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Abstract

For a coordinate symmetric random vector (Y1, . . . , Yn) = Y ∈ Rn, that is, one satisfying (Y1, . . . , Yn) =d

(e1Y1, . . . , enYn) for all (e1, . . . , en) ∈ {−1,1}n, for which P(Yi = 0) = 0 for all i = 1,2, . . . , n, the fol-

lowing Berry Esseen bound to the cumulative standard normal Φ for the standardized projection

Wθ = Yθ/vθ of Y holds:

sup
x∈R
|P(Wθ ≤ x)−Φ(x)| ≤ 2

n
∑

i=1

|θi |3E|X i |3 + 8.4E(V 2
θ − 1)2,

where Yθ = θ · Y is the projection of Y in direction θ ∈ Rn with ||θ || = 1, vθ =
p

Var(Yθ ), X i =

|Yi |/vθ and Vθ =
∑n

i=1
θ 2

i
X 2

i
. As such coordinate symmetry arises in the study of projections of

vectors chosen uniformly from the surface of convex bodies which have symmetries with respect

to the coordinate planes, the main result is applied to a class of coordinate symmetric vectors

which includes cone measure C n
p

on the ℓn
p

sphere as a special case, resulting in a bound of order
∑n

i=1
|θi |3.

1 Introduction and main result

Properties of the distributions of vectors uniformly distributed over the surface, or interior, of

compact, convex bodies, such as the unit sphere in Rn, have been well studied. When the convex

body has symmetry with respect to all n coordinate planes, a vector Y chosen uniformly from its

surface satisfies

(Y1, . . . , Yn) =d (e1Y1, . . . , enYn) for all (e1, . . . , en) ∈ {−1,1}n
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and is said to be coordinate symmetric. Projections

Yθ = θ · Y=
n
∑

i=1

θiYi (1.1)

of Y along θ ∈ Rn with ||θ || = 1 have generated special interest, and in many cases normal ap-

proximations, and error bounds, can be derived for Wθ , the projection Yθ standardized to have

mean zero and variance 1. In this note we show that when a random vector is coordinate sym-

metric, even though its components may be dependent, results for independent random variables

may be applied to derive error bounds to the normal for its standardized projection. Bounds in

the Kolmogorov and total variation metric for projections of vectors with symmetries are given

also in [8], but the bounds are not optimal; the bounds provided here, in particular those in The-

orem 2.1 for the normalized projections of the generalization C n
p,F

of cone measure, are of order
∑n

i=1
|θi |3. In related work, many authors study the measure of the set of directions on the unit

sphere along which projections are approximately normally distributed, but in most cases bounds

are not provided; see in particular [12], [1] and [2]. One exception is [6] where the surprising

order
∑n

i=1
|θi |4 is obtained under the additional assumption that a joint density function of Y

exists, and is log-concave.

When the components Y1, . . . , Yn of a coordinate symmetric vector Y have finite variances v2
1
, . . . , v2

n
,

respectively, it follows easily from Yi =d −Yi and (Yi , Yj) =d (−Yi , Yj) for i 6= j ∈ {1, . . . , n} that

EYi = 0, and EYiYj = v2
i
δi j ,

and hence, that

EYθ = 0 and Var(Yθ ) = v2
θ where v2

θ =

n
∑

i=1

θ 2
i

v2
i
.

Standardizing to variance 1, write

Wθ = Yθ/vθ and X i = |Yi |/vθ . (1.2)

When v2
i
= v2 is constant in i then v2

θ
= v2, the common variance of the components, for all θ

with ||θ ||= 1.

One conclusion of Theorem 1.1 gives a Kolmogorov distance bound between the standardized

projection Wθ and the normal in terms of expectations of functions of Vθ =
∑n

i=1
θ 2

i
X 2

i
and

∑n

i=1
|θi |3|X i |3. We apply Theorem 1.1 to standardized projections of a family of coordinate sym-

metric random vectors, generalizing cone measure C n
p

on the sphere S(ℓn
p
), defined as follows.

