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Abstract
For first passage percolation in Zd with large d, we construct a path connecting the origin to
{x1 = 1}, whose passage time has optimal order log d/d. Besides, an improved lower bound for
the "diagonal" speed of the cluster combined with a result by Dhar (1988) shows that the limiting
shape in FPP with exponential passage times (and thus that of Eden model) is not the euclidian
ball in dimension larger than 35.

1 Introduction

Let
¦

τ(x , y), (x , y) edges of Zd
©

be a family of i.i.d. positive random variables. The quantity
τ(x , y) is called the passage time through edge (x , y). For a path P : x0 → x1 → · · · → xn of
neighbouring vertices, we denote by τ(P ) the passage time along P : τ(P ) =

∑n
i=1 τ(x i−1, x i).

The family
�

τ(x , y)
	

defines a random distance over Zd as follows:

D(x , y) = inf
�

τ(P ) ; P goes from x to y .
	

.

We also set Bt := {x;D(0, x)≤ t}.
This model is called first passage percolation. We refer to Kesten’s St-Flour Lecture Notes [6] for a
nice introduction to the subject. In this work we focus on the case where the common distribution
of the passage times is the exponential distribution with parameter one. This case has received a
particular attention for at least two reasons:

• The process t 7→ Bt is then a Markov process. This is a consequence of the memorylessness
property of the exponential random variable.
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• Consider the random process Bt only at random times at which a new vertex is added.
Namely, set t0 = 0 and tk+1 = inf

�

t > tk ; Bt 6= Bt−
	

and look at the sequence Bt0
, Bt1

, . . . .
This discrete process is known as the Eden growth process [5], which was introduced as a
(very) simplified model for cells spread: to Btk

one adds a new vertex x adjacent to Btk
, with

a probability which is proportional to the number of edges between x and Btk
.

We denote the canonical basis of Rd by (e1, . . . , ed). For a subset A⊂ Rd , the random variable T (A)
is the first time the cluster Bt hits A, that is,

T (A) =min
�

t ≥ 0 ; Bt ∩ A 6= ;
	

.

We will consider T (A) for the particular set Hn =
�

x1 = n
	

. Subadditivity theory was historically
introduced by Hammersley and Welsh to show that the sequence T (n, 0, . . . , 0)/n converges almost
surely to a constant µ = µ(d), which is called the time constant. It can be seen as a consequence
of the work of Cox and Durrett [1] that µ is also the limit

µ= lim
T (Hn)

n
a.s.

Kesten ([6], Th.8.2) was the first to prove that, for a large class of distributions for the τ’s, the
constant µ(d) is of order log d/d. In the case of exponential passage times, Dhar used the fact that
Bt is a Markov process to obtain a sharp asymptotic for µ(d).

Theorem (Dhar [3]). For exponential passage times,

lim
d→∞

µ(d)
d

log d
=

1

2
.

It should be noted that Dhar’s proof does not only supply an asymptotic bound but also gives
rigorous and interesting inequalities for small d (see eq.(10) in [3]). Our aim in the present paper
is to provide a constructive proof of the fact that µ = O (log d/d), by exhibiting a path going from
the origin to H1 with small passage time. This path, except its last edge, is contained in H0.

2 A path P connecting 0 to
�

x1 = 1
	

A tree-like construction of paths

Fix an integer `≥ 2, and let p1, ..., p` be a collection of ` integers such that

p1 + p2 + · · ·+ p` ≤ d − 1.

We want to associate to these integers a path P (`, p1, ..., p`), having `+ 1 edges and connecting
the origin to H1, along which passage times are as small as possible.
The first ` edges of this path lie in hyperplane H0, and the last one connects H0 to H1. The path
P (`, p1, ..., p`) is defined as follows:

Step 1 Among the 2(d − 1) edges (0, 0± ei) (with 2 ≤ i ≤ d), we consider the ones with the p1
smallest passage times. This gives p1 first edges ending at some vertices that we denote by
x1[1], . . . , x1[p1].
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Step 2 From each point x1[1], . . . , x1[p1], consider 2(d − 1) − 2p1 edges among those that are
not collinear with one of the edges that have been already used in Step 1. Among these
p1 × (2(d − 1) − 2p1) distinct edges we choose the p2 smallest ones. They end at some
distinct vertices that we denote by x2[1], . . . , x2[p2].

...

Step ` From each point x`−1[1], . . . , x`−1[p`−1], consider 2(d − 1)− 2p1 − 2p2 − · · · − 2p`−1 edges
that are not collinear with one of the edges that have been already used in the previous
steps. Among these p`−1× (2(d−1)−2p1−2p2−· · ·−2p`−1) distinct edges we choose the
p` smallest ones. They end at some distinct vertices that we denote by x`[1], . . . , x`[p`].

