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Abstract
A marked metric measure space (mmm-space) is a triple (X , r,µ), where (X , r) is a complete and
separable metric space and µ is a probability measure on X × I for some Polish space I of possible
marks. We study the space of all (equivalence classes of) marked metric measure spaces for some
fixed I . It arises as a state space in the construction of Markov processes which take values in
random graphs, e.g. tree-valued dynamics describing randomly evolving genealogical structures
in population models.
We derive here the topological properties of the space of mmm-spaces needed to study conver-
gence in distribution of random mmm-spaces. Extending the notion of the Gromov-weak topology
introduced in (Greven, Pfaffelhuber and Winter, 2009), we define the marked Gromov-weak topol-
ogy, which turns the set of mmm-spaces into a Polish space. We give a characterization of tightness
for families of distributions of random mmm-spaces and identify a convergence determining alge-
bra of functions, called polynomials.

1 Introduction

Metric spaces form a basic structure in mathematics. In probability theory, they build a natural set-
up for the possible outcomes of random experiments. In particular, the Borel σ-algebra generated
by the topology induced by a metric space is fundamental. Here, spaces such as Rd (equipped
with the Euclidean metric), the space of càdlàg paths (equipped with the Skorohod metric) and
the space of probability measures (equipped with the Prohorov metric) are frequently considered.

174

DOI: 10.1214/ECP.v16-1615

1

http://dx.doi.org/10.1214/ECP.v16-1615


Marked metric measure spaces 175

Recently, random metric spaces which differ from these examples, have attracted attention in
probability theory. Most prominent examples are the description of random genealogical structures
via Aldous’ Continuum Random Tree (see [2] and [17] for many related results) or the Kingman
coalescent [10], the Brownian map [18] and the connected components of the Erdős-Renyi random
graph [1], which are all random compact metric spaces. The former two examples give rise to
trees, which are special metric spaces, so-called R-trees [7]. The latter two examples are based
on random graphs and the underlying metric coincides with the graph metric.
In order to discuss convergence in distribution of random metric spaces, the space of metric spaces
must be equipped with a topology such that it becomes a Polish space, i.e. a separable topological
space, metrizable by a complete metric. Moreover, to be able to formulate tightness criteria for
families of distributions on this space, it is necessary to identify criteria for relative compactness
in this topology. Such topological properties of the space of compact metric spaces have been
developed using the Gromov-Hausdorff topology (see [16, 3, 11]).
Many applications deal with a random evolution of metric spaces. In such processes, it is frequently
necessary to pick a random point from the metric space according to some appropriate distribution,
called the sampling measure. Therefore, a (probability) measure on the metric space must be
specified and the resulting structure including this sampling measure gives rise to metric measure
spaces (mm-spaces). First stochastic processes taking values in mm-spaces, subtree-prune and re-
graft [12] and the tree-valued Fleming-Viot dynamics [14] have been constructed. In [13] it was
shown that the Gromov-weak topology turns the space of mm-spaces into a Polish space; see also
[16, Chapter 3 1

2
]. Recently, random configurations and random dynamics on metric spaces in the

form of random graphs have been studied as well (see [8]). Two examples are percolation [20]
and epidemic models on random graphs [6].
The present paper was inspired by the study of a process of random configurations on evolving
trees [5]. Such objects arise in mathematical population genetics in the context of Moran models
or multi-type branching processes, where the random genealogy of a population evolves together
with the (genetic) types of individuals. At any time the state of such a process is a marked metric
measure space (mmm-space), where the measure is defined on the product of the metric space
and some fixed mark/type space; see Section 2.1. Slightly more complicated structures arise in
the study of spatial versions of such population models, where the mark specifies both the genetic
type and the location of an individual [15].
Here we establish topological properties of the space of mmm-spaces needed to study convergence
in distribution of random mmm-spaces. This requires an extension of the Gromov-weak topology
to the marked case (Theorem 1), which is shown to be Polish (Theorem 2), a characterization of
tightness of distributions in that space (Theorem 4) and a description of a convergence determin-
ing set of functions in the space of probability measures on mmm-spaces (Theorem 5).

2 Main results

First, we have to introduce some notation. For product spaces X×Y×· · · , we denote the projection
operators by πX ,πY , . . . . For a Polish space E, we denote by M1(E) the space of probability
measures on the Borel σ-Algebra on E, equipped with the topology of weak convergence, which
is denoted by⇒. Moreover, for ϕ : E→ E′ (for some other Polish space E′), the image measure of
µ under ϕ is denoted ϕ∗µ.
Let Cb(E) denote the set of bounded continuous functions on E and recall that a set of functions

Π ⊆ Cb(E) is separating in M1(E) iff for all E-valued random variables X , Y we have X
d
= Y

if E[Φ(X )] = E[Φ(Y )] for all Φ ∈ Π. Moreover, Π is convergence determining in M1(E) if for
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any sequence X , X1, X2, . . . of E-valued random variables we have Xn
n→∞
==⇒ X iff E[Φ(Xn)]

n→∞−−→
E[Φ(X )] for all Φ ∈ Π.