With p > 0, let

S(ℓn
p
) = {x ∈ Rn :

n
∑

i=1

|x i |p = 1} and B(ℓn
p
) = {x ∈ Rn :

n
∑

i=1

|x i |p ≤ 1}.

With µn Lebesgue measure on Rn, the cone measure of A⊂ S(ℓn
p
) is given by

C n
p
(A) =

µn([0,1]A)

µn(B(ℓn
p
))

where [0,1]A= {ta : a ∈ A, t ∈ [0,1]}. (1.3)

The cases p = 1 and p = 2 are of special interest, corresponding to the uniform distribution over

the unit simplex and unit sphere, respectively. In particular, the authors of [4] compute bounds

for the total variation distance between the normal and the components of Y in the case p = 2.
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In [5] an L1 bound between the standardized variable Wθ in (1.2) and the normal is obtained

when Y has the cone measure distribution. Here an application of Theorem 1.1 yields Theorem

2.1, which gives Kolmogorov distance bounds of the order
∑n

i=1
|θi |3 for a class of distributions

C n
p,F

which include cone measure as a special case.

We note that if θ ∈ Rn satisfies ||θ ||= 1, so Hölder’s inequality with 1/s+ 1/t = 1 yields

1=

 

n
∑

i=1

θ 2
i

!

≤
 

n
∑

i=1

|θi |2s

!1/s

n1/t hence n−s/t ≤
n
∑

i=1

|θi |2s. (1.4)

In particular, with s = 3/2, t = 3 we have n−1/2 ≤
∑n

i=1
|θi |3, and therefore, for any sequence of

norm one vectors θ in Rn for n = 1,2, . . . we have n−β = o(
∑n

i=1
|θi |3) for all β > 1/2. We note

that equality is achieved in (1.4) when θ = n−1/2(1,1, . . . , 1), the case recovering the standardized

sum of the coordinates of Y.

We have the following simple yet crucial result, shown in Section 3.

LEMMA 1.1. Let Y be a coordinate symmetric random variable in Rn such that P(Yi = 0) = 0 for

all i = 1,2 . . . , n, and let ǫi = sign(Yi), the sign of Yi . Then the signs ǫ1, . . . ,ǫn of the coordinates

Y1, . . . , Yn are i.i.d. variables taking values uniformly in {−1,1}, and

(ǫ1, . . . ,ǫn) and (|Y1|, . . . , |Yn|) are independent.

The independence property provided by Lemma 1.1 is the key ingredient in the following theorem.

THEOREM 1.1. Let Y= (Y1, . . . , Yn) be a coordinate symmetric random vector in Rn whose components

satisfy P(Yi = 0) = 0 and have variances v2
i

for i = 1, . . . , n. For θ ∈ Rn with ||θ ||= 1 let

Yθ = θ · Y, v2
θ =

n
∑

i=1

θ 2
i

v2
i
, and V 2

θ =

n
∑

i=1

θ 2
i

X 2
i
, (1.5)

where X i = |Yi |/vθ . Then, with Φ(x) the cumulative distribution function of the standard normal,

the normalized projection Wθ = Yθ/vθ satisfies

sup
x∈R
|P(Wθ ≤ x)−Φ(x)|

≤ 4.2E|V 2
θ − 1|I{|V 2

θ − 1|> 1/2}+ 0.4E(V 2
θ − 1)2 I{|V 2

θ − 1| ≤ 1/2}

+2

n
∑

i=1

|θi |3E|X i |3. (1.6)

In particular,

sup
x∈R
|P(Wθ ≤ x)−Φ(x)| ≤ 8.4E(V 2

θ − 1)2 + 2

n
∑

i=1

|θi |3E|X i |3. (1.7)

We remark that in related work, Theorem 4 in [3] gives an exponential non-uniform Berry-Esseen

bound for the Studentized sums
n
∑

i=1

θiYi/(

n
∑

i=1

θ 2
i

Y 2
i
)1/2.

