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Abstract
We consider the white-noise driven stochastic heat equation on [0,∞) × [0, 1] with Lipschitz-
continuous drift and diffusion coefficients. We derive an inequality for the L1([0, 1])-norm of the
difference between two solutions. Using some martingale arguments, we show that this inequality
provides some estimates which allow us to study the stability of the solution with respect the initial
condition, the uniqueness of the possible invariant distribution and the asymptotic confluence of
solutions.

1 Introduction and results

1.1 The equation

Consider the stochastic heat equation with Neumann boundary conditions:






∂tu(t, x) = ∂x xu(t, x) + b(u(t, x)) +σ(u(t, x))Ẇ (t, x), t ≥ 0, x ∈ [0, 1],
u(0, x) = u0(x), x ∈ [0, 1],
∂xu(t, 0) = ∂xu(t, 1) = 0, t > 0.

(1)

Here b,σ : R 7→ R are the drift and diffusion coefficients and u0 : [0,1] 7→ R is the initial
condition. We write formally W (d t, d x) = Ẇ (t, x)d td x , for W (d t, d x) a white noise on [0,∞)×
[0, 1] based on d td x , see Walsh [14]. We assume in this paper that b,σ are Lipschitz-continuous:
for some constant Cb,σ,
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for all r, z ∈R, |b(r)− b(z)|+ |σ(r)−σ(z)| ≤ Cb,σ|r − z|. (H )

Our goals in this paper are the following:

• prove some new stability estimates of the solution with respect to the initial condition u0 ∈
L1([0,1]);
• study the uniqueness of invariant measures and the asymptotic confluence of solutions.

Let us mention that our results extend without difficulty to the case of Dirichlet boundary condi-
tions and to the case of the unbounded domain R (with u0 ∈ L1(R)).

This equation has been much investigated, in particular since the work of Walsh [14]. In [14],
one can find definitions of weak solutions, existence and uniqueness results, as well as proofs that
solutions are Hölder-continuous, enjoy a Markov property, etc. Let us mention for example the
works of Bally-Gyongy-Pardoux [1] (existence of solutions when the drift is only measurable),
Gatarek-Goldys [7] (existence of solutions in law), Donati-Pardoux (comparison results and re-
flection problems), Bally-Pardoux (smoothness of the law of the solution), Bally-Millet-Sanz [3]
(support theorem), etc. Sowers [13], Mueller [10] and Cerrai [4] have obtained some results on
the invariant distributions and convergence to equilibrium.

We denote by Lp([0, 1]) the set of all measurable functions f : [0,1] 7→R such that || f ||Lp([0,1]) =

(
∫ 1

0
| f (x)|pd x)1/p <∞.

1.2 Mild solutions

We now define the classical notion of weak solutions we will use, see Walsh [14]. When we
refer to predictability, this is with respect to the filtration (Ft)t≥0 generated by W , that is Ft =
σ(W (A), A∈B([0, t]× [0,1])). We denote by Gt(x , y) the Green kernel associated with the heat
equation ∂tu = ∂x xu on R+ × [0,1] with Neumann boundary conditions, whose explicit form can
be found in Walsh [14]. Here we will only use that for some constant CT , for all x , y ∈ [0,1], all
t ∈ (0, T], see [14],

0≤ Gt(x , y) = Gt(y, x)≤
CTp

t
e−|x−y|2/4t ,

∫ 1

0

Gt(x , y)d x = 1,

∫ 1

0

G2
t (x , y)d x ≤

CTp
t
. (2)

Definition 1. Assume (H ) and consider u0 ∈ L1([0, 1]). We say that a predictable process u =
(u(t, x))t≥0,x∈[0,1] with values in R is a mild solution to (1) starting from u0 if

for all T > 0, E





∫ T

0

∫ 1

0

u2(t, x)d xd t



<∞ (3)

and if a.s., for a.e. t ≥ 0, x ∈ [0, 1],

u(t, x) =

∫ 1

0

Gt(x , y)u0(y)d y +

∫ t

0

∫ 1

0

Gt−s(x , y)[σ(u(s, y))W (ds, d y) + b(u(s, y))d yds]. (4)
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Da Prato-Zabczyk [5] have checked that for any u0 ∈ L2([0, 1]), there exists a unique mild solution
u to (1). Using a similar approach, together with the estimate

∫ T

0

∫ 1

0





∫ 1

0

Gt(x , y)u0(y)d y





2

d xd t ≤ CT ||u0||2L1([0,1]), (5)

one easily checks that for any u0 ∈ L1([0, 1]), there exists a unique mild solution to (1). Further-
more, for any pair u, v of mild solutions to (1) starting from u0, v0 ∈ L1([0, 1]), for any T > 0,

E





∫ T

0

∫ 1

0

(u(t, x)− v(t, x))2d xd t



≤ CT,σ,b||u0 − v0||2L1([0,1]), (6)

where CT,σ,b depends only on T and on the Lipschitz constants of σ and b. We will prove (5)
and (6) for the sake of completeness, which implies uniqueness. A similar approach allows one to
prove existence.

1.3 Stability in L1([0,1])

Our first goal is to prove the following stability estimates in L1([0,1]).