Here and in the whole paper the key ingredients are complete separable metric spaces
(X , rX ), (Y, rX ), . . . and probability measures µX ,µY , . . . on X × I , Y × I , . . . for a fixed

complete and separable metric space (I , rI), (1)

which we refer to as the mark space.

2.1 Marked metric measure spaces

Motivation: The present paper is motivated by genealogical structures in population models.
Consider a population X of individuals, all living at the same time. Assume that any pair of
individuals x , y ∈ X has a common ancestor, and define a metric on X by setting rX (x , y) as
the time to the most recent common ancestor of x and y , also referred to as their genealogical
distance. In addition, individual x ∈ X carries some mark κX (x) ∈ I for some measurable function
κX . In order to be able to sample individuals from the population, introduce a sampling measure
νX ∈M1(X ) and define

µX (d x , du) := νX (d x)⊗δκX (x)(du). (2)

Recall that most population models, such as branching processes, are exchangeable. On the level
of genealogical trees, this leads to the following notion of equivalence of marked metric mea-
sure spaces: We call two triples (X , rX ,µX ) and (Y, rY ,µY ) equivalent if there is an isometry
ϕ : supp(νX ) → supp(νY ) such that νY = ϕ∗νX and κY (ϕ(x)) = κX (x) for all x ∈ supp(νX ),
i.e. marks are preserved under ϕ.
It turns out that it requires strong restrictions on κ to turn the set of triples (X , rX ,µX ) with µX as
in (2) into a Polish space (see [19]). Since these restrictions are frequently not met in applications,
we pass to the larger space of triples (X , rX ,µX ) with general µX ∈ M1(X × I) right away. This
leads to the following key concept.

Definition 2.1 (mmm-spaces).
1. An I -marked metric measure space, or mmm-space, for short, is a triple (X , r,µ) such that (X , r)
is a complete and separable metric space and µ ∈ M1(X × I), where X × I is equipped with the
product topology. To avoid set theoretic pathologies we assume that X ∈B(R). In all applications
we have in mind this is always the case.
2. Two mmm-spaces (X , rX ,µX ), (Y, rY ,µY ) are equivalent if they are measure- and mark-
preserving isometric meaning that there is a measurable ϕ : supp((πX )∗µX ) → supp((πY )∗µY )
such that

rX (x , x ′) = rY (ϕ(x),ϕ(x
′)) for all x , x ′ ∈ supp((πX )∗µX ) (3)

and
eϕ∗µX = µY for eϕ(x , u) = (ϕ(x), u). (4)

We denote the equivalence class of (X , r,µ) by (X , r,µ).
3. We introduce

M
I :=

n

(X , r,µ) : (X , r,µ) mmm-space
o

(5)

and denote the generic elements ofMI by x , y , . . . .
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Remark 2.2 (Connection to mm-spaces). In [13], the space of metric measure spaces (mm-spaces)
was considered. These are triples (X , r,µ) where µ ∈ M1(X ). Two mm-spaces (X , rX ,µX ) and
(Y, rY ,µY ) are equivalent if ϕ exists such that (3) holds. The set of equivalence classes of such
mm-spaces is denoted by M, which is closely connected to the structure we have introduced in
Definition 2.1. Namely for x = (X , r,µ) ∈MI , we set

π1(x ) := (X , r, (πX )∗µ) ∈M, π2(x ) := (πI)∗µ ∈M1(I). (6)

Note that π2(x ) is the distribution of marks in I andM can be identified withMI if #I = 1.

Outline: In Section 2.2, we state that the marked distance matrix distribution, arising by sub-
sequently sampling points from an mmm-space, uniquely characterizes the mmm-space (Theo-
rem 1). Hence, we can define the marked Gromov-weak topology based on weak convergence of
marked distance matrix distributions, which turnsMI into a Polish space (Theorem 2). Moreover,
we characterize relatively compact sets in the Gromov-weak topology (Theorem 3). In Subsec-
tion 2.3 we treat our main subject, random mmm-spaces. We characterize tightness (Theorem 4)
and show that polynomials, specifying an algebra of real-valued functions onMI , are convergence
determining (Theorem 5).
The proofs of Theorems 1 – 5, are given in Sections 3.1, 3.3, 4.1 and 4.3, respectively.

2.2 The Gromov-weak topology

Our task is to define a topology that turns MI into a Polish space. For this purpose, we introduce
the notion of the marked distance matrix distribution.