A simplification of the bounds in Theorem 1.1 result when Y has the ‘square negative correlation

property,’ see [9], that is, when

Cov(Y 2
i

, Y 2
j
)≤ 0 for i 6= j, (1.8)
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as then

E(V 2
θ − 1)2 ≤

n
∑

i=1

θ 4
i
Var(X 2

i
),

and hence the first term on the right hand side of (1.7) can be replaced by 8.4
∑n

i=1
θ 4

i
Var(X 2

i
).

Proposition 3 of [9] shows that cone measure C n
p

satisfies a correlation condition much stronger

than (1.8); see also [1] regarding negative correlation in the interior of B(ℓn
p
).

2 Application

One application of Theorem 1.1 concerns the following generalization of cone measure C n
p

. Let

n ≥ 2 and G1, . . . , Gn be i.i.d. nontrivial, positive random variables with distribution function F ,

and set

G1,n =

n
∑

i=1

Gi .

In addition, let ǫ1, . . . ,ǫn be i.i.d. random variables, independent of G1, . . . , Gn, taking values

uniformly in {−1,1}. Let C n
p,F

be the distribution of the vector

Y=

�

ǫ1(
G1

G1,n

)1/p, . . . ,ǫn(
Gn

G1,n

)1/p

�

. (2.1)

By results in [10], for instance, cone measure C n
p

as given in (1.3) is the special case when F is

the Gamma distribution Γ(1/p, 1).

THEOREM 2.1. Let Y have distribution C n
p,F

given by (2.1) with p > 0 and F for which EG
2+4/p
1 <∞

when G1 is distributed according to F. Then there exists a constant cp,F depending on p and F such

that for all θ ∈ Rn for which ||θ ||= 1 we have

sup
x∈R
|P(Wθ ≤ x)−Φ(x)| ≤ cp,F

n
∑

i=1

|θi |3, (2.2)

where

Wθ = Yθ/vθ with Yθ = θ · Y and v2
θ = E

� G1

G1,n

�2/p

.

As the Gamma distribution Γ(1/p, 1) has moments of all orders, the conclusion of Theorem 2.1

holds, in particular, for cone measure C n
p

.

3 Proofs

Proof of Lemma 1.1 Let A1, . . . ,An be measurable subsets of (0,∞) and (e1, . . . , en) ∈ {−1,1}n.
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Then, using the coordinate symmetry property to obtain the fourth equality, we have

P(ǫ1 = e1, . . . ,ǫn = en, |Y1| ∈ A1, . . . , |Yn| ∈ An)

= P(ǫ1 = e1, . . . ,ǫn = en,ǫ1Y1 ∈ A1, . . . ,ǫnYn ∈ An)

= P(e1Y1 ∈ A1, . . . , enYn ∈ An)

= P(Y1 ∈ e1A1, . . . , Yn ∈ enAn)

=
1

2n

∑

(γ1,...,γn)∈{−1,1}n
P(Y1 ∈ γ1A1, . . . , Yn ∈ γnAn)

=

 

n
∏

i=1

P(ǫi = ei)

!

P(|Y1| ∈ A1, . . . , |Yn| ∈ An). �

Before proving Theorem 1.1, we invoke the following well-known Berry-Esseen bound for inde-

pendent random variables (see [11]): if ξ1, · · · ,ξn are independent random variables satisfying

Eξi = 0, E|ξi |3 <∞ for 1≤ i ≤ n and
∑n

i=1
Eξ2

i
= 1,

sup
x∈R
|P(

n
∑

i=1

ξi ≤ x)−Φ(x)| ≤min(1,0.7056

n
∑

i=1

E|ξi |3).

In particular, if ǫ1, . . . ,ǫn are independent random variables taking the values −1,+1 with equal

probability, and b1, . . . , bn are any nonzero constants, then W =
∑n

i=1
biǫi satisfies

sup
x∈R
|P(W ≤ x)−Φ(x/V )| ≤min(1,0.7056

n
∑

i=1

|bi |3/V 3), (3.1)

where V 2 =
∑n

i=1
b2

i
.