Step `+ 1. Among the p` edges (x`[1], x`[1]+ e0), . . . , (x`[p`], x`[p`]+ e1) we choose the one with the
shortest passage time. We denote this path by x`→ x`+1.

Backtracking from x`+1 to 0 defines our path: this is the only path

P (`, p1, ..., p`) : 0→ x1→ x2→ x3→ ·· · → x`−1→ x`→ x`+1

for which, for all 1 ≤ i ≤ `− 1, the edge (x i , x i+1) is of the type (x i[r], x i+1[s]) for some integers
r, s.

The passage time of P

Now our main result states that, for large d, one can find among the paths P (`, p1, ..., p`) a path
whose passage time is of optimal order:

Theorem 1.

lim sup
d→∞

d

log d
inf

`,p1,...,p`
E[τ(P (`, p1, ..., p`))]≤

e

4
.

Proof. Let us first introduce some notations. Fix two positive integers n ≥ k ≥ 0 and take
e1,e2, . . . ,en a family of i.i.d. exponential random variables with parameter one. Pick uni-
formly one of the k smallest, we denote by f (n, k) its expectation. The mean passage time of
P (`, p1, ..., p`) can be written

E[τ(P (`, p1, ..., p`))] = f (2(d − 1), p1) + f
�

p1(2(d − 1)− 2p1), p2
�

+ . . .

+ f

 

p`−1(2(d − 1)− 2
`−1
∑

i=1

pi), p`

!

+ f (p`, 1). (1)

Write as usual e(k) for the k-th smallest among the n variables e1, . . . ,en, it is well known that

�

e(1),e(2), . . . ,e(n)
� (law)
=
�

1

n
e1,

1

n
e1 +

1

n− 1
e2, . . . ,

1

n
e1 +

1

n− 1
e2 + · · ·+ en

�

.

One readily deduces that

f (n, k) =
1

k

k
∑

i=1

i−1
∑

j=0

1

n− j
≤

k+ 1

2(n− k)
,
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which implies from (1) that

E[τ(P (`, p1, ..., p`))]≤
1

2

� p1 + 1

2(d − 1)− p1
+

p2 + 1

2(d − 1)p1 − (2p2
1 + p2)

+ . . .

+
p` + 1

2(d − 1)p`−1 − (2p`−1

∑

i≤`−1 pi + p`)
�

+
1

p`
.

We asymptotically minimize the above right-hand side by introducing a positive integer A and
taking `= blog dc − A, and pi = beic. We obtain

limsup
d→+∞

d

log d
inf

`,p1,...,p`
E[τ(P (`, p1, ..., p`))]≤

e

4

 

1

1− e
e−1

e−A

!

which gives the desired bound when A grows to infinity.

If we use the same procedure to build a path from H1 to H2, H2 to H3,..., Hn−1 to Hn, the family
of passage times of these n paths is i.i.d. by construction. It then follows from the law of large
numbers that

limsup
d→∞

µ(d)
d

log d
≤ e/4= 0.679...

Comments on the result

1. We obtain a short and constructive proof of the bound µ ≤ cst log d/d. We are however not
able to achieve Dhar’s optimal bound with the constant 1/2. The latter was obtained with a
recursive argument applied to Bt , but cannot provide for an effective path going to Hn.

2. Kesten’s original proof of the existence of a path whose time constant is less than some
constant (11 in his proof) times log d

d
was also non constructive. However, his proof shows

that a path of length log d achieves this optimal order. This coincides with our choice of ` in
the proof of Theorem 1. If one restricts the scope to paths of length 3 (` = 2), one already
gets an interesting bound i.e.

limsup
d→∞

d
2
3 inf

p1,p2

E[τ(P (2, p1, p2))]≤ C

which proves that, in dimension large enough, the horizontal speed is bigger than the diag-
onal speed, which has been proved to be of order

p
d (see next section). More generally,

optimizing E[τ(P (`, p1, ..., p`))] for a fixed ` leads to a bound µ(d)≤ C/d
`

`+1 .

3. Our result could be extended to a large class of distributions over the passage times, provided
one has a good upper bound for f (n, k). This can be done if τ has a first moment and a nice
density near zero, not null at zero (such assumptions on τ were considered by Kesten).