Theorem 2. Assume (H ). For u0, v0 ∈ L1([0,1]), consider the two mild solutions u and v to (1)
starting from u0 and v0.
(i) For all γ ∈ (0,1), all T ≥ 0, we have

E

�

sup
[0,T]
||u(t)− v(t)||γ

L1([0,1])

�

≤ Cb,γ,T ||u0 − v0||
γ

L1([0,1]),

where Cb,γ,T depends only on b,γ, T.
(ii) Assume now that b is non-increasing. For all γ ∈ (0,1), we have

E
h

sup
[0,∞)

||u(t)− v(t)||γ
L1([0,1]) +

�
∫ ∞

0

||b(u(t))− b(v(t))||L1([0,1])d t

�γ

+

�
∫ ∞

0

||σ(u(t))−σ(v(t))||2L2([0,1])d t

�γ/2
i

≤ Cγ||u0 − v0||
γ

L1([0,1]),

where Cγ depends only on γ.

Point (i), which shows some stability with respect to the initial condition, is complementary to
(6): we can consider a supremum in time, but we can only deal with the L1-norm. Point (ii) is
quite strong, since it provides some estimates on the time interval [0,∞). This will allow us to
study the large time behavior of solutions when b is non-increasing. To prove these estimates, we
rather use the weak form of (1). It seems difficult to obtain such results working directly with the
mild equation.

1.4 Large time behavior

We now wish to study the uniqueness of invariant measures.
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Definition 3. A probability measure Q on L1([0, 1]) is said to be an invariant distribution for (1) if,
for u0 a L1([0,1])-valued random variable with law Q independent of W, for u the mild solution to
(1) starting from u0, L (u(t)) =Q for all t ≥ 0.

Theorem 4. Assume (H ), that b is non-increasing and that (σ, b) : R 7→ R2 is injective. Then (1)
admits at most one invariant distribution.

To prove the asymptotic confluence of solutions, we need to strengthen the injectivity assumption.
�

There is a strictly increasing convex function ρ :R+ 7→R+ with ρ(0) = 0 such
that for all r, z ∈R, |b(r)− b(z)|+ |σ(r)−σ(z)|2 ≥ ρ(|r − z|). (I )

Theorem 5. Assume (H ), that b is non-increasing and (I ).
(i) The following asymptotic confluence property holds: for u0, v0 ∈ L1([0, 1]), for u, v the mild
solutions to (1) starting from u0 and v0,

a.s., lim
t→∞
||u(t)− v(t)||L1([0,1]) = 0.

(ii) Assume additionally that (1) admits an invariant distribution Q. Then for any u0 ∈ L1([0,1]),
for u the mild solution to (1) starting from u0, u(t) goes in law to Q as t →∞.

Clearly, (I ) holds if b is C1 with b′ ≤ −ε < 0 (choose ρ(z) = εz) or if σ is C1 with |σ′| ≥ ε > 0
(choose ρ(z) = (εz)2). One may also combine conditions on b and σ. But (I ) also holds if b is
C1 and if b′ ≤ 0 vanishes reasonably. For example if b(z) = −sg(z)min(|z|, |z|p) for some p ≥ 1,
choose ρ = ερp with ε small enough and ρp(z) = zp for z ∈ [0,1] and ρp(z) = pz − p + 1 for
z ≥ 1. If b(z) =−z− sin z, choose ρ = ερ3 with ε small enough.
One may also consider the case where σ is monotonous with σ′ vanishing reasonably.

Observe that the asymptotic confluence of solutions may hold even if there is no invariant distri-
bution for (1). Consider e.g. the case where b(x) ≥ c > 0 is non-increasing and σ(x) = x . Then
(I ) holds, while solutions should tend to infinity (due to the uniformly positive drift).

Let us now compare Theorems 4 and 5 with known results. The works cited below sometimes
concern different boundary conditions, but we believe this is not important.

• Sowers [13] has proved the existence of an invariant distribution supported by C([0,1]), as-
suming (H ), that σ is bounded and that b is of the form b(z) = −αz + f (z), for some bounded
f and some α > 0. He obtained uniqueness of this invariant distribution when σ is sufficiently
small and bounded from below.

• Mueller [10] has obtained some surprising coupling results, implying in particular the unique-
ness of an invariant distribution as well as a the trend to equilibrium. He assumes (H ), that σ is
bounded from above and from below and that b is non-increasing, with |b(z)− b(r)| ≥ α|z − r|
for some α > 0.

• Cerrai [4] assumed that σ is strictly monotonous (it may vanish, but only at one point).
(i) She obtained an asymptotic confluence result which we do not recall here and concerns,
roughly, the case b(z)'−sg(z)|z|m as z→±∞, for some m> 1.
(ii) Assuming (H ), she proved uniqueness of the invariant distribution as well as an asymptotic
confluence property, under the conditions that for all r ≤ z, b(z)− b(r) ≤ λ(z − r), and |σ(z)−
σ(r)| ≥ µ|z− r|, for some µ > 0 and some λ < µ2/2 (if b is non-increasing, choose λ= 0).
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Thus the main advantages of the present paper are that the uniqueness of the invariant measure
requires very few conditions, and we allow σ to vanish (it may be compactly supported).

Example 1. Assume (H ) and that b strictly decreasing. Then there exists at most one invariant
distribution. If b(z) = −z or b(z) = −z − sin z or b(z) = −sg(z)min(|z|, |z|p) for some p > 1,
then we have asymptotic confluence of solutions. Here to apply [13, 10] one needs to assume
additionally that σ is bounded from above and from below, while to apply [4], one has to suppose
that σ is strictly monotonous.

Example 2. Assume (H ), that b is non-increasing and that σ is strictly monotonous. Then there
exists at most one invariant distribution.
If furthermore σ is C1 with 0 < c < σ′ < C , then we get asymptotic confluence of solutions using
[4] or Theorem 5 (here [13, 10] cannot apply, since σ vanishes). But now if σ′ ≥ 0 reasonably
vanishes then Theorem 5 applies, which is not the case of [4]: take e.g. σ(z) = sg(z)min(|z|, |z|p)
for some p > 1, or σ(z) = z+ sin z.