Proof of Theorem 1.1. By Lemma 1.1, recalling X i = |Yi |/vθ , we may write

Wθ =

n
∑

i=1

ǫiθiX i

where {ǫi , 1 ≤ i ≤ n} is a collection of i.i.d. random variables with P(ǫi = 1) = P(ǫi = −1) = 1/2,

independent of X1, . . . , Xn. Note that, by construction,
∑n

i=1
θ 2

i
EX 2

i
= 1.

Now,

P(Wθ ≤ x)− P(Z ≤ x)

= E
�

P(Wθ ≤ x |{X i}1≤i≤n)−Φ(x/Vθ )
�

+ E
n

Φ(x/Vθ )−Φ(x)
o

:= R1 + R2. (3.2)

By (3.1),

|R1| ≤ E
n

min(1,
0.7056

∑n

i=1
|θi |3|X i |3

V 3
θ

)
o

≤ P(V 2
θ < 1/2) + 0.7056(23/2)

n
∑

i=1

|θi |3E|X i |3

≤ 2E|V 2
θ − 1|I{|V 2

θ − 1|> 1/2}+ 2

n
∑

i=1

|θi |3E|X i |3. (3.3)
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As to R2, letting Z ∼ N(0,1) be independent of Vθ we have

|R2| = |P(Z ≤ x/Vθ )− P(Z ≤ x)|
≤ |P(Z ≤ x/Vθ , |V 2

θ − 1| ≤ 1/2)− P(Z ≤ x , |V 2
θ − 1| ≤ 1/2)|

+|P(Z ≤ x/Vθ , |V 2
θ − 1|> 1/2)− P(Z ≤ x , |V 2

θ − 1|> 1/2)|
≤ |P(Z ≤ x/Vθ , |V 2

θ − 1| ≤ 1/2)− P(Z ≤ x , |V 2
θ − 1| ≤ 1/2)|

+P(|V 2
θ − 1|> 1/2)

≤ |P(Z ≤ x/Vθ , |V 2
θ − 1| ≤ 1/2)− P(Z ≤ x , |V 2

θ − 1| ≤ 1/2)|
+2E|V 2

θ − 1|I{|V 2
θ − 1|> 1/2}

:= R3 + 2E|V 2
θ − 1|I{|V 2

θ − 1|> 1/2},

where

R3 = |E
�

(Φ(x/Vθ )−Φ(x))I{|V 2
θ − 1| ≤ 1/2}

�

|.

By monotonicity, it is easy to see that

|(1+ x)−1/2 − 1+ x/2|
x2

≤ c0 := 4
p

2− 5 (3.4)

for |x | ≤ 1/2. Hence, assuming |V 2
θ
− 1| ≤ 1/2

1/Vθ = (1+ V 2
θ − 1)−1/2 = 1− (1/2)(V 2

θ − 1) + γ1(V
2
θ − 1)2

with |γ1| ≤ c0. A Taylor expansion of Φ yields

Φ(x/Vθ )−Φ(x)
= xφ(x)(1/Vθ − 1) + (1/2)x2(1/Vθ − 1)2φ′(xγ2)

= xφ(x)
n

− (1/2)(V 2
θ − 1) + γ1(V

2
θ − 1)2

o

+(1/2)x2φ′(xγ2)
(V 2
θ
− 1)2

(Vθ (Vθ + 1))2

where (2/3)1/2 ≤ γ2 ≤
p

2 whenever |V 2
θ
− 1| ≤ 1/2. Let

c1 = sup
x∈R
|xφ(x)|=

1
p

2π
e−1/2 ≤ 0.24198

and

sup
x

sup
(2/3)1/2≤γ2≤21/2

|x2φ′(xγ2)|

= sup
x

sup
(2/3)1/2≤γ2≤21/2

|x3γ2φ(xγ2)|

= sup
x

sup
(2/3)1/2≤γ2≤21/2

γ−2
2
|xγ2|3φ(xγ2)

≤
3

2
sup

x
|x |3φ(x) =

3(3/e)3/2

2
p

2π
= c2 ≤ 0.6939.
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Since E(V 2
θ
− 1) = 0, we have

