2

2

�

= T
d−2

2 , we take N ′ ≤ N in
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h

T
d−4

2 F(T, d), 2T
d−4

2 F(T, d)
i

. Such a choice is possible, since 1 ≤ T
d−4

2 F(T, d) ≤ N . The result

then follows from (4.5) by observing that cap
�

Φ(X N , T )
�

≥ cap
�

Φ(X N ′ , T )
�

by (2.3).

In the next lemma we show that the capacity of Φ(X N , T ) is large with high probability.

Lemma 6. Let ε ∈ (0,1). Let X i be a sequence of independent simple random walks on Zd with
X i(0) = x i . There exists a positive constant c such that for any sequence (x i)i≥1 ⊂ Zd and for all
positive integers N and T,

P
h

cap
�

Φ(X N , T )
�

≥ c min
�

N T
1−ε

2 , T
(d−2)(1−ε)

2

�i

≥ 1− exp
�

−cT ε/2
�

. (4.6)

Proof. For positive integers N , eT and k, we define the subset Φk(X N , eT ) of Zd by

Φk(X N , eT ) =
N
⋃

i=1

¦

X i(t) : (k− 1)eT + 1≤ t ≤ keT
©

.

It follows from the Markov property, (4.4), and the definition of the function F , that

P
h

cap
�

Φk(X N , eT )
�

≥ c min
�

N eT 1/2, eT
d−2

2

�

| X i(t), i ∈ {1, . . . , N}, t ≤ (k− 1)eT
i

≥
c

(log eT )2
.

Therefore, for any δ > 0,

P






cap







beTδc
⋃

k=1

Φk(X N , eT )






≥ c min

�

N eT 1/2, eT
d−2

2

�






≥ 1−

�

1−
c

(log eT )2

�beTδc

≥ 1−exp
�

−ceTδ/2
�

.

The result follows by observing that
⋃beTδc

k=1 Φk(X N , eT ) ⊆ Φ(X N , beT 1+δc), and by taking ε = δ/(1+
δ).

4.2 Bounds on the capacity of certain subsets of random interlacement

The aim of this subsection is to prove Lemma 10, which states that with high probability for
x ∈ I , the connected component of I ∩ B(x , R) that contains x has large capacity. We prove
the statement by constructing explicitly for x ∈ I a connected subset of I ∩ B(x , R) of large
capacity that contains x . In this construction, we exploit property (4) of Pois(u, W ∗), which allows
to describe I as the union of independent identically distributed random interlacement graphs
I1, . . . ,Id−2. We begin with auxiliary lemmas.
Let A be a finite set of vertices in Zd . Let µ be a random point measure with distribution
Pois(u, W ∗), and µA its restriction to the set of trajectories from W ∗ that intersect A. We can write
the measure µA as

∑NA
i=1 δπ∗(X i) (recall the notation from Section 1.1), where NA = |Supp(µA)|, and

X1, . . . , XNA
are doubly-infinite trajectories from W parametrized in such a way that X i(0) ∈ A and

X i(t) /∈ A for all t < 0 and for all i ∈ {1, . . . , NA}. We define the set Ψ(µ, A, T ) as

Ψ(µ, A, T ) =
NA
⋃

i=1

�

X i(t) : 1≤ t ≤ T
	

. (4.7)
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Lemma 7. Let ε ∈ (0, 1). Let µ be a Poisson point measure with distribution Pois(u, W ∗), then for
all finite subsets A of Zd and for all positive integers T , one has

P
h

cap
�

Ψ(µ, A, T )
�

≥ c min
�

cap(A)T
1−ε

2 , T
(d−2)(1−ε)

2

�i

≥ 1− Ce−c min(T ε/2, cap(A)). (4.8)

Proof. It follows from property (1) of Pois(u, W ∗) that NA has the Poisson distribution with param-
eter ucap(A). Therefore, by (2.11), P

�

NA ≥ ccap(A)
�

≥ 1− Ce−ccap(A). Properties (2) and (3) of
Pois(u, W ∗) imply that given NA, the forward trajectories X1, . . . , XNA

are distributed as independent
simple random walks. Therefore, Lemma 6 applies, giving that

P
h

cap
�

Ψ(µ, A, T )
�

≥ c min
�

NAT
1−ε

2 , T
(d−2)(1−ε)

2

�i

≥ 1− e−cT ε/2 .

The result follows.