Example 3. Consider the compactly supported coefficient σ(z) = (1− z2)1{|z|≤1}. Assume that b is
C1, non-increasing, with b′(z)≤−ε < 0 for z ∈ (−∞,−1)∪ {0} ∪ (1,+∞). Then Theorems 4 and
5 apply, while [13, 10, 4] do not.
If b(z0) = 0 for some z0 /∈ (−1,1), then u(t)≡ z0 is the (unique) stationary solution.
If now b(−1) > 0 and b(1) < 0, then the invariant measure Q (that exists due to Sowers [13])
is unique and one may show, using the comparison Theorem of Donati-Pardoux [6], that Q is
supported by [−1, 1]-valued continuous functions on [0, 1].

However, there are some cases where [13, 4] provide some better results than ours.

Example 4. If σ(z) = µz and b(z) = λz, then u(t)≡ 0 is an obvious stationary solution. Theorems
4 and 5 apply if λ ≤ 0 and |λ|+ |µ| > 0. Cerrai [4] was able to treat the case λ > 0 provided
µ2/2> λ.

Example 5. If σ is small enough and bounded from below and if b(z) = −αz + h(z), with α > 0
and h bounded, then Sowers [13] obtains the uniqueness of the invariant distribution even if b is
not non-increasing.

1.5 Plan of the paper

In the next section, we briefly prove (5) and (6). Section 3 is devoted to the proof of Theorem 2.
Theorems 4 and 5 are checked in Section 4. We briefly discuss the multi-dimensional equation in
Section 5 and conclude the paper with an appendix containing technical results.

2 Mild solutions

In the whole section, T > 0 is fixed. For u0 ∈ L1([0, 1]) and t ∈ [0, T], we easily get, using the
Cauchy-Schwarz inequality in y and integrating in x using (2):

∫ 1

0

 

∫ 1

0

Gt(x , y)u0(y)d y

!2

d x ≤ ||u0||L1([0,1])

∫ 1

0

∫ 1

0

G2
t (x , y)|u0(y)|d yd x

≤
CTp

t
||u0||2L1([0,1]). (7)
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This implies (5). Consider now two mild solutions u, v to (1) starting from u0, v0 ∈ L1([0,1]). Put

δ(t, x) = E[|u(t, x) − v(t, x)|2], d(t) =
∫ 1

0
δ(t, x)d x and D(t) =

∫ t

0
d(s)ds. A straightforward

computation using (4) and (H ) shows that for all x ∈ [0, 1], all t ∈ [0, T],

δ(t, x)≤ 2

 

∫ 1

0

Gt(x , y)|u0(y)− v0(y)|d y

!2

+ CT,σ,b

∫ t

0

∫ 1

0

G2
t−s(x , y)δ(s, y)d yds.

Integrating in x using (7) and (2), we deduce that for all t ∈ [0, T],

d(t)≤
CTp

t
||u0 − v0||2L1([0,1]) + CT,σ,b

∫ t

0

d(s)
p

t − s
ds.

Iterating once this formula and using that for all 0≤ r ≤ t,
∫ t

r
dsp

t−s
p

s−r
=
∫ 1

0
d xp

x
p

1−x
<∞,

d(t) ≤
CTp

t
||u0 − v0||2L1([0,1]) + CT,σ,b

∫ t

0

||u0 − v0||2L1([0,1])
p

s
p

t − s
ds

+CT,σ,b

∫ t

0

∫ s

0

d(r)
p

t − s
p

s− r
drds

≤
CT,σ,bp

t
||u0 − v0||2L1([0,1]) + CT,σ,b

∫ t

0

d(r)dr.

Finally, integrating in t yields D(t) ≤ CT,σ,b||u0 − v0||2L1([0,1]) + CT,σ,b

∫ t

0
D(s)ds. The Gronwall

Lemma implies that D(T )≤ CT,σ,b||u0 − v0||2L1([0,1]). We have checked (6).

3 On the L1([0, 1])-norm of the difference between two mild
solutions

The aim of this section is to prove Theorem 2. We first consider continuous initial conditions, and
then extend the estimates to general L1([0, 1]) initial conditions. All our study is based on the
following result. We set sg(z) = 1 for z ≥ 0 and sg(z) =−1 for z < 0.

Proposition 6. Assume (H ). For two continuous initial conditions u0, v0, let u, v be the correspond-
ing mild solutions to (1). Then, enlarging the probability space if necessary, there is a Brownian
motion (Bt)t≥0 such that a.s., for all t ≥ 0,

||u(t)− v(t)||L1([0,1]) ≤ ||u0 − v0||L1([0,1]) +

∫ t

0

||σ(u(s))−σ(v(s))||L2([0,1])dBs (8)

+

∫ t

0

∫ 1

0

sg(u(s, x)− v(s, x))(b(u(s, x))− b(v(s, x)))d xds.

Proof. We divide the proof into several steps, following closely the ideas of Donati-Pardoux [6,
Theorem 2.1], to which we refer for technical details.
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Step 1. Consider an orthonormal basis (ek)k≥1 of L2([0, 1]). For k ≥ 1, we set Bk
t =
∫ t

0

∫ 1

0
ek(x)W (ds, d x).