R3 = |E
n�

xφ(x)
n

− (1/2)(V 2
θ − 1) + γ1(V

2
θ − 1)2

o

+(1/2)x2φ′(xγ2)
(V 2
θ
− 1)2

(Vθ (Vθ + 1))2

�

I{|V 2
θ − 1| ≤ 1/2}

o

|

= |(1/2)xφ(x)E(V 2
θ − 1)I{|V 2

θ − 1|> 1/2}
+xφ(x)γ1E(V 2

θ − 1)2 I{|V 2
θ − 1| ≤ 1/2}

+(1/2)x2φ′(xγ2)E
n (V 2

θ
− 1)2

(Vθ (Vθ + 1))2
I{|V 2

θ − 1| ≤ 1/2}
o

|

≤ (1/2)c1E|V 2
θ − 1|I{|V 2

θ − 1|> 1/2}
+(c0c1 + (1/2)c2c3)E(V

2
θ − 1)2 I{|V 2

θ − 1| ≤ 1/2}
= (1/2)c1E|V 2

θ − 1|I{|V 2
θ − 1|> 1/2}

+c4E(V 2
θ − 1)2 I{|V 2

θ − 1| ≤ 1/2}

where

c3 =
� 1

2−1/2(1+ 2−1/2)

�2

and c4 = c0c1 +
1

2
c2c3 ≤ 0.4.

Collecting the bounds above yields

|P(W ≤ x)− P(Z ≤ x)|
≤ (4+ c1/2)E|V 2

θ − 1|I{|V 2
θ − 1|> 1/2}

+c4E(V 2
θ − 1)2 I{|V 2

θ − 1| ≤ 1/2}+ 2

n
∑

i=1

|θi |3 E|X i |3

≤ 4.2E|V 2
θ − 1|I{|V 2

θ − 1|> 1/2}

+0.4E(V 2
θ − 1)2 I{|V 2

θ − 1| ≤ 1/2}+ 2

n
∑

i=1

|θi |3 E|X i |3

as desired.

Lastly, (1.7) follows from (1.6) and the fact that

4.2E|V 2
θ − 1|I{|V 2

θ − 1|> 1/2}+ 0.4E(V 2
θ − 1)2 I{|V 2

θ − 1| ≤ 1/2}
≤ 8.4E(V 2

θ − 1)2 I{|V 2
θ − 1|> 1/2}+ 0.4E(V 2

θ − 1)2 I{|V 2
θ − 1| ≤ 1/2}

≤ 8.4E(V 2
θ − 1)2.

�

Proof of Theorem 2.1. Let Y be distributed as C n
p,F

. With r = 1/p for convenience, first we claim

that

n−2r = O(v2
n
) where v2

n
= Var(Y1), (3.5)

where the implicit constant in the order here, and below, may depend on p and F . For r ≥ 1/2

Jensen’s inequality yields

v2
n
= Var(ǫ1(

G1

G1,n

)r) = E

�

G1

G1,n

�2r

≥
�

E

�

G1

G1,n

��2r

= n−2r . (3.6)
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For 0 < r < 1/2, we apply the following exponential inequality for non-negative independent

random variables (see, for example, Theorem 2.19 in [7]): For ξi , 1 ≤ i ≤ n, independent non-

negative random variables with a :=
∑n

i=1
Eξi and b2 :=

∑n

i=1
Eξ2

i
<∞, and any 0< x < a,

P(

n
∑

i=1

ξi ≤ x)≤ exp
�

−
(a− x)2

2b2

�

. (3.7)

Let c = E(G1)/(2(EG1 + 2
p

Var(G1))). Observe that

E

�

G1

G1,n

�2r

≥ E

�

G1

G1,n

I{G1/G1,n ≥ c/n}
�2r

≥ (c/n)2r P(G1/G1,n ≥ c/n)

and

P(G1/G1,n ≥ c/n)

≥ P((n− 1)G1 ≥ c(G1,n − G1))

≥ P(G1 ≥ E(G1)/2, G1,n − G1 ≤ (n− 1)(EG1 + 2
p

Var(G1)))

=
�

1− P(G1 < E(G1)/2)
��

1− P(G1,n − G1 > (n− 1)(EG1 + 2
p

Var(G1)))
�

≥
�

1− exp(−(EG1)
2/(8EG2

1
))
�

(1−
1

4(n− 1)
),

obtaining the final inequality by applying (3.7) with n = 1 to the first factor and Chebyshev’s

inequality to the second. This proves (3.5).