Definition 2.3 (Marked distance matrix distribution).
Let (X , r,µ) be an mmm-space, x := (X , r,µ) ∈MI and

R(X ,r) :







(X × I)N →R(
N

2 )
+ × IN,

�

(xk, uk)k≥1
�

7→
��

r(xk, x l)
�

1≤k<l , (uk)k≥1
�

.
(7)

The marked distance matrix distribution of x = (X , r,µ) is defined by

νx := (R(X ,r))∗µ
N ∈M1(R

(N2 )
+ × IN). (8)

For generic elements in R(
N

2 ) and IN, we write r = (ri j)1≤i< j and u= (ui)i≥1, respectively.

In the above definition (R(X ,r))∗µN does not depend on the particular element (X , r,µ) of the
equivalence class x = (X , r,µ), i.e. νx is well-defined. The key property of MI is that the distance
matrix distribution uniquely determines mmm-spaces as the next result shows.

Theorem 1. Let x , y ∈MI . Then, x = y iff νx = ν y .

This characterization of elements in MI allows us to introduce a topology as follows.
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Definition 2.4 (Marked Gromov-weak topology).
Let x , x1, x2, · · · ∈MI . We say that xn

n→∞−−→ x in the marked Gromov-weak topology (MGW topology)
iff

νxn
n→∞
==⇒ νx (9)

in the weak topology onM1
�

R
(N2 )
+ × IN

�

, where, as usual,R
(N2 )
+ × IN is equipped with the product

topology of R+ and I , respectively.

The next result implies that MI is a suitable space to apply standard techniques of probability
theory (most importantly, weak convergence and martingale problems).

Theorem 2. The spaceMI , equipped with the MGW topology, is Polish.

In order to study weak convergence inMI , knowledge about relatively compact sets is crucial.

Theorem 3 (Relative compactness in the MGW topology).
For Γ⊆MI the following assertions are equivalent:
(i) The set Γ is relatively compact with respect to the marked Gromov-weak topology.
(ii) Both, π1(Γ) is relatively compact with respect to the Gromov-weak topology on M and π2(Γ) is
relatively compact with respect to the weak topology onM1(I).

Remark 2.5 (Relative compactness in M). For the application of Theorem 3, it is necessary to
characterize relatively compact sets inM, equipped with the Gromov-weak topology. Proposition
7.1 of [13] gives such a characterization which we recall: Let r12 : (r, u) 7→ r12. Then the set π1(Γ)
is relatively compact inM, iff

{(r12)∗ν
x : x ∈ Γ} ⊆M1(R+) is tight (10)

and

sup
x=(X ,r,µ)∈Γ

µ((x , u) ∈ X × I : µ(Bε(x)× I)≤ δ) δ→0−−→ 0 (11)

for all ε > 0, where Bε(x) is the open ε-ball around x ∈ X .

2.3 Random mmm-spaces

When showing convergence in distribution of a sequence of random mmm-spaces, it must be
established that the sequence of distributions is tight and all potential limit points are the same and
hence we need (i) tightness criteria (see Theorem 4) and (ii) a separating (or even convergence-
determining) algebra of functions inM1(MI) (see Theorem 5).

Theorem 4 (Tightness of distributions onMI ).
For an arbitrary index set J let {X j : j ∈ J} be a family of MI -valued random variables. The set of
distributions of {X j : j ∈ J} is tight iff

(i) the set of distributions of {π1(X j) : j ∈ J} is tight as a subset ofM1(M),

(ii) the set of distributions of {π2(X j) : j ∈ J} is tight as a subset ofM1(M1(I)).
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In order to define a separating algebra of functions inM1(MI), we denote by

C (k)n :=C (k)n

�

R
(N2 )
+ × IN

�

(12)

the set of bounded, real-valued functions φ on R
(N2 )
+ × IN, which are continuous and k times

continuously differentiable with respect to the coordinates in R
(N2 )
+ and such that (r, u) 7→ φ(r, u)

depends on the first
�n

2

�

variables in r and the first n in u. (The space C 0 consists of constant

functions.) For k = 0, we set C n :=C (0)n .

Definition 2.6 (Polynomials).
1. A function Φ :MI →R is a polynomial, if, for some n ∈N0, there exists φ ∈ C n, such that

Φ(x ) = 〈νx ,φ〉 :=

∫

φ(r, u)νx (dr, du) (13)

for all x ∈MI . We then write Φ = Φn,φ .
2. For a polynomial Φ the smallest number n such that there exists φ ∈ C n satisfying (13) is called
the degree of Φ.
3. We set for k = 0,1, . . . ,∞

Πk :=
∞
⋃

n=0

Πk
n, Πk

n := {Φn,φ : φ ∈ C (k)n }. (14)

The following result shows that polynomials are not only separating, but even convergence deter-
mining inM1(MI).

Theorem 5 (Polynomials are convergence determining inM1(MI)).
1. For every k = 0,1, . . . ,∞, the algebra Πk is separating inM1(MI).
2. There exists a countable algebra Π∞∗ ⊆ Π

∞ that is convergence determining inM1(MI).