Then (Bk)k≥1 is a family of independent Brownian motions. For n≥ 1, consider the unique adapted
solution un ∈ L2(Ω× [0, T], V ), where V = { f ∈ H1([0, 1]), f ′(0) = f ′(1) = 0}, to

un(t, x) = u0(x) +

∫ t

0

�

∂x xun(s, x)ds+ b(un(s, x))
�

ds+
n
∑

k=1

∫ t

0

σ(un(s, x))ek(x)dBk
s .

We refer to Pardoux [11] for existence, uniqueness and properties of this solution. We also con-
sider the solution vn to the same equation starting from v0. Then, as shown in [6],

lim
n

sup
[0,T]×[0,1]

E[|un(t, x)− u(t, x)|2 + |vn(t, x)− v(t, x)|2] = 0. (9)

Step 2. For ε > 0, we introduce a nonnegative C2 function φε such that φε(z) = |z| for |z| ≥ ε, with
|φ′ε(z)| ≤ 1 and 0≤ φ′′ε (z)≤ 2ε−11{|z|<ε}. When applying the Itô formula (see [6] for details), we
get

∫ 1

0

φε(u
n(t, x)− vn(t, x))d x =

∫ 1

0

φε(u0(x)− v0(x))d x (10)

+

∫ t

0

∫ 1

0

φ′ε(u
n(s, x)− vn(s, x))∂x x[u

n(s, x)− vn(s, x)]d xds

+

∫ t

0

∫ 1

0

φ′ε(u
n(s, x)− vn(s, x))[b(un(s, x))− b(vn(s, x))]d xds

+
n
∑

k=1

∫ t

0

∫ 1

0

φ′ε(u
n(s, x)− vn(s, x))[σ(un(s, x))−σ(vn(s, x))]ek(x)d xdBk

s

+
1

2

n
∑

k=1

∫ t

0

∫ 1

0

φ′′ε (u
n(s, x)− vn(s, x))[σ(un(s, x))−σ(vn(s, x))]2e2

k(x)d xds

=: I1
ε + I2

ε (t) + I3
ε (t) + I4

ε (t) + I5
ε (t).

Since |z| ≤ φε(z)≤ |z|+ ε for all z, we easily get, a.s.,

lim
ε→0

∫ 1

0

φε(u
n(t, x)− vn(t, x))d x = ||un(t)− vn(t)||L1([0,1]) and lim

ε→0
I1
ε = ||u0 − v0||L1([0,1]).

An integration by parts, using that ∂x[un(t, 0)− vn(t, 0)] = ∂x[un(t, 1)− vn(t, 1)] = 0 shows that

I2
ε (t) =−

∫ t

0

∫ 1

0

φ′′ε (u
n(s, x)− vn(s, x))[∂x(u

n(s, x)− vn(s, x))]2 ≤ 0.

Since φ′′ε (z − r)(σ(z) − σ(r))2 ≤ Cε−11{|z−r|≤ε}|z − r|2 ≤ Cε by (H ), we have I5
ε (t) ≤ Cntε,

whence

lim
ε→0

I5
ε (t) = 0 a.s.
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Using that |φ′ε(z)− sg(z)| ≤ 1{|z|≤ε} and (H ), one obtains a.s.

lim
ε→0

�

�

�

�

�

I3
ε (t)−

∫ t

0

∫ 1

0

sg(un(s, x)− vn(s, x))(b(un(s, x))− b(vn(s, x)))d xds

�

�

�

�

�

≤ lim
ε→0

∫ t

0

∫ 1

0

1{|un(s,x)−vn(s,x)|≤ε}|b(un(s, x))− b(vn(s, x))|d xds ≤ lim
ε→0

C tε= 0.

Similarly,

lim
ε→0

E







 

I4
ε (t)−

n
∑

k=1

∫ t

0

∫ 1

0

sg(un(s, x)− vn(s, x))[σ(un(s, x))−σ(vn(s, x))]ek(x)d xdBk
s

!2






≤ lim
ε→0

E





n
∑

k=1

∫ t

0

∫ 1

0

1{|un(s,x)−vn(s,x)|≤ε}[σ(u
n(s, x))−σ(vn(s, x))]2e2

k(x)d xds





≤ lim
ε→0

C tnε2 = 0.

Thus we can pass to the limit as ε→ 0 in (10) and get, a.s.,

||un(t)− vn(t)||L1([0,1]) ≤ ||u0 − v0||L1([0,1])

+

∫ t

0

∫ 1

0

sg(un(s, x)− vn(s, x))[b(un(s, x))− b(vn(s, x))]d xds

+
n
∑

k=1

∫ t

0

∫ 1

0

sg(un(s, x)− vn(s, x))[σ(un(s, x))−σ(vn(s, x))]ek(x)d xdBk
s . (11)

Step 3. Using (H ), there holds, for all r1, z1, r2, z2 in R,
�

�sg(r1 − z1)[σ(r1)−σ(z1)]− sg(r2 − z2)[σ(r2)−σ(z2)]
�

�≤ C(|r1 − r2|+ |z1 − z2|), (12)
�

�sg(r1 − z1)[b(r1)− b(z1)]− sg(r2 − z2)[b(r2)− b(z2)]
�

�≤ C(|r1 − r2|+ |z1 − z2|). (13)

Indeed, it suffices, by symmetry, to check that
�

�sg(r1 − z1)[σ(r1)−σ(z1)]− sg(r2 − z1)[σ(r2)−
σ(z1)]