Let X be a simple random walk on Zd with X (0) = x . Let µ(2),µ(3), . . . be independent random
point measures with distribution Pois(u, W ∗) (the parameter u is fixed here), which are also inde-
pendent of X . We denote by Px the joint law of X and µ(i)’s. Let T be a positive integer. We define
the following sequence of random subsets of Zd :

U (1)(x , T ) = {X (t) : 1≤ t ≤ T} , (4.9)

and for s ≥ 2 (see (4.7) for notation),

U (s)(x , T ) = Ψ
�

µ(s), U (s−1)(x , T ), T
�

. (4.10)

Note that for each s ≥ 1,
⋃s

i=1 U (i)(x , T ) is a connected subset of Zd . In the next lemma, we show
that for any γ > 0, with high probability, the set

⋃s
i=1 U (i)(x , T ) is a subset of B(x , sT (1+γ)/2).

Lemma 8. Let γ ∈ (0,1). There exist c = c(u, d, s)> 0 and C = C(u, d, s)<∞ such that

Px





s
⋃

i=1

U (i)(x , T )⊆ B(x , sT (1+γ)/2)



≥ 1− Ce−cTγ . (4.11)

Proof. We denote the event {
⋃s

i=1 U (i)(x , T ) ⊆ B(x , sT (1+γ)/2)} by Ds, and its complement by Dc
s .

If s = 1, (4.11) follows from Hoeffding’s inequality: Px

�

Dc
1

�

≤ 2de−Tγ/8. Assume that (4.11) is
proved for s′ < s. Then

Px

�

Dc
s

�

≤ P
�

Dc
s−1

�

+Px

�

Dc
s , Ds−1

�

,

and it remains to show that Px

�

Dc
s , Ds−1

�

≤ Ce−cTγ . Note that if Ds−1 occurs,

|Supp(µ(s)
U (s−1)(x ,T )

)| ≤ |Supp(µ(s)
B(x ,(s−1)T (1+γ)/2)

)|.

(See Section 1.1 for the notation.) Let us denote the right hand side of the above inequality by
N . It follows from property (1) of Pois(u, W ∗) that N has the Poisson distribution with parameter
ucap

�

B(x , (s− 1)T (1+γ)/2)
�

. In particular, using (2.10) and (2.11), we obtain that

Px

�

N ≥ C T (d−2)(1+γ)/2
�

≤ Ce−cT (1+γ)/2 ≤ Ce−cTγ .

On the other hand, properties (2) and (3) of Pois(u, W ∗) imply that

Px

�

Dc
s , Ds−1

�

≤ Px

�

N ≥ C T (d−2)(1+γ)/2
�

+ C T (d−2)(1+γ)/2Px

�

Dc
1

�

≤ Ce−cTγ .

This completes the proof of the lemma.
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The next lemma follows immediately from Lemma 7 and the definition of U (s)(x , T ).

Lemma 9. Let ε ∈ (0,1/2). For any positive integer s, there exist c = c(d, u, s) > 0 and C =
C(d, u, s)<∞ such that for all positive integers T ,

Px





s
⋂

i=1

n

cap
�

U (i)(x , T )
�

≥ c min
�

T
i(1−ε)

2 , T
(d−2)(1−ε)

2

�o



≥ 1− C exp
�

−cT ε/2
�

. (4.12)

Proof. The case s = 1 follows from (4.9) and Lemma 6. Let s ≥ 2. Note that, for c ∈ (0, 1), the
event in (4.12) with cs in place of c is implied by the event

s
⋂

i=1

n

cap
�

U (i)(x , T )
�

≥ c min
�

cap
�

U (i−1)(x , T )
�

T
1−ε

2 , T
(d−2)(1−ε)

2

�o

,

where we set by convention cap
�

U (0)(x , T )
�

= 1. The result now follows (by induction in s) from
(4.12) for s = 1, Lemma 7 and the definition of U (s)(x , T ), see (4.10).

Corollary 1. It follows from Lemmas 8 and 9 that for any ε ∈ (0,1/2),

Px





d−2
⋃

i=1

U (i)(x , T )⊆ B(x , (d − 2)T (1+ε)/2), cap
�

U (d−2)(x , T )
�

≥ cT
(d−2)(1−ε)

2



≥ 1− Ce−cT ε/2 .

(4.13)
In particular on the event in (4.13),

⋃d−2
i=1 U (i)(x , T ) is a connected subset of B(x , (d − 2)T (1+ε)/2).

Let µ be a Poisson point measure with distribution Pois(u, W ∗), and let I be the corresponding
random interlacement graph at level u. (See Section 1.1 for the definition.) For x ∈ I , let C (x , R)
be the connected component of I ∩ B(x , R) that contains x . We define C (x , R) as an empty set
for x /∈ I . In the next lemma we show that for x ∈ I , the capacity of C (x , R) is large enough
with high probability.