As C n
p,F

is coordinate symmetric with exchangeable coordinates, we apply Theorem 1.1 with vθ =

vn as in (3.6), and claim that it suffices to show

E(G1/G1,n)
3r = O(n−3r) (3.8)

and

E(V 2
θ − 1)2 = O(

n
∑

i=1

θ 4
i
). (3.9)

In particular, regarding the second term in (1.7), we have by (3.5) and (3.8)

n
∑

i=1

|θi |3E|X i |3 = v−3
n

n
∑

i=1

|θi |3E(
Gi

G1,n

)3r = O(

n
∑

i=1

|θi |3),

which dominates (3.9), the order of the first term in (1.7), thus yielding the theorem.

Letting µ = EG1, the main idea is to use (i) that G1,n/n is close to µ with probability one by the

law of large numbers; and (ii) the Taylor expansions

(1+ x)−2r = 1− 2r x + γ1 x2 for x > −1/2 (3.10)

and

(1+ x)−2r = 1+ γ2 x for x >−1/2 (3.11)

where |γ1| ≤ r(2r + 1)22r+2 and |γ2| ≤ r22r+2.
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We first show that

(nµ)2r E(G1/G1,n)
2r = EG2r

1
+O(n−1). (3.12)

Let ∆n = (G1,n − nµ)/(nµ) and write

G1,n = nµ(1+∆n).

Then

(nµ)2r E(G1/G1,n)
2r = (nµ)2r E(G1/G1,n)

2r I{G1,n ≤ nµ/2}
+(nµ)2r E(G1/G1,n)

2r I{G1,n > nµ/2}
= (nµ)2r E(G1/G1,n)

2r I{G1,n ≤ nµ/2}
+E(G2r

1
(1+∆n)

−2r I{∆n > −1/2}
:= R4 + R5. (3.13)

By (3.7), we have

P(G1,n ≤ nµ/2)≤ exp
�

−
(nµ/2)2

2nEG2
1

�

= exp
�

−
nµ2

8EG2
1

�

(3.14)

and hence

R4 ≤ (nµ)2r P(G1,n ≤ nµ/2) = O(n−2). (3.15)

By (3.10),

R5 = E(G2r
1
(1− 2r∆n + γ1∆

2
n
)I{∆n >−1/2}

= E(G2r
1
(1− 2r∆n)− E(G2r

1
(1− 2r∆n)I{∆n ≤−1/2}

+EG2r
1
γ1∆

2
n
I{∆n > −1/2}

= EG2r
1
− 2rEG2r

1
(G1,n − nµ)/(nµ)− E(G2r

1
(1− 2r∆n)I{∆n ≤ −1/2}

+EG2r
1
γ1∆

2
n
I{∆n > −1/2}

= EG2r
1
− 2rEG2r

1
(G1 −µ)/(nµ) + R5,1, (3.16)

where

R5,1 = −E(G2r
1
(1− 2r∆n)I{∆n ≤−1/2}+ EG2r

1
γ1∆

2
n
I{∆n >−1/2}.

Applying Hölder’s inequality to the first term in R5,1, and that ∆n ≥ −1, yields

|R5,1| ≤ E(G2r
1
(1+ 2r)I{∆n ≤ −1/2}+O(1)EG2r

1
∆2

n
(3.17)

≤ (1+ 2r)
�

EG
2r(2r+2)/(2r+1)

1

�(2r+1)/(2+2r)

P1/(2+2r)(∆n ≤−1/2)

+O(1)EG2r
1
∆2

n

= O(1)P1/(2+2r)(∆n ≤−1/2)

+O(1)(nµ)−2
�

EG2r
1
(G1 −µ)2 + EG2r

1
E(

n
∑

i=2

(Gi −µ)2
�

= O(n−1), (3.18)

proving (3.12) by (3.13) and (3.14) - (3.18).