�

�≤ C |r1−r2|. If sg(r1−z1) = sg(r2−z2), this is obvious. If now r1 ≤ z1 ≤ r2 (or r1 ≥ z1 ≥ r2)
we get the upper-bound |σ(r1) +σ(r2)− 2σ(z1)| ≤ C(|r1 − z1|+ |r2 − z1|) = C |r1 − r2|.
Using (9), it is thus routine to make n tend to infinity in (11) and to obtain, a.s.,

||u(t)− v(t)||L1([0,1]) ≤ ||u0 − v0||L1([0,1])

+

∫ t

0

∫ 1

0

sg(u(s, x)− v(s, x))[b(u(s, x))− b(v(s, x))]d xds

+
∞
∑

k=1

∫ t

0

∫ 1

0

sg(u(s, x)− v(s, x))[σ(u(s, x))−σ(v(s, x))]ek(x)d xdBk
s . (14)

For the last term, we used that, by the Plancherel identity, setting for simplicity

αn(s, x) = sg(un(s, x)− vn(s, x))[σ(un(s, x))−σ(vn(s, x))],
α(s, x) = sg(u(s, x)− v(s, x))[σ(u(s, x))−σ(v(s, x))],
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there holds

E
h�

n
∑

k=1

∫ t

0

∫ 1

0

αn(s, x)ek(x)dBk
s −

∞
∑

k=1

∫ t

0

∫ 1

0

α(s, x)ek(x)dBk
s

�2i

≤
∫ t

0

E
h
∑

k≥1

�

∫ 1

0

n

αn(s, x)−α(s, x)
o

ek(x)d x
�2i

ds

+
∑

k≥n+1

∫ t

0

E
h�

∫ 1

0

α(s, x)ek(x)d x
�2i

ds

≤
∫ t

0

E
h

||αn(s)−α(s)||2L2([0,1])

i

ds

+
∑

k≥n+1

∫ t

0

E
h�

∫ 1

0

α(s, x)ek(x)d x
�2i

ds =: In(t) + Jn(t).

Using (12) and then (9), In(t)≤ C
∫ t

0

∫ 1

0
E[|un(s, x)−u(s, x)|2+|vn(s, x)−v(s, x)|2]d xds tends to 0

as n→∞. Finally, Jn(t) tends to 0 because
∑

k≥1

∫ t

0
E[(
∫ 1

0
α(s, x)ek(x)d x)2]ds =

∫ t

0
E[||α(s)||2L2([0,1])]ds ≤

C
∫ t

0

∫ 1

0
E(|u(s, x)− v(s, x)|2)d xds <∞.

Step 4. A standard representation argument (see e.g. Revuz-Yor [12, Proposition 3.8 and Theorem
3.9 p 202-203]) concludes the proof, because the last term on the RHS of (14) is a continuous
local martingale with bracket

∫ t

0

∞
∑

k=1

 

∫ 1

0

sg(u(s, x)− v(s, x))[σ(u(s, x))−σ(v(s, x))]ek(x)d x

!2

ds

=

∫ t

0

||σ(u(s))−σ(v(s))||2L2([0,1])ds.

We used here again that (ek)k≥1 is an orthonormal basis of L2([0,1]).

Corollary 7. Adopt the notation and assumptions of Proposition 6.
(i) For all γ ∈ (0,1), all T ≥ 0,

E

�

sup
[0,T]
||u(t)− v(t)||γ

L1([0,1])

�

≤ Cb,γ,T ||u0 − v0||
γ

L1([0,1]),

where Cb,γ,T depends only on b,γ, T.
(ii) Assume that b is non-increasing. Then for all γ ∈ (0, 1),

E
h

sup
[0,∞)

||u(t)− v(t)||γ
L1([0,1]) +

�
∫ ∞

0

||b(u(t))− b(v(t))||L1([0,1])d t

�γ

+

�
∫ ∞

0

||σ(u(t))−σ(v(t))||2L2([0,1])d t

�γ/2
i

≤ Cγ||u0 − v0||
γ

L1([0,1]),

where Cγ depends only on γ.
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Proof. Let us first prove point (i). Let Cb be the Lipschitz constant of b. Denote by Lt the RHS of
(8). The Itô formula yields

||u(t)− v(t)||L1([0,1])e
−Cb t ≤Lt e

−Cb t

=||u0 − v0||L1([0,1]) − Cb

∫ t

0

e−Cbs Lsds

+

∫ t

0

||σ(u(s))−σ(v(s))||L2([0,1])e
−CbsdBs

+

∫ t

0

∫ 1

0

e−Cbssg(u(s, x)− v(s, x))(b(u(s, x))− b(v(s, x)))d xds.

But
∫ 1

0
sg(u(s, x)− v(s, x))(b(u(s, x))− b(v(s, x)))d x ≤ Cb||u(s)− v(s)||L1([0,1]) ≤ Cb Ls. Hence

||u(t)− v(t)||L1([0,1])e
−Cb t ≤ ||u0 − v0||L1([0,1]) +

∫ t

0

||σ(u(s))−σ(v(s))||L2([0,1])e
−CbsdBs.

The right hand side Mt of this inequality is a nonnegative continuous local martingale starting from
||u0 − v0||L1([0,1]), whence by Lemma 8, for any γ ∈ (0, 1), E

�

sup[0,∞)M
γ
t

�

≤ Cγ||u0 − v0||
γ

L1([0,1]).
We deduce that

E

�

sup
[0,∞)

�

||u(t)− v(t)||γ
L1([0,1])e

−Cbγt
�

�

≤ Cγ||u0 − v0||
γ

L1([0,1]).

Point (i) immediately follows (with Cb,γ,T = Cγe
CbγT ).