Lemma 10. For all ε ∈ (0, 2/3), R> 0, and x ∈Zd , we have

P
�

x ∈ I , cap (C (x , R))< cR(d−2)(1−ε)
�

≤ Ce−cRε/2 . (4.14)

Proof. Let µ(1), . . . ,µ(d−2) be independent Poisson point measures with distribution Pois( u
d−2

, W ∗).
Let P be the joint law of µ(i). By property (4) of Pois(u, W ∗), the measure µ has the same law as
∑d−2

i=1 µ
(i). Therefore, we may assume that µ=

∑d−2
i=1 µ

(i). In particular, the random interlacement

graph I = I (µ) equals
⋃d−2

i=1 I
(i), where I (i) = I (µ(i)) are independent random interlacement

graphs at level u
d−2

, and the vertices and edges of I are the ones of Zd that are traversed by at

least one of the random walks from
⋃d−2

i=1 Supp(µ(i)).
It follows from (4.13) (with T = eR2) and property (3) of Pois( u

d−2
, W ∗) that for any δ ∈ (0,1/2),

eR> 0, x ∈ B(eR) and i ∈ {1, . . . , d − 2},

P
�

x ∈ I (i), cap
�

C (x ,eR1+δ)
�

< ceR(d−2)(1−δ)
�

≤ Ce−ceRδ .

The result follows by taking δ = ε/(2− ε).
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4.3 Proof of Proposition 1

Proposition 1 will follow from Lemma 13, which states that with high probability, any two vertices
from I ∩ B(R) are connected by a path in I ∩ B(CR) for large enough C . This result will follow
from (4.14), (4.15) and property (4) of Pois(u, W ∗).
We begin with auxiliary lemmas. Lemma 11 is standard, so we only give a sketch of the proof
here.

Lemma 11. Let A be a subset of B(R). Let X be a simple random walk on Zd with X (0) = x ∈ B(R).
Let HA be the entrance time of X in A, and TB(r) the exit time of X from B(r). Then there exist c > 0
and C <∞ such that for all R> 0 and x ∈ B(R),

Px

�

HA < TB(CR)

�

≥ cR2−dcap(A).

Proof. We use the identity (2.9). Since A is a subset of B(R), the inequality (2.1) implies that, for
any y ∈ A and x ∈ B(R), g(x , y)≥ cg(2R)2−d . By (2.7) and (2.9), Px

�

HA <∞
�

≥ cg(2R)2−dcap(A).
On the other hand, for y ∈ A and z /∈ B(CR), the inequality (2.1) gives g(z, y)≤ Cg((C −1)R)2−d .
Therefore, by (2.7), (2.9) and the strong Markov property of X applied at time TB(CR), we have
Px

�

TB(CR) < HA <∞
�

≤ Cg((C−1)R)2−dcap(A). The result follows by taking C large enough.

Lemma 12. There exist c > 0 and C < ∞ such that for all R > 0 and for all subsets U and V of
B(R), we have

P

�

U
I∩B(CR)
←→ V

�

≥ 1− C exp
�

−cR2−dcap(U)cap(V )
�

. (4.15)

Proof. Let µ be a random point measure with distribution Pois(u, W ∗). Remember from Section 1.1
that µU =

∑NU
i=1 δπ∗(X i), where NU = |Supp(µU)| and X1, . . . , XNU

are doubly-infinite trajectories
from W parametrized in such a way that X i(0) ∈ U and X i(t) /∈ U for all t < 0 and for all
i ∈ {1, . . . , NU}.
It follows from property (1) of Pois(u, W ∗) and (2.11) that P

�

NU ≥ ccap(U)
�

≥ 1− Ce−ccap(U).
Therefore, by Lemma 11 and properties (2) and (3) of Pois(u, W ∗), we have

P

�

U
I∩B(CR)
←→ V

�

≥ 1−P
�

NU < ccap(U)
�

−
�

1− cR2−dcap(V )
�ccap(U)

≥ 1− C exp
�

−cR2−dcap(U)cap(V )
�

.

In these inequalities we also used the fact that cap(V ) ≤ CRd−2, which follows from (2.3) and
(2.10). The proof is complete.

As a corollary of Lemmas 10 and 12 we get the following lemma.

