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Abstract

There is a result of Diaconis and Freedman which says that, in a limiting sense, for large collections

of high-dimensional data most one-dimensional projections of the data are approximately Gaus-

sian. This paper gives quantitative versions of that result. For a set of deterministic vectors {x i}ni=1

in Rd with n and d fixed, let θ ∈ Sd−1 be a random point of the sphere and let µθ
n

denote the ran-

dom measure which puts mass 1

n
at each of the points




x1,θ
�

, . . . ,



xn,θ
�

. For a fixed bounded

Lipschitz test function f , Z a standard Gaussian random variable and σ2 a suitable constant, an

explicit bound is derived for the quantity P

��

�

�

�

∫

f dµθ
n
−E f (σZ)

�

�

�

�

> ε

�

. A bound is also given

for P
�

dBL(µ
θ
n
,N (0,σ2))> ε

�

, where dBL denotes the bounded-Lipschitz distance, which yields a

lower bound on the waiting time to finding a non-Gaussian projection of the {x i} if directions are

tried independently and uniformly on Sd−1.

1 Introduction

A foundational tool of data analysis is the projection of high-dimensional data to a one- or two-

dimensional subspace in order to visually represent the data, and, ideally, identify underlying

structure. The question immediately arises: which projections are interesting? One would like to

answer by saying that those projections which exhibit structure are interesting, however, identify-

ing which projections those are is not quite as straightforward as one might think. In particular,

there are several reasons that have led to the idea that one should mainly look for projections

which are far from Gaussian in behavior; that Gaussian projections in fact do not generally exhibit

interesting structure. One justification for this idea is the following result due to Persi Diaconis

and David Freedman.
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Theorem 1 (Diaconis-Freedman [1]). Let x1, . . . , xn be deterministic vectors in Rd . Suppose that n,

d and the x i depend on a hidden index ν , so that as ν tends to infinity, so do n and d. Suppose that

there is a σ2 > 0 such that, for all ε > 0,

1

n

�

�

�

¦

j ≤ n :
�

�|x j |2 −σ2d
�

�> εd
©

�

�

�

ν→∞−−→ 0, (1)

and suppose that
1

n2

�

�

�

¦

j, k ≤ n :
�

�

¬

x j , xk

¶ �

�> εd
©

�

�

�

ν→∞−−→ 0. (2)

Let θ ∈ Sd−1 be distributed uniformly on the sphere, and consider the random measure µθν which puts

mass 1

n
at each of the points




θ , x1

�

, . . . ,



θ , xn

�

. Then as ν tends to infinity, the measures µθν tend

to N (0,σ2) weakly in probability.

Heuristically, Theorem 1 can be interpreted as saying that, for a large number of high-dimensional

data vectors, as long as they have nearly the same lengths and are nearly orthogonal, most one-

dimensional projections are close to Gaussian regardless of the structure of the data. It is important

to note that the conditions (1) and (2) are not too strong; in particular, even though only d

vectors can be exactly orthogonal in Rd , the 2d vertices of a unit cube centered at the origin satisfy

condition (2) for “rough orthogonality”.

A failing of the usual interpretation of Theorem 1 is that sometimes, projections of data look

nearly Gaussian for a reason; that is, it is not always due to the central-limit type effect described

by the theorem. Thus the question arises: is there a way to tell whether a Gaussian projection

is interesting? A possible answer lies in quantifying the theorem, and then saying that a nearly-

Gaussian projection is interesting if it is “too close” to Gaussian to simply be the result of the

phenomenon described by Theorem 1. By way of analogy, one has the Berry-Esséen theorem

stating that the rate of convergence to normal of the sum of n independent, identically distributed

random variables is of the order 1p
n
; if one has a sum of n random variables converging to Gaussian

significantly faster, it must be happening for some reason other than just the usual central-limit

theorem. In order to implement this idea, it is necessary (as with the Berry-Esséen theorem) to

have a sharp quantitative version of the limit theorem in question.

A second motivation for proving a quantitative version of Theorem 1 is the application to waiting

times for discovering an interesting direction on which to project data. If a sequence of indepen-

dent random projection directions is tried until the empirical distribution of the projected data

is more than some threshhold away from Gaussian (in some metric on measures), and N is the

number of trials needed to find such a direction, a one can easily give a lower bound for EN from

the type of quantitative theorem proved below.