Remark 2.7 (Application to random mmm-spaces).
1. In order to show convergence in distribution of random mmm-spacesX1,X2, . . . , there are two
strategies. (i) If a limit point X is already specified, the property E[Φ(Xn)]

n→∞−−→ E[Φ(X )] for

all Φ ∈ Πk suffices for convergence Xn
n→∞
==⇒ X by Theorem 5. (ii) If no limit point is identified

yet, tightness of the sequence implies existence of limit points. Then, convergence of E[Φ(Xn)]
as a sequence in R for all Φ ∈ Πk shows uniqueness of the limiting object. Both situations arise
in practice; see the proof of Theorem 1(c) in [5] for an application of the former and the proof of
Theorem 4 in [5] for the latter.
2. Theorem 5 extends Corollary 3.1 of [13] in the case of unmarked metric measure spaces. As
the theorem shows, convergence of polynomials is enough for convergence in the Gromov-weak
topology if the limit object is known. We will show in the proof that convergence of polynomials
is enough to ensure tightness of the sequence.

3 Properties of the marked Gromov-weak topology

After proving Theorem 1 in Section 3.1, we introduce the Gromov-Prohorov metric onMI a concept
of interest also by itself in Section 3.2. We will show in the proofs of Theorems 2 and 3 in
Section 3.3 that this metric is complete and metrizes the MGW topology.
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3.1 Proof of Theorem 1

We adapt the proof of Gromov’s reconstruction theorem for metric measure spaces, given by A. Ver-
shik – see Chapter 3 1

2
.5 and 3 1

2
.7 in [16] – to the marked case.

Let x = (X , rX ,µX ), y = (Y, rY ,µY ) ∈ MI . It is clear that νx = ν y if x = y . Thus, it remains to
show that the converse is also true, i.e. we need to show that νx = ν y implies that x and y are
measure-preserving isometric (see Definition 2.1).

If νx = ν y , then there exists ν ∈M1
�

(R(
N

2 )
+ × IN)× (R(

N

2 )
+ × IN)

�

putting mass 1 on the diagonal
and having νx and ν y as projections on the first resp. second coordinate. We define a probability
measure µ ∈M1

�

(X × I)N × (Y × I)N
�

by

µ(A× B) := ν
�

R(X ,rX )(A)× R(Y,rY )(B)
�

, A∈B
�

(X × I)N
�

, B ∈B
�

(Y × I)N
�

.

Here B denotes the Borel-σ algebra. Then we have (recall (7)) that (R(X ,rX ) ◦ π(X×I)N)∗µ = νx ,
(R(Y,rY ) ◦π(Y×I)N)∗µ= ν y , and

R(X ,rX ) ◦π(X×I)N((x , u), (y , v)) = R(Y,rY ) ◦π(Y×I)N((x , u), (y , v)), (15)

for µ-almost all ((x , u), (y , v)) = (((x1, u1), (x2, u2), . . . ), ((y1, v1), (y2, v2), . . . )). Then in particular,
by the Glivenko-Cantelli theorem, for µ-almost all ((x , u), (y , v)),

1

n

n
∑

k=1

δ(xk ,uk)
n→∞
==⇒ µX and

1

n

n
∑

k=1

δ(yk ,vk)
n→∞
==⇒ µY . (16)

Now, take any ((x , u), (y , v)) such that (15) and (16) hold as well as (xn, un) ∈ supp(µX ), (yn, vn) ∈
supp(µY ), n ∈ N. By (15) we find that u = v. Define ϕ : supp((πX )∗µX ) → supp((πY )∗µY ) as
the only continuous map satisfying ϕ(xn) = yn, n ∈ N and recall the definition of eϕ in (4). By
(15), we obtain that rX (xm, xn) = rY (ym, yn) = rY (ϕ(xm),ϕ(xn)), m, n ∈ N, which extends to
supp((πX )∗µX ) by continuity. In addition, by (16) and continuity, eϕ∗µX = µY and so (X , rX ,µX )
and (Y, rY ,µY ) are measure-preserving isometric, i.e. x = y .

3.2 The Gromov-Prohorov metric

In this section, we define the marked Gromov-Prohorov metric on MI , which generates a topol-
ogy which is at least as strong as the marked Gromov-weak topology, see Lemma 3.5. However,
since we establish in Proposition 3.6 that both topologies have the same compact sets, we see in
Proposition 3.7 that the topologies are the same, and hence, the marked Gromov-Prohorov metric
metrizes the marked Gromov-weak topology. We use the same notation for ϕ and eϕ as in Defi-
nition 2.1. Recall that the topology of weak convergence of probability measures on a separable
space is metrized by the Prohorov metric (see [9, Theorem 3.3.1]).