Lemma 13. There exist c > 0 and C <∞ such that for all R> 0 and x , y ∈ B(R), we have

P

�

x , y ∈ I ,
§

x
I∩B(CR)
←→ y

ªc�

≤ C exp
�

−cR1/6
�

. (4.16)

Proof. Let µ be a Poisson point measure with distribution Pois(u, W ∗), and µ(1), µ(2) and µ(3) be
independent Poisson point measures with distribution Pois(u/3, W ∗). Let P be the joint law of µ(i).
By property (4) of Pois(u, W ∗), the measure µ has the same law as

∑3
i=1µ

(i). Therefore, we may

assume that µ =
∑3

i=1µ
(i), so that the random interlacement graph I = I (µ) equals

⋃3
i=1I

(i),
where I (i) = I (µ(i)) are independent random interlacement graphs at level u/3. In particular,
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the vertices and edges of I are the ones of Zd that are traversed by at least one of the random
walks from

⋃3
i=1 Supp(µ(i)).

Let C (i)(x , R) be the connected component of x in I (i) ∩ B(x , R). In particular, C (i)(x , R) ⊆
C (x , R), but it is not true in general that

⋃3
i=1C

(i)(x , R) = C (x , R). Since R is fixed throughout
the proof, we write C (i)(x) for C (i)(x , R). We have for x , y ∈ B(R),

P

�

x , y ∈ I ,
§

x
I∩B(CR)
←→ y

ªc�

≤
3
∑

i, j=1

P

�

x ∈ I (i), y ∈ I ( j),
§

x
I∩B(CR)
←→ y

ªc�

.

For each i, j ∈ {1,2, 3}, choose k ∈ {1,2, 3} which is different from i and j. By construction, the
set I (k) is independent from I (i) and I ( j). For each such i, j, and k, we obtain

P

�

x ∈ I (i), y ∈ I ( j),
§

x
I∩B(CR)
←→ y

ªc�

≤ P
�

x ∈ I (i), y ∈ I ( j),
�

C (i)(x)
I (k)∩B(CR)
←→ C ( j)(y)

�c�

.

We define the events E1 ⊆ {x ∈ I (i)} and E2 ⊆ {y ∈ I ( j)} as

E1 =
¦

cap
�

C (i)(x)
�

> cR2(d−2)/3
©

, and E2 =
¦

cap
�

C ( j)(y)
�

> cR2(d−2)/3
©

.

We denote the intersection E1 ∩ E2 by E. By Lemma 10 (with ε = 1/3), we get

P
�¦

x ∈ I (i)
©

\ E1

�

+P
�¦

y ∈ I ( j)
©

\ E2

�

≤ Ce−cR1/6
.

Note that C (i)(x) and C ( j)(y) are subsets of B(2R). Therefore, it follows from Lemma 12 and the
independence of I (k) from I (i) and I ( j), that

P

�

E \
�

C (i)(x)
I (k)∩B(CR)
←→ C ( j)(y)

��

≤ CE
�

exp
�

−cR2−dcap
�

C (i)(x)
�

cap
�

C ( j)(y)
��

; E
�

≤ C exp
�

−cR(d−2)/3
�

.

Putting the bounds together gives the result.

Proof of Proposition 1. We will use a standard covering argument to derive (1.1) from (4.16).
Take the constant C from the statement of Lemma 13. It suffices to prove (1.1) for R ≥ 2C . Let
R′ = bR/2Cc. For each z ∈Zd , we define the events

A(1)z =
�

I ∩ B(z, R′) 6= ;
	

, A(2)z =
⋂

x ,y∈I∩B(z,2R′)

§

x
I∩B(z,R)
←→ y

ª

,

and A=
⋂

z∈B(R) A
(1)
z ∩ A(2)z . It follows from property (1) of Pois(u, W ∗) and (2.10) that

P(A(1)z ) = 1− e−ucap(B(z,R′)) ≥ 1− e−cR,

and from Lemma 13 that
P(A(2)z )≥ 1− Ce−cR1/6

.

In particular, P(A) ≥ 1 − C ′ exp(−cR1/6). It remains to note that A implies the event in (1.1).
Indeed, for all z, z′ ∈ B(R) with |z − z′| = 1, B(z, R′) ∪ B(z′, R′) ⊆ B(z, 2R′); thus if A occurs then
every vertex in the non-empty set I ∩ B(z, R′) is connected to every vertex in the non-empty set
I ∩ B(z′, R′) by a path in I ∩ B(z, R) ⊆ B(2R). Since any two vertices in B(R) are connected by a
nearest-neigbor path in B(R), A implies the event in (1.1). The result follows.
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