We now check point (ii). Since b is non-increasing, Proposition 6 yields

||u(t)− v(t)||L1([0,1]) +

∫ t

0

||b(u(s))− b(v(s))||L1([0,1])ds

≤ ||u0 − v0||L1([0,1]) +

∫ t

0

||σ(u(s))−σ(v(s))||L2([0,1])dBs =: Nt ,

which is a nonnegative continuous local martingale starting from ||u0 − v0||L1([0,1]) with bracket

〈N〉t =
∫ t

0
||σ(u(s)) − σ(v(s))||2L2([0,1])ds. Due to Lemma 8, E[sup[0,∞) N

γ
t + 〈N〉

γ/2
∞ ] ≤ Cγ||u0 −

v0||
γ

L1([0,1]) holds true for all γ ∈ (0,1). Hence

E

�

sup
[0,∞)

||u(t)− v(t)||γ
L1([0,1])

�

≤ E

�

sup
[0,∞)

Nγt

�

≤ Cγ||u0 − v0||
γ

L1([0,1]),

E

��
∫ ∞

0

||b(u(t))− b(v(t))||L1([0,1])d t

�γ�

≤ E

�

sup
[0,∞)

Nγt

�

≤ Cγ||u0 − v0||
γ

L1([0,1]),

E





�
∫ ∞

0

||σ(u(t))−σ(v(t))||2L2([0,1])d t

�γ/2


 = E
�

〈N〉γ/2∞
�

≤ Cγ||u0 − v0||
γ

L1([0,1]).

This ends the proof.
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Finally, we extend the previous estimates to general initial conditions.

Proof of Theorem 2. We divide the proof into two steps.

Step 1. Let u be the mild solution to (1) starting from u0 ∈ L1([0, 1]). Consider a sequence of
continuous initial conditions (un

0)n≥1 such that ||un
0 − u0||L1([0,1]) ≤ 2−n, and the corresponding

sequence (un)n≥1 of mild solutions to (1) starting from un
0. The aim of this step is to check that for

any T > 0,

a.s., limn→∞ sup[0,T] ||un(t)− u(t)||L1([0,1]) = 0, (15)

limn→∞E
h

∫ T

0
||un(t)− u(t)||2L2([0,1])d t

i

= 0. (16)

First, (16) follows immediately from (6). Next, we use Corollary 7-(i) (with γ = 1/2) to deduce
that

E





∑

n≥1

sup
[0,T]
||un+1(t)− un(t)||1/2

L1([0,1])



≤ Cb,γ,T

∑

n≥1

||un+1
0 − un

0||
1/2
L1([0,1]) <∞.

As a consequence,
∑

n≥1 sup[0,T] ||un+1(t)− un(t)||1/2
L1([0,1]) <∞ a.s., which finally implies that a.s.,

∑

n≥1 sup[0,T] ||un+1(t) − un(t)||L1([0,1]) < ∞. Using some completeness arguments, we deduce
that there is a process v such that a.s., for all T > 0, limn sup[0,T] ||un(t)− v(t)||L1([0,1]) = 0. But
recalling (16), we necessarily have v = u, which ends the step.

Step 2. We now prove the desired estimates. For u0 and v0 in L1([0,1]), we consider un
0 and

vn
0 continuous with ||un

0 − u0||L1([0,1]) + ||vn
0 − v0||L1([0,1]) ≤ 2−n. We denote by u, v, un, vn the

corresponding mild solutions to (1). For each n≥ 1, we may apply Corollary 7-(i) to un, vn. Using
the Fatou Lemma and Step 1, we deduce that for all T > 0, all γ ∈ (0,1),

E

�

sup
[0,T]
||u(t)− v(t)||γ

L1([0,1])

�

≤ lim inf
n

E

�

sup
[0,T]
||un(t)− vn(t)||γ

L1([0,1])

�

≤ lim inf
n

Cb,γ,T ||un
0 − vn

0 ||
γ

L1([0,1]) = Cb,γ,T ||u0 − v0||
γ

L1([0,1]).

If furthermore b is non-increasing, we get similarly, using Corollary 7-(ii), for any T > 0, any
γ ∈ (0, 1),

E

�

sup
[0,T]
||u(t)− v(t)||γ

L1([0,1])

�

≤ Cγ||u0 − v0||
γ

L1([0,1]).

Since Cγ does not depend on T , we can let T increase to infinity. Next, using again Step 1,
Corollary 7-(ii) and (H ), we deduce that for any T > 0, any γ ∈ (0, 1),

E







 

∫ T

0

||b(u(t))− b(v(t))||L1([0,1])d t

!γ

+

 

∫ T

0

||σ(u(t))−σ(v(t))||2L2([0,1])d t

!γ/2






= lim
n
E
h

 

∫ T

0

||b(un(t))− b(vn(t))||L1([0,1])d t

!γ

+

 

∫ T

0

||σ(un(t))−σ(vn(t))||2L2([0,1])d t

!γ/2
i

≤ lim
n

Cγ||un
0 − vn

0 ||
γ

L1([0,1]) = Cγ||u0 − v0||
γ

L1([0,1]).
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To conclude the proof, it suffices to let T increase to infinity. �

4 Large time behavior

We now prove the uniqueness of the invariant measure.

Proof of Theorem 4. Consider two invariant distributions Q and Q̃ for (1), see Definition 3. Let u0
be Q-distributed and ũ0 be Q̃-distributed. Consider the corresponding (stationary) mild solutions
u, ũ to (1). Applying Theorem 2-(ii) and the Cauchy-Schwarz inequality,

∫∞
0

Ksds <∞ a.s., where

Ks := K(u(s), ũ(s)) = ||b(u(s))− b(ũ(s))||L1([0,1]) + ||σ(u(s))−σ(ũ(s))||2L1([0,1]).