3 Discussion on the diagonal speed and the limiting shape

Richardson [8] proved that Bt grows linearly and has a limit shape: there exists a nonrandom set
B0 ⊂ Rd such that, for all ε > 0,

P
�

(1− ε)B0 ⊂
Bt

t
⊂ (1+ ε)B0

�

t→∞→ 1.
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(Richardson didn’t exactly deal with first passage percolation but with a class of discrete growth
processes, including Eden’s growth process.) The convergence also holds almost surely, the most
general result is due to Cox and Durrett [1].
The shape B0 appears to be a ball of a certain norm, which is not explicit. Eden and Richardson
observed on simulations that B0 looks circular in dimension two (though, they only performed the
simulations up to a few hundreds vertices in Bt). Kesten has shown that, surprisingly enough, this
is not the case for FPP with exponential passage times, at least when d > 650000. We conclude
this paper by short arguments showing that B0 is not the euclidian ball when d ≥ 35. Let us denote
by µ? the "diagonal" time constant1:

µ? = lim
T (Jn)

n
a.s.,

where Jn =
¦

x1 + x2 + · · ·+ xd = n
p

d
©

. Kesten ([6] Th.8.3) observed that µ? ≥ 1/2e
p

d =
0.184.../

p
d which, compared to µ = O (log d/d), gives that µ < µ? if d is large enough, yielding

that B0 is not the Euclidean ball. Carrying his argument a little further, we obtain a slightly
improved bound for µ?. After the submission of the present paper, D.Dhar sent us a copy of [4],
where the same bound is proved in a slightly different manner.

Theorem 2. For all d ≥ 2,

µ? ≥

p

α2
? − 1

2
p

d
≈

0.3313...
p

d
(2)

where α? is the non null solution of cothα= α.

Proof. The proof is elementary, it mainly consists in bounding the probability that a fixed path
going from the origin to Jn has small passage times.
We denote by D(n)k the number of oriented self-avoiding paths of length k (in the sense that they
do not run twice through the same edge) starting from the origin and that intersect Jn for the first
time at the k-th edge. Because of self-avoidingness, passage times are independent along such a
path. Fix a real number x > 0, since a path from the origin to Jn has at least n

p
d edges,

P(T (Jn)≤ nx)≤ P( there exists k and a path P in D(n)k s.t. τ(P )≤ nx)

=
∑

k≥n
p

d

D(n)k × P(Γ(k, 1)≤ nx), (3)

where Γ(k, 1) is a Gamma(k, 1) random variable. The following estimate is straightforward:

P(Γ(k, 1)≤ a)≤ (ae/k)k .

Lemma 3. For k ∼ αn
p

d with some constant α≥ 1,

D(n)k ∼k→∞ (2d)k
r

1

2πn
p

d

�

α

(α+ 1)(α+1)/2α(α− 1)(α−1)/2α

�k

.

1We do not use the convention of Kesten [6] for the definition of µ?, yielding to a different factor of
p

d between his
statement and ours.
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Proof of Lemma 3. We evaluate the number of (non necessarily self-avoiding) paths of length k
which start from the origin and hit Jn for the first time at time k. Such a path

S : 0→ S1→ ·· · → Sk

is seen as one sample of the standard symmetric random walk in Zd . Its projection X= (0, X1, . . . , Xk)
on the axis x1 = x2 = · · · = xd is a symmetric one-dimensional random walk with increments
±1/
p

d. Applying Th.9.1 in [7] and the Stirling formula gives

(2d)−k D(n)k = P(S hits Jn for the first time at k)

=
n
p

d

k

�

k

(k+ n
p

d)/2

�

2−k

∼

r

1

2πn
p

d

�

α

(α+ 1)(α+1)/2α(α− 1)(α−1)/2α

�k

.

Going back to (3) gives

P(T (Jn)≤ nx)≤ 2
∑

k≥n
p

d

(2d)k
r

1

2πn
p

d

�

α

(α+ 1)(α+1)/2α(α− 1)(α−1)/2α

�k

(nxe/k)k,

≤ 2
∑

k≥n
p

d

r

1

2πn
p

d

�

2
p

d xe

(α+ 1)(α+1)/2α(α− 1)(α−1)/2α

�k

,

where α= k/n
p

d. This sum decays exponentially provided that

x <
1

2e
p

d
sup
α>1

¦

(α+ 1)(α+1)/2α(α− 1)(α−1)/2α
©

.

This supremum is attained for the unique non null solution α? of cothα = α. It is equal to
e
p

α2
? − 1. Theorem 2 then follows from the Borel-Cantelli Lemma.

Corollary 4. In dimension d ≥ 35, the limiting shape is not the Euclidean ball.

Proof. Combining Theorem 2 with eq.(10) in [3] gives for d = 35 that µ(35)≤ 0.93 log(2d)/2d <
0.3313/

p
d ≤ µ?(35).
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