Definition 3.1 (The marked Gromov-Prohorov topology).
For xi = (X i , ri ,µi) ∈MI , i = 1, 2, set

dMGP(x1, x2) := inf
(Z ,ϕ1,ϕ2)

dPr(( eϕ1)∗µ1, ( eϕ2)∗µ2), (17)

where the infimum is taken over all complete and separable metric spaces (Z , rZ), isometric em-
beddings ϕ1 : X1 → Z , ϕ2 : X2 → Z and dPr denotes the Prohorov metric on M1(Z × I), based
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on the metric erZ = rZ + rI on Z × I , metrizing the product topology. Here, dMGP denotes the
marked Gromov-Prohorov metric (MGP metric). The topology induced by dMGP is called the marked
Gromov-Prohorov topology (MGP topology).

Remark 3.2 (Equivalent definition of the MGP metric).
For xi = (X i , ri ,µi) ∈MI , i = 1,2, denote by X1 t X2 the disjoint union of X1 and X2. Then,

dMGP(x1, x2) := inf
rX1tX2

dPr(( eϕ1)∗µ1, ( eϕ2)∗µ2), (18)

where the infimum is over all metrics rX1tX2
on X1 t X2 extending the metrics on X1 and X2 and

ϕi : X i → X1 t X2, i = 1,2 denote the canonical embeddings.

Remark 3.3 (dMGP is a metric). The fact that dMGP indeed defines a metric follows from an easy
extension of Lemma 5.4 in [13]. Symmetry and non-negativity are clear from the definition, and
positive definiteness is a consequence of Theorem 1. Furthermore the triangle inequality holds by
the following argument: For three mmm-spaces xi = (X i , ri ,µi) ∈MI , i = 1,2, 3 and any ε > 0,
by the same construction as in Remark 3.2, we can choose a metric rX1tX2tX3

on X1 t X2 t X3,
extending the metrics rX1

, rX2
, rX3

, such that

dPr(( eϕ1)∗µ1, ( eϕ2)∗µ2)− dMGP(x1, x2)< ε,
dPr(( eϕ2)∗µ2, ( eϕ3)∗µ3)− dMGP(x2, x3)< ε.

(19)

Then, we can use the triangle inequality for the Prohorov metric onM1
�

(X1 t X2 t X3)× I
�

and
let ε→ 0 to obtain the triangle inequality for dMGP.

Lemma 3.4 (Equivalent description of the MGP topology).
Let x = (X , rX ,µX ), x1 = (X1, r1,µ1), x2 = (X2, r2,µ2), . . . ∈ MI . Then, dMGP(xn, x )

n→∞−−→ 0 if and
only if there is a complete and separable metric space (Z , rZ) and isometric embeddings ϕX : X →
Z , ϕ1 : X1→ Z , ϕ2 : X2→ Z , . . . with

dPr(( eϕn)∗µn, ( eϕX )∗µX )
n→∞−−→ 0. (20)

Proof. The assertion is an extension of Lemma 5.8 in [13] to the marked case. The proof of the
present lemma follows the same lines, which we sketch briefly.
First, the “if”-direction is clear. For the “only if” direction, fix a sequence ε1,ε2, · · ·> 0 with εn→ 0
as n→∞. By the same construction as in Remark 3.3, we can construct a metric rZ on Z , defined
as the completion of X t X1 t X2 t · · · , with the property that

dPr
�

( eϕn)∗µn, ( eϕX )∗µX
�

− dMGP(xn, x )< εn, (21)

where ϕX : X → Z and ϕn : Xn→ Z , n ∈N are canonical embeddings. The assertion follows.

Lemma 3.5 (MGP convergence implies MGW convergence).
Let x , x1, x2, · · · ∈MI be such that dMGP(xn, x )

n→∞−−→ 0. Then, xn
n→∞−−→ x in the MGW topology.

Proof. Let x = (X , r,µ), x1 = (X1, r1,µ1), x2 = (X2, r2,µ2), . . . . Take (Z , rZ) and isometric embed-
dings ϕX ,ϕ1,ϕ2, . . . such that (20) from Lemma 3.4 holds.
It is a consequence of Proposition 3.4.5 in [9] that

⋃

nC n is convergence determining in

M1(R
(N2 )
+ × IN); see also the proof of Proposition 4.1. Let Φ ∈ Π0 be such that Φ(.) = 〈ν .,φ〉 for
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some φ ∈
⋃∞

n=0C n. Since ( eϕn)∗µn
n→∞
==⇒ ( eϕX )∗µX by (20), we also have that

�

( eϕn)∗µn
�⊗N n→∞

==⇒
�

( eϕX )∗µX
�⊗N inM1((Z × I)N). Hence we can conclude that

∫

φ
�

(rZ(zk, zl))1≤k<l ,u
��

( eϕn)∗µn
�⊗N(dz, du)

n→∞−−→
∫

φ
�

(rZ(zk, zl))1≤k<l , u
��

( eϕX )∗µX
�⊗N(dz, du).

(22)

Since x = (Z , rZ , ( eϕX )∗µX ) and xn = (Z , rZ , ( eϕn)∗µn), n = 1,2, . . . , this proves that 〈νxn ,φ〉 n→∞−−→
〈νx ,φ〉. Because Φ ∈ Π0 was arbitrary, we have that νxn

n→∞
==⇒ νx . Then, by definition, xn

n→∞−−→ x
in the MGW topology.

Proposition 3.6 (Relative compactness inMI ).
Let Γ⊆MI . Then conditions (i) and (ii) of Theorem 3 are equivalent to
(iii) The set Γ is relatively compact with respect to the marked Gromov-Prohorov topology.

Proof. First, (iii)⇒(i) follows from Lemma 3.5. Thus, it remains to show (i)⇒(ii)⇒(iii).

(i)⇒(ii): Note that Π0 contains functions Φ(.) = 〈ν .,φ〉 such that φ does not depend on the
variables u ∈ IN, as well as functions φ which only depend on u1 ∈ I . Denote the former set of
functions by Πdist and the latter by Πmark.
Assume that the sequence x1, x2, · · · ∈ Γ converges to x ∈MI with respect to the MGW topology.
Since Φ(xn)

n→∞−−→ Φ(x ) for all Φ ∈ Πdist, we find that π1(xn)
n→∞−−→ π1(x ) in the Gromov-weak

topology. In addition, Φ(xn)
n→∞−−→ Φ(x ) for all Φ ∈ Πmark implies π2(xn)

n→∞
==⇒ π2(x ). In particular,

(ii) holds.

(ii)⇒(iii): Recall from Theorem 5 of [13] that the (unmarked) Gromov-weak and the (un-
marked) Gromov-Prohorov topology coincide. For a sequence in Γ, take a subsequence x1 =
(X1, r1,µ1), x2 = (X2, r2,µ2), · · · ∈ Γ and x = (X , rX ,µX ) ∈MI such that π1(xn)

n→∞−−→ π1(x ) ∈M in
the Gromov-Prohorov topology and

dPr(π2(xn),π2(x ))
n→∞−−→ 0. (23)

Using Lemma 5.7 of [13], take a complete and separable metric space (Z , rZ), isometric embed-
dings ϕX : X → Z ,ϕ1 : X1→ Z ,ϕ2 : X2→ Z , . . . such that

dPr((πXn
◦ eϕn)∗µn,(πX ◦ eϕX )∗µX )

= dPr((πXn
)∗(( eϕn)∗µn), (πX )∗(( eϕX )∗µX ))

n→∞−−→ 0.
(24)

In particular, (23) shows that {π2(xn) = (πI)∗( eϕn)∗µn : n ∈ N} is relatively compact in M1(I)
and (24) shows that {(πXn

)∗(( eϕn)∗µn) : n ∈ N} is relatively compact in M1(Z). This implies
that {( eϕn)∗µn : n ∈ N} is relatively compact in M1(Z × I). Hence, we can find a convergent
subsequence, and (iii) follows by Lemma 3.4.

Proposition 3.7 (MGW and MGP topologies coincide).
The marked Gromov-Prohorov metric generates the marked Gromov-weak topology, i.e. the marked
Gromov-weak topology and the marked Gromov-Prohorov topology coincide.
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Proof. Let x , x1, x2, · · · ∈MI . We have to show that xn
n→∞−−→ x in the MGW topology if and only if

xn
n→∞−−→ x in the MGP topology. The ’if’-part was shown in Lemma 3.5. For the ’only if’-direction,

assume that xn
n→∞−−→ x in the MGW topology. It suffices to show that for all subsequences of

x1, x2, . . . , there is a further subsequence xn1
, xn2

, . . . such that

dMGP(xnk
, x )

k→∞−−→ 0. (25)

By Proposition 3.6 {xn : n ∈ N} is relatively compact in the MGP topology. Therefore, for a

subsequence, there exists y ∈ MI and a further subsequence xn1
, xn2

, . . . with xnk

k→∞−−→ y in the

MGP topology. By the ’if’-direction it follows that xnk

k→∞−−→ y in the MGW topology, which shows
that y = x and therefore (25) holds.

3.3 Proofs of Theorems 2 and 3

Clearly, Theorem 3 was already shown in Proposition 3.6.
For Theorem 2, some of our arguments are similar to proofs in [13], where the case without marks
is treated, which are also based on a similar metric. We have shown in Proposition 3.7 that the
marked Gromov-Prohorov metric metrizes the marked Gromov-weak topology. Hence, we need to
show that the marked Gromov-weak topology is separable, and dMGP is complete.
We start with separability. Note that the marked Gromov-Prohorov topology coincides with the

topology of weak convergence on {νx : x ∈MI} ⊆ M1
�

R
(N2 )
+ × IN

�

. Hence, separability follows

from separability of the topology of weak convergence onM1
�

R
(N2 )
+ × IN

�

.
For completeness, consider a Cauchy sequence x1, x2, · · · ∈ MI . It suffices to show that there is
a convergent subsequence. Note that π1(xn) is Cauchy in M and π2(xn) is Cauchy in M1(I). In
particular, {πi(xn) : n ∈ N}, i = 1,2 are relatively compact. By Proposition 3.6, this implies that
{xn : n ∈N} is relatively compact inMI and thus, there exists a convergent subsequence.

4 Properties of random mmm-spaces

In this section we prove the probabilistic statements which we asserted in Subsection 2.3. In
particular, we prove Theorems 4 in Section 4.1 and Theorem 5 in Section 4.3. In Section 4.2 we
give properties of polynomials a class of functions not only crucial for the topology of MI but also
to formulate martingale problems (see [5, 14]).

4.1 Proof of Theorem 4

The proof is an easy consequence of Theorem 3: By Prohorov’s Theorem, the family of distributions
of {X j : j ∈ J} is tight iff for all ε > 0 there is Γε ⊆MI relatively compact with inf j∈J P(X j ∈ Γε)>
1− ε. By Theorem 3 the latter is the case iff for all ε > 0 there are relatively compact Γ1

ε ⊆M and
Γ2
ε ⊆M1(I) such that

inf
j∈J

P(π1(X j) ∈ Γ1
ε)> 1− ε, inf

j∈J
P(π2(X j) ∈ Γ2

ε)> 1− ε. (26)

This is the same as (i) and (ii).



184 Electronic Communications in Probability

4.2 Polynomials

We prepare the proof of Theorem 5 with some results on polynomials. We show that polynomials
separate points (Proposition 4.1) and are convergence determining inMI (Proposition 4.2).

Proposition 4.1 (Polynomials form an algebra that separates points).
1. For k = 0, 1, . . . ,∞, the set of polynomials Πk is an algebra. In particular, if Φ = Φn,φ ∈ Πk

n,Ψ =
Ψm,ψ ∈ Πk

m, then

(Φ ·Ψ)(x ) = 〈νx ,φ · (ψ ◦ρn
1)〉 (27)

with ρn
1 being the “shift”

ρn
1(r, u) =

�

(ri+n, j+n)1≤i< j , (ui+n)i≥1
�

. (28)

2. For all k = 1,2, . . . ,∞,Πk separates points inMI , i.e. for x , y ∈MI we have x = y iff Φ(x ) = Φ(y)
for all Φ ∈ Πk.

Proof. 1. First, we note that the marked distance matrix distributions are exchangeable in the
following sense: Let σ :N→N be injective. Set

Rσ :







R
(N2 )
+ × IN →R(

N

2 )
+ × IN

�

(ri j)1≤i< j , (uk)k≥1
�

7→
�

(rσ(i)∧σ( j),σ(i)∨σ( j)), (uσ(k))k≥1
�

.
(29)

Then, for x ∈MI , we find that

(Rσ)∗ν
x = νx . (30)

Next, we show that Πk is an algebra. Clearly, Πk is a linear space and 1 ∈ Πk. Next consider
multiplication of polynomials. By (30), we find that (ρn

1)∗ν
x = νx . If Φn,φ ∈ Πk

n, this implies

(Φ ·Ψ)(x ) =
�

∫

φ(r, u)νx (dr, du)
�

·
�

∫

ψ(ρn
1(r, u))νx (dr, du)

�

=

∫

φ(r, u)ψ(ρn
1(r, u))νx (dr, du) = 〈νx ,φ · (ψ ◦ρn

1)〉,
(31)

which shows that Πk is closed under multiplication as well.
2. We turn to showing that Πk separates points. Recall that for x ∈ MI , the distance matrix

distribution νx is an element ofM1(R
(N2 )
+ × IN). On such product spaces, the set of functions

n

φ(r, u) =
n
∏

i=1

gi(ui)
n
∏

l=i+1

fil(ril) : fil ∈ C
k
(R+), gi ∈ C

k
(I), n ∈N

o

⊆ Πk (32)

is separating in M1(R
(N2 )
+ × IN) by Proposition 3.4.5 of [9]. If x 6= y , we have νx 6= ν y by

Theorem 1 and hence, there exists φ ∈ Πk with 〈φ,νx 〉 6= 〈φ,ν y〉 and hence Πk separates points.
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Proposition 4.2 (A convergence determining subset of Π∞).
There exists a countable algebra Π∞∗ ⊆ Π

∞ that is convergence determining in MI , i.e. for

x , x1, x2, · · · ∈MI , we have xn
n→∞−−→ x iff Φ(xn)

n→∞−−→ Φ(x ) for all Φ ∈ Π∞∗ .

Proof. The necessity is clear. For the sufficiency argue as follows. Focus on the one-dimensional

marginals of marked distance matrix distributions, which are elements of M1(R
(N2 )
+ × IN) first.

On the one hand by Lemma 3.2.1 of [4], there exists a countable, linear set VR+ of continuous,
bounded functions which is convergence determining inM1(R+), i.e. for µ,µ1,µ2, · · · ∈M1(R+)

we have µn
n→∞
==⇒ µ iff 〈µn, f 〉 n→∞−−→ 〈µ, f 〉 for all f ∈ VR+ . By an approximation argument, we can

choose VR+ even such that it only consists of infinitely often continuously differentiable functions.
On the other hand there exists a countable, linear set VI of continuous, bounded functions which
is convergence determining in I . Without loss of generality, VR+ and VI are algebras. Since
a marked distance matrix distribution νx for x ∈ MI is a probability measure on a countable
product, Proposition 3.4.6 in [9] implies that the algebra

V :=
n

n
∏

k=1

gk(uk)
n
∏

l=k+1

fkl(rkl) : n ∈N, gk ∈ VI , fkl ∈ VR+

o

(33)

is convergence determining inM1
�

R
(N2 )
+ × IN

�

. In particular,

Π∞∗ := {x 7→ 〈νx ,φ〉 : φ ∈ V} ⊆ Π∞ (34)

is a countable algebra that is convergence determining. Indeed, for x , x1, x2, · · · ∈ MI , we have

xn
n→∞−−→ x in the marked Gromov-weak topology iff νxn

n→∞
==⇒ νx in the weak topology onR

(N2 )
+ × IN

iff 〈νxn ,φ〉 n→∞−−→ 〈νx ,φ〉 for all φ ∈ V .

4.3 Proof of Theorem 5

By Theorem 3.4.5 of [9] and Proposition 4.1, Πk is separating inM1(MI).
We will show that Π∞∗ from Proposition 4.2 is a countable, convergence determining algebra
in M1(MI). Recall V and its ingredients, VI and VR+ from the proof of Proposition 4.2. By

Lemma 3.4.3 in [9], we have that Xn
n→∞
==⇒X iff (i) E[Φ(Xn)]

n→∞−−→ E[Φ(X )] for all Φ ∈ Π∞∗ and
(ii) the family of distributions of {Xn : n ∈N} is tight. We will show that (i) implies (ii).
By Theorem 4 we have to show that (i) implies that

the family of distributions of {πi(Xn) : n ∈N} is tight for i = 1, 2. (35)

Before we prove this relation we need some new objects and auxiliary facts.

For (r, u) ∈R(
N

2 )
+ × IN and ε > 0, we set

v(r, u) := u1,

w(r, u) := r12,

zε(r, u) := lim sup
n→∞

1
n

n
∑

i=2

1{r1n<ε}.

(36)
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Moreover, for a random variable Y with values in MI , we define (R, U)Y as the random variable

with values in R
(N2 )
+ × IN, such that given Y = y , (R, U)Y has distribution ν y . We have

E[φ((R, U)Xn)] = E
�

E[φ((R, U)Xn)|Xn]
�

= E[〈νXn ,φ〉] n→∞−−→ E[〈νX ,φ〉] = E[φ((R, U)X )],
(37)

for all φ ∈ V by Assumption (i). Since V is convergence determining inM1(R(
N

2 ) × IN), we note
that

(R, U)Xn
n→∞
==⇒ (R, U)X . (38)

In order to show (35) for i = 1, by Theorem 3 of [13], we need to show that (38) implies

(a)
�

w
�

(R, U)Xn
�

: n ∈N
	

is tight,

(b) For all ε > 0 there exists δ > 0 such that lim supn→∞ P
�

zε
�

(R, U)Xn
�

< δ
�

< ε.

For (a), note that by (37)

E[ f (w((R, U)Xn)]
n→∞−−→ E[ f (w((R, U)X )] (39)

for all f ∈ VR+ . Hence, since VR+ is convergence determining in R+, w((R, U)Xn)
n→∞
==⇒

w((R, U)X ), and in particular, (a) holds.

For (b), consider the distribution of zε((R, U)X ). Since the single random variable X is tight in

M
I , by Theorem 3 of [13], we find δ > 0 such that P(zε((R, U)X ) < δ) < ε and zε((R, U)X ) does

not have an atom at δ. For A := {(r, u) : zε(r, u) < δ} we have ∂ A⊆ {(r, u) : zε(r, u) = δ} and it

follows P((R, U)X ∈ ∂ A) = 0. By the Portmanteau Theorem,

P(zε((R, U)Xn)< δ) = P((R, U)Xn ∈ A)
n→∞−−→ P((R, U)X ∈ A)

= P(zε((R, U)X )< δ)< ε.
(40)

This shows (b).
In order to obtain (35) for i = 2, note that v∗ν

Xn ∈ M1(I) is the first moment measure of the
distribution of theM1(I)-valued random variable π2(Xn) and recall that tightness inM1(M1(I))
is implied by tightness of the first moment measure. By (37), we find that for g ∈ VI

E[g(v((R, U)Xn))]
n→∞−−→ E[g(v((R, U)X ))], (41)

so v((R, U)Xn)
n→∞
==⇒ v((R, U)X ) and, in particular, (35) holds for i = 2.
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