Using Lemma 9, there is a (deterministic) sequence (tn)n≥1 such that Ktn
tends to 0 in probability.

Consider the function φ(r) = r/(1+ r) on R+, and define Ψ : L1([0,1])× L1([0,1]) 7→ [0, 1] as
Ψ( f , g) = φ(K( f , g)). Then limnE[Ψ(u(tn), v(tn))] = limnE[φ(Ktn

)] = 0.
We now apply Lemma 10. The space L1([0,1]) is Polish and for each n ≥ 1, L (u(tn)) = Q and
L (ũ(tn)) = Q̃. The function Ψ is clearly continuous on L1([0, 1]) × L1([0, 1]), (because σ, b
are Lipschitz-continuous). Finally, Ψ( f , g) > 0 for all f 6= g (because Ψ( f , g) = 0 implies that
b ◦ f = b ◦ g and σ ◦ f = σ ◦ g a.e., whence f = g a.e. since (σ, b) is injective). Lemma 10 thus
yields Q = Q̃. �

Finally, we give the

Proof of Theorem 5. Point (ii) is immediately deduced from point (i). Let thus u0, v0 ∈ L1([0, 1])
be fixed and let u, v be the corresponding mild solutions to (1). We know from (I ), the Jensen
inequality and Theorem 2-(ii) that a.s.,
∫ ∞

0

ρ(||u(t)− v(t)||L1([0,1]))d t ≤
∫ ∞

0

||ρ(|u(t)− v(t)|)||L1([0,1])d t

≤
∫ ∞

0

�

�

�

�|b(u(t))− b(v(t))|+ |σ(u(t))−σ(v(t))|2
�

�

�

�

L1([0,1])d t <∞.

Using Lemma 9, one may thus find an increasing (deterministic) sequence (tn)n≥1 such that
ρ(||u(tn) − v(tn)||L1([0,1])) tends to 0 in probability, so that ||u(tn) − v(tn)||L1([0,1]) also tends to
0 in probability (because due to I , ρ is strictly increasing and vanishes only at 0). Next, we use
Theorem 2-(ii) with e.g. γ= 1/2 to get, setting ∆t = sup[t,∞) ||u(s)− v(s)||L1([0,1]),

E

�

∆1/2
tn

�

�

�Ftn

�

≤ C ||u(tn)− v(tn)||
1/2
L1([0,1])→ 0 in probability.

We used here that conditionally on Ftn
, (u(tn + t, x))t≥0,x∈[0,1] is a mild solution to (1), starting

from u(tn) (with a translated white noise). Thus for any ε > 0, using the Markov inequality

P
�

∆tn
> ε
�

= E
�

P
�

∆tn
> ε
�

�Ftn

��

≤ E
�

min
�

1,ε−1/2E

�

∆1/2
tn

�

�

�Ftn

���

,

which tends to 0 as n→∞ by dominated convergence. Consequently, as n tends to infinity,

∆tn
tends to 0 in probability. (17)

But a.s. s 7→∆s = sup[s,∞) ||u(t)−v(t)||L1([0,1]) is non-increasing, and thus admits a limit as s→∞,
which can be only 0 due to (17). �
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5 Toward the multi-dimensional case?

Consider now a bounded smooth domain D ⊂Rd , for some d ≥ 2. Consider the (scalar) equation

∂tu(t, x) = ∆u(t, x) + b(u(t, x)) +σ(u(t, x))Ẇ (t, x), t ≥ 0, x ∈ D, (18)

with some Neumann boundary condition. Here W (d t, d x) = Ẇ (t, x)d td x is a white noise on
[0,∞)× D based on d td x . We assume that σ, b :R 7→R are Lipschitz-continuous.

It is well known that the mild equation makes no sense in such a case, since even if σ(u) is
bounded, Gt−s(x , y)σ(u(s, y)) does not belong to L2([0, t]×D). The existence of solutions is thus
still an open problem. See however Walsh [14] when σ ≡ 1, b(u) = αu and Nualart-Rozovskii
[9] when σ(u) = u, b(u) = αu. In these works, the authors manage to define some ad-hoc notion
of solutions, using that the equations can be solved more or less explicitly. In the literature, one
almost always considers the simpler case where the noise W is colored, see Da Prato-Zabczyk [5].

However the weak form makes sense: a predictable process u= (u(t, x))t≥0,x∈D is a weak solution
if a.s.,

for all T > 0, sup
[0,T]
||u(t)||L1(D) +

∫ T

0

||σ(u(t))||2L2(D)d t <∞ (19)

and if for all function ϕ ∈ C2
b (D) (with Neumann conditions on ∂ D), all t ≥ 0, a.s.,

∫

D

u(t, x)ϕ(x)d x =

∫

D

u0(x)ϕ(x)d x

+

∫ t

0

∫

D

[{u(s, x)∆ϕ(x) + b(u(s, x))ϕ(x)}d xds+σ(u(s, x))ϕ(x)W (ds, d x)].

Assume now that σ(0) = b(0) = 0. Then v ≡ 0 is a weak solution. Furthermore, the estimate of
Theorem 2-(i) a priori holds. Choosing u0 ∈ L1(D) and v0 = 0, this would imply (19). Unfortu-
nately, we are not able to make this a priori estimate rigorous.

But following the proof of Proposition 6 and Corollary 7, one can easily check rigorously the
following result. For (ek)k≥1 an orthonormal basis of L2(D), set Bk

t =
∫ t

0

∫

D
ek(x)W (ds, d x). For

u0 ∈ L∞(D) and n≥ 1, consider the solution (see Pardoux [11]) to

un(t, x) = u0(x) +

∫ t

0

[∂x xun(s, x) + b(un(s, x))]ds+
n
∑

k=1

∫ t

0

σ(un(s, x))ek(x)dBk
s .

Then if σ(0) = b(0) = 0, for any γ ∈ (0, 1), any T > 0,

E



sup
[0,T]
||un(t)||γ

L1(D) +

(

∫ T

0

n
∑

k=1

�
∫

Rd

σ(un(t, x))ek(x)d x

�2

ds

)γ

≤ Cb,γ,T ||u0||
γ

L1(D), (20)

where the constant Cb,γ,T depends only on γ, T, b (the important fact is that it does not depend on
n). Passing to the limit formally in (20) would yield (19). Unfortunately, (20) is not sufficient to
ensure that the sequence un is compact and tends, up to extraction of a subsequence, to a weak
solution u to (18). But this suggests that, when σ(0) = b(0) = 0, (generalized) weak solutions
to (18) do exist and satisfy something like (19), possibly in an extended sense. Recall that when
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D = Rd , b ≡ 0 and σ(z) =
p

z, the (generalized) solution is known to exist and is called the
super Brownian motion, see e.g. Krylov [8]. The super Brownian motion takes its values in the
set of finite measures, which is the closure of L1 in some sense. Such a construction is possible,
essentially because in this case, ||u(t)||L1 = ||σ(u(t))||2L2 .

6 Appendix

First, we recall the following results on continuous local martingales.

Lemma 8. Let (Mt)t≥0 be a nonnegative continuous local martingale starting from m ∈ (0,∞). For
all γ ∈ (0,1), there exists a constant Cγ (depending only on γ) such that

E

�

sup
[0,∞)

Mγ
t + 〈M〉

γ/2
∞

�

≤ Cγm
γ.

Proof. Classically (see e.g. Revuz-Yor [12, Theorems 1.6 and 1.7 p 181-182] ), enlarging the
probability space if necessary, there is a standard Brownian motion β such that Mt = m+ β〈M〉t .
Denote now by τa = inf{t ≥ 0; βt = a}. Since M is nonnegative, we deduce that

〈M〉∞ ≤ τ−m and sup
[0,∞)

Mt ≤ m+ sup
[0,τ−m)

βs.

Thus we just have to prove that E[τγ/2−m] +E[S
γ
m]≤ Cγm

γ, where Sm = sup[0,τ−m) βs.

First, for x ≥ 0, P[Sm ≥ x] = P[τx ≤ τ−m] = m/(m+ x). As a consequence, since γ ∈ (0,1),

E[Sγm] =

∫ ∞

0

P[Sγm ≥ x]d x =

∫ ∞

0

m

m+ x1/γ
d x = mγ

∫ ∞

0

1

1+ y1/γ
d y = Cγm

γ.

Next, for t ≥ 0, P[τ−m ≥ t] = P[inf[0,t] βs > −m]. Recalling that inf[0,t] βs has the same law as
−
p

t|β1|, we get P[τ−m ≥ t] = P[|β1|< m/
p

t]. Hence

E[τγ/2−m] =

∫ ∞

0

P[τγ/2−m ≥ t]d t =

∫ ∞

0

P[|β1|< m/t1/γ]d t =

∫ ∞

0

P[(m/|β1|)γ > t]d t

= mγE
�

|β1|−γ
�

.

This concludes the proof, since E
�

|β1|−γ
�

<∞ for γ ∈ (0,1).

Next, we state a technical result on a.s. converging integrals.

Lemma 9. Let (Kt)t≥0 be a nonnegative process. Assume that A∞ =
∫∞

0
Kt d t <∞. Then one may

find a deterministic sequence (tn)n≥1 increasing to infinity such that Ktn
tends to 0 in probability as

n→∞.

Proof. Consider a strictly increasing continuous concave function φ : R+ 7→ [0,1] such that
φ(0) = 0. Using the Jensen inequality, we deduce that

1

T

∫ T

0

E[φ(Ks)]ds = E





1

T

∫ T

0

φ(Ks)ds



≤ E



φ

 

1

T

∫ T

0

Ksds

!

≤ E
�

φ

�

A∞
T

��

,

which tends to 0 as T →∞ by the dominated convergence Theorem. As a consequence, we may
find a sequence (tn)n≥1 such that limnE[φ(Ktn

)] = 0. The conclusion follows.
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Finally, we prove a technical result on coupling.

Lemma 10. Consider two probability measures µ,ν on a Polish space X . Let Ψ : X ×X 7→ R+ be
continuous and assume thatΨ(x , y)> 0 for all x 6= y. If there is a sequence ofX×X -valued random
variables (Xn, Yn)n≥1 such that for all n≥ 1, L (Xn) = µ and L (Yn) = ν and if limnE[Ψ(Xn, Yn)] =
0, then µ= ν .

Proof. The sequence of probability measures (L (Xn, Yn))n≥1 is obviously tight, so up to extraction
of a subsequence, we may assume that (Xn, Yn) converges in law, to some (X , Y ). Of course,
L (X ) = µ and L (Y ) = ν . Since Ψ∧ 1 is continuous and bounded, we deduce that E[Ψ(X , Y )∧
1] = limnE[Ψ(Xn, Yn)∧ 1] = 0, whence Ψ(X , Y ) = 0 a.s. By assumption, this implies that X = Y
a.s., so that µ= ν .
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