Thus the goal of this paper is to provide a quantitative version of Theorem 1 in a fixed dimension

d and for a fixed number of data vectors n. To do this, it is first necessary to replace conditions

(1) and (2) with non-asymptotic conditions. The conditions we will use are the following. Let σ2

be defined by 1

n

∑n

i=1
|x i |2 = σ2d. Suppose there exist A and B, such that

1

n

n
∑

i=1

�

�σ−2|x i |2 − d
�

�≤ A, (3)

and, for all θ ∈ Sd−1,
1

n

n
∑

i=1




θ , x i

�2 ≤ B. (4)
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For a little perspective on the restrictiveness of these conditions, note that, as for the conditions of

Diaconis and Freedman, they hold for the vertices of a unit cube in Rd (with A= 0 and B = 1

4
).

Under these assumptions, the following theorems hold.

Theorem 2. Let {x i}ni=1
be deterministic vectors in Rd , subject to conditions (3) and (4) above. For

a point θ ∈ Sd−1, let the measure µθ
n

put equal mass at each of the points



θ , x1

�

, . . . ,



θ , xn

�

. Fix a

test function f : R→ R with ‖ f ‖BL := ‖ f ‖∞+supx 6=y
| f (x)− f (y)|
|x−y| ≤ 1. Then for Z a standard Gaussian

random variable, θ chosen uniformly on the sphere, σ defined as above, and ε >max
�

2π
p

Bp
d−1

,
2(A+2)

d−1

�

,

P

��

�

�

�

∫

f (x)dµθ
n
(x)−E f (σZ)

�

�

�

�

> ε

�

≤
Ç

π

2
e
− (d−1)

25B
ε2

.

Theorem 3. Let {x i}ni=1
be deterministic vectors in Rd , subject to conditions (3) and (4) above, and

again consider the measures µθ
n
. If θ is chosen uniformly from Sd−1 and B ≥ ε≥max

�

h

3·26πBp
d−1

i2/5

,
2(A+2)

d−1

�

,

then

P

�

dBL(µ
θ
n
,N (0,σ2))> ε

�

≤
c1

p
B

ε3/2
exp

�

−
c2(d − 1)ε5

B2

�

,

with c1 = 48
p
π, c2 = 3−22−16, and dBL denoting the bounded Lipschitz distance.

Remarks:

(i) It should be emphasized that the key difference between the results proved here and the

result of Diaconis and Freedman is that Theorems 2 and 3 hold for fixed dimension d and

number of data vectors n; there are no limits in the statements of the theorems.

(ii) It is not necessary for A and B to be absolute constants; for the the results above to be

of interest as d → ∞, it is easy to see from the statements that it is only necessary that

A = o(d) and B = o(d) for Theorem 2 while B = o(
p

d) for Theorem 3. The reader may

also be wondering where the dependence on n is in the statements above; it is built into the

definition of B. Note that, by definition, B ≥ |x i |2
n

for each i; in particular, B ≥ σ2d

n
. It is thus

necessary that n→∞ as d →∞ for Theorem 2 and n≫
p

d for Theorem 3.

(iii) For Theorem 2, consider the special case that ε2 = C2·25B

d−1
for a large constant C . Then the

statement becomes

P

��

�

�

�

∫

f (x)dµθ
n
(x)−E f (σZ)

�

�

�

�

>
C ′
p

d − 1

�

≤
Ç

π

2
e−C2

,

with C ′ = C · 4
p

2B. That is, roughly speaking,

�

�

�

∫

f (x)dµθ
n
(x)−E f (σZ)

�

�

� is likely to be on

the order of 1p
d

or smaller.

(iv) It is similarly useful to consider the following special case for Theorem 3. Let C > 3

10
, and

consider the case ε5 = C
�

9·216B2

d−1

�

log(d − 1). Then the bound above becomes:

P



dBL(µ
θ
n
,N (0,σ2))>

�

C ′
log(d − 1)

d − 1

�1/5


 ≤
C ′′B

(d − 1)C−
3

10

,
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where C ′ = 9 · 216CB2 and C ′′ = 48
p
πC−3/10. Thus, roughly speaking, the bounded Lips-

chitz distance from the random measure µθ
n

to the Gaussian measure with mean zero and

variance σ2 is unlikely to be more than a large multiple of
�

log(d−1)

d−1

�1/5

. We make no claims

of the sharpness of this result.

Theorem 3 can easily be used to give an estimate on the waiting time until a non-Gaussian di-

rection is found, if directions are tried randomly and independently. Specifically, we have the

following corollary.

Corollary 4. Let θ1,θ2,θ3, . . . be a sequence of independent, uniformly distributed random points on

S
d−1. Let Tε :=min{ j : dBL(µ

θ j

n ,N (0,σ2)> ε}. Then there are constants c, c′ such that

ETε ≥
cε3/2

p
B

exp

�

c′(d − 1)ε5

B2

�

.

2 Proofs

This section is mainly devoted to the proofs of Theorems 2 and 3, with some additional remarks

following the proofs. For the proof of Theorem 2, several auxiliary results are needed. The first is

an abstract normal approximation for bounding the distance of a random variable to a Gaussian

random variable in the presence of a continuous family of exchangeable pairs. The theorem is an

abstraction of an idea used by Stein in [6] to bound the distance to Gaussian of the trace of a

power of a random orthogonal matrix.

Theorem 5 (Meckes [4]). Suppose that (W,Wε) is a family of exchangeable pairs defined on a

common probability space, such that EW = 0 and EW 2 = σ2. Let F be a σ-algebra on this space

with σ(W ) ⊆ F . Suppose there is a function λ(ε) and random variables E, E′ measurable with

respect to F , such that

(i) 1

λ(ε)
E

�

Wε −W
�

�F
� L1−−→
ε→0
−W + E′.

(ii) 1

2λ(ε)σ2E

�

(Wε −W )2
�

�F
� L1−−→
ε→0

1+ E.

(iii) 1

λ(ε)
E|Wε −W |3 ε→0−−→ 0.

Then if Z is a standard normal random variable,

dT V (W,σZ)≤ E
�

�E
�

�+

Ç

π

2
E

�

�E′
�

�.

The next result gives expressions for some mixed moments of entries of a Haar-distributed orthog-

onal matrix. See [3], Lemma 3.3 and Theorem 1.6 for a detailed proof.

Lemma 6. If U =
�

ui j

�d

i, j=1
is an orthogonal matrix distributed according to Haar measure, then

E

h

∏

u
ri j

i j

i

is non-zero if and only if ri• :=
∑d

j=1
ri j and r• j :=
∑d

i=1
ri j are even for each i and j.

Second and fourth-degree moments are as follows:
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(i) For all i, j,

E

h

u2
i j

i

=
1

d
.

(ii) For all i, j, r, s,α,β ,λ,µ,

E
�

ui jursuαβuλµ
�

=−
1

(d − 1)d(d + 2)

h

δirδαλδ jβδsµ +δirδαλδ jµδsβ +δiαδrλδ jsδβµ

+δiαδrλδ jµδβs +δiλδrαδ jsδβµ +δiλδrαδ jβδsµ

i

+
d + 1

(d − 1)d(d + 2)

h

δirδαλδ jsδβµ +δiαδrλδ jβδsµ +δiλδrαδ jµδsβ

i

.

(iii) For the matrix Q =
�

qi j

�d

i, j=1
defined by qi j := ui1u j2 − ui2u j1, and for all i, j,ℓ, p,

E

�

qi jqℓp
�

=
2

d(d − 1)

�

δiℓδ jp −δipδ jℓ

�

.

Finally, we will need to make use of the concentration of measure on the sphere, in the form of

the following lemma.

Lemma 7 (Lévy, see [5]). For a function F : Sd−1 → R, let MF denote its median with respect

to the uniform measure (that is, for θ distributed uniformly on Sd−1, P
�

F(θ ) ≤ MF

�

≥ 1

2
and

P
�

F(θ )≥ MF

�

≥ 1

2
) and let L denote its Lipschitz constant. Then

P

��

�F(θ )−MF

�

�> ε
�

≤
Ç

π

2
exp

�

−
(d − 1)ε2

2L2

�

.

With these results, it is now possible to give the proof of Theorem 2.

Proof of Theorem 2. The proof divides into two parts. First, an “annealed” version of the theorem is

proved using the infinitesimal version of Stein’s method given by Theorem 5. Then, for a fixed test

function f and Z a standard Gaussian random variable, the quantity P

��

�

�

∫

f dµθν −E f (σZ)

�

�

�> ε

�

is bounded using the annealed theorem together with the concentration of measure phenomenon.

Let θ be a uniformly distributed random point of Sd−1 ⊆ Rd , and let I be a uniformly distributed

element of {1, . . . , n}, independent of θ . Consider the random variable W :=



θ , x I

�

. Then EW =

0 by symmetry and EW 2 = σ2 by the condition 1

n

∑n

i=1
|x i |2 = σ2d . Theorem 5 will be used to

bound the total variation distance from W to σZ , where Z is a standard Gaussian random variable.

The family of exchangeable pairs needed to apply the theorem is constructed as follows. For ε > 0

fixed, let

Aε :=





p

1− ε2 ε

−ε
p

1− ε2



⊕ Id−2 = Id +





− ε2

2
+δ ε

−ε − ε2

2
+δ



⊕ 0d−2,

where δ = O(ε4). Let U be a Haar-distributed d × d random orthogonal matrix, independent of θ

and I , and let Wε =



UAεU
Tθ , x I

�

; the pair (W,Wε) is exchangeable for each ε > 0.
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Let K be the d × 2 matrix made of the first two columns of U and C2 =

�

0 1

−1 0

�

. Define Q :=

KC2K T (note that this is the same Q as in part (iii) of Theorem 6). Then by the construction of

Wε,

Wε −W =−
�

ε2

2
+δ

�

¬

KK Tθ , x I

¶

+ ε



Qθ , x I

�

. (5)

The conditions of Theorem 5 can be verified using the expressions in Lemma 6 as follows. By the

lemma, E
�

KK T
�

= 2

d
I and E
�

Q
�

= 0, and so it follows from (5) that

E

�

Wε −W
�

�W
�

=

�

−
ε2

d
+

2δ

n

�

W.

Condition (i) of Theorem 5 is thus satisfied for λ(ε) = ε2

d
and E′ = 0.

For the condition (ii), taking F = σ(θ , I), Lemma 6, part (iii) yields

1

2λ(ε)σ2
E

�

(Wε −W )2
�

�F
�

=
d

2σ2
E

�



Qθ , x I

�2
�

�F
�

+O(ε)

=
d

2σ2

d
∑

i, j,r,s=1

E

�

qi jqrsθ jθs x I ,i x I ,r

�

�F
�

+O(ε)

=
1

σ2(d − 1)





d
∑

i, j=1

θ 2
j
x2

I ,i
−

d
∑

i, j=1

θiθ j x I ,i x I , j



+O(ε)

=
1

σ2(d − 1)

�

|x I |2 −W 2
�

+O(ε)

= 1+
1

d − 1

�

|x I |2

σ2
− d + 1−

W 2

σ2

�

+O(ε).

Condition (ii) of Theorem 5 is thus satisfied with E = 1

d−1

h

|x I |2
σ2 − d + 1− W 2

σ2

i

. Condition (iii) of

the theorem is trivial by (5); it follows that

dT V (W,σZ)≤
1

d − 1
E

�

�

�

�

�

|x I |2

σ2
− d + 1−

W 2

σ2

�

�

�

�

�

≤
1

d − 1





1

n

n
∑

i−1

�

�

�

�

�

|x i |2

σ2
− d

�

�

�

�

�

+ 2



 ≤
A+ 2

d − 1
. (6)

This is the annealed statement referred to at the beginning of the proof.

We next use the concentration of measure on the sphere to show that, for a large measure of

θ ∈ Sd−1, the random measure µθ
n

which puts mass 1

n
at each of the



θ , x i

�

is close to the average

behavior. To do this, we make use of Lévy’s Lemma (Lemma 7). Let f : R → R be such that

‖ f ‖BL := ‖ f ‖∞ + supx 6=y
| f (x)− f (y)|
|x−y| ≤ 1. Consider the function F defined on the sphere by

F(θ ) :=

∫

f (x)dµθ
n
(x) =

1

n

n
∑

i=1

f (



θ , x i

�

).

In order to apply Lemma 7, it is necessary to determine the Lipschitz constant of F . Let θ ,θ ′ ∈
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S
d−1. Then, using ‖ f ‖BL ≤ 1 together with equation (4),

�

�F(θ ′)− F(θ )
�

�=
1

n

�

�

�

�

�

n
∑

i=1

f (



θ ′, x i

�

)− f (



θ , x i

�

)

�

�

�

�

�

≤
1

n

n
∑

i=1

|



θ ′ − θ , x i

�

|

≤




1

n

n
∑

i=1




θ ′ − θ , x i

�2





1/2

≤ |θ ′ − θ |
p

B,

thus the Lipschitz constant of F is bounded by
p

B. It follows from Lemma 7 that

P

��

�F(θ )−MF

�

�> ε
�

≤
Ç

π

2
e−

(d−1)ε2

2B ,

where MF is the median of the function F .

Now, if θ is a random point of Sd−1, then
�

�EF(θ )−MF

�

�≤ E
�

�F(θ )−MF

�

�

=

∫ ∞

0

P

h
�

�F(θ )−MF

�

�> t
i

d t

≤
∫ ∞

0

Ç

π

2
e−

(d−1)t2

2B d t

=
π
p

B

2
p

d − 1
,

(7)

thus if ε > π
p

Bp
d−1

, we may use concentration about the median of F to obtain concentration about

the mean, with only a loss in constants.

Note that

EF(θ ) = E

∫

f dµθ
n
= E f (W )

for W =



θ , x I

�

as above, and so by the bound (6),

�

�EF(θ )−E f (σZ)
�

�≤
A+ 2

d − 1
.

Putting these pieces together, if ε >max
�

2π
p

Bp
d−1

,
2(A+2)

d−1

�

, then

P

��

�

�

�

∫

f dµθ
n
−E f (σZ)

�

�

�

�

> ε

�

≤ P
h
�

�F(θ )−MF

�

�> ε− |MF −EF(θ )| − |EF(θ )−E f (σZ)|
i

≤ P
�

�

�F(θ )−MF

�

�>
ε

4

�

≤
Ç

π

2
e
− (d−1)

25B
ε2

.
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Proof of Theorem 3. The first two steps of the proof of Theorem 3 were essentially done already in

the proof of Theorem 2. From that proof, we have that if W =



θ , x I

�

for θ distributed uniformly

on Sd−1 and I independent of θ and uniformly distributed in {1, . . . , n}, then

dT V (W,σZ)≤
A+ 2

d − 1
, (8)

for A as in equation (3). Furthermore, it follows from equation (7) in the proof of Theorem 2 that

for F(θ ) :=
∫

f dµθ
n

and ε > π
p

Bp
d−1

, then

P [|F(θ )−EF(θ )|> ε]≤ P
��

�F(θ )−MF

�

�> ε−
�

�M f −EF(θ )
�

�

�

≤ P
�

�

�F(θ )−MF

�

�> ε−
π
p

B

2
p

d − 1

�

≤
Ç

π

2
e−

(d−1)

8B
ε2

.

(9)

In this proof, this last statement is used together with a series of successive approximations of

arbitrary bounded Lipschitz functions as used by Guionnet and Zeitouni [2] to obtain a bound for

P

�

dBL(µ
θ
n
,N (0,σ2))> ε

�

.

By definition,

P

�

dBL(µ
θ
n
,Eµθ

n
)> ε
�

= P

�

sup
‖ f ‖BL≤1

�

�

�

�

∫

f dµθ
n
−E
∫

f dµθ
n

�

�

�

�

> ε

�

.

First consider the subclass FBL,K = { f : ‖ f ‖BL ≤ 1, supp( f ) ⊆ K} for a compact set K ⊆ R. Let

∆= ε

4
; for f ∈ FBL,K