Bounds for Projections of Coordinate Symmetric Vectors 483

As to (3.8), again applying (3.14), we have

n3r E(G1/G1,n)
3r = n3r E(G1/G1,n)

3r I{G1,n ≤ nµ/2}
+n3r E(G1/G1,n)

3r I{G1,n > nµ/2}
≤ n3r P(G1,n ≤ nµ/2) + EG3r

1
/(µ/2)3r

= O(1).

Now, to prove (3.9), write

V 2
θ − 1= (V 2

θ − 1)I{G1,n ≤ nµ/2}+ (V 2
θ − 1)I{G1,n > nµ/2}. (3.19)

Note that V 2
θ
= O(n2r) by (3.5). Similarly to (3.15), by (3.14) again

E(V 2
θ − 1)2 I{G1,n ≤ nµ/2}= O(n4r)P(G1,n ≤ nµ/2) = O(n−1). (3.20)

For the next term in (3.19) observe that

(V 2
θ − 1)I{G1,n > nµ/2} (3.21)

=
I{∆n >−1/2}

v2
θ

n

G−2r
1,n

n
∑

i=1

θ 2
i

G2r
i
− v2

θ

o

=
I{∆n >−1/2}(nµ)−2r

v2
θ

n

(1+∆n)
−2r

n
∑

i=1

θ 2
i

G2r
i
− (nµ)2r E(G1/G1,n)

2r
o

=
I{∆n >−1/2}(nµ)−2r

v2
θ

n

(1+ γ2∆n)

n
∑

i=1

θ 2
i

G2r
i
− EG2r

1
+O(n−1)

o

[by (3.11) and (3.12)]

=
I{∆n >−1/2}(nµ)−2r

v2
θ

n
n
∑

i=1

θ 2
i
(G2r

i
− EG2r

i
)

+γ2∆n

n
∑

i=1

θ 2
i

G2r
i
+O(n−1)

o

:= R6 + R7 + R8, (3.22)

where

R6 =
I{∆n > −1/2}(nµ)−2r

v2
θ

n
∑

i=1

θ 2
i
(G2r

i
− EG2r

i
),

R7 = γ2

I{∆n >−1/2}(nµ)−2r

v2
θ

∆n

n
∑

i=1

θ 2
i

G2r
i

,

R8 =
I{∆n > −1/2}(nµ)−2r

v2
θ

O(n−1).

From (3.12) it follows that

(nµ)−2r

v2
θ

= O(1). (3.23)
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Hence

ER2
6
= O(1)E

n
n
∑

i=1

θ 2
i
(G2r

i
− EG2r

i
)
o2

= O(1)E(G2r
1
− EG2r

1
)2

n
∑

i=1

θ 4
i

= O(1)

n
∑

i=1

θ 4
i
. (3.24)

As to R7, here using the assumption that EG2+4r
1 < ∞, using the Cauchy-Schwarz inequality for

the second step, we have

ER2
7
= O(1)E∆2

n
(

n
∑

i=1

θ 2
i

G2r
i
)2

= O(1)E∆2
n

n
∑

i=1

θ 2
i

G4r
i

n
∑

i=1

θ 2
i

= O(1)E∆2
n
G4r

1
= O(n−2)EG4r

1
(

n
∑

i=1

(Gi −µ))2

= O(n−2)E
�

G4r
1

�
n
∑

i=1

(Gi −µ)2 + 2
∑

1≤i< j≤n

(Gi −µ)(G j −µ)
��

= O(n−2)E
�

G4r
1

�
n
∑

i=1

(Gi −µ)2
�

= O(n−1). (3.25)

Lastly, for R8, by (3.23) we have

ER2
8
= O(n−2). (3.26)

Noting that (1.4) with s = t = 2 yields n−1 ≤
∑n

i=1
θ 4

i
, (3.9) now follows by (3.19), (3.20), (3.22),

and (3.24)-(3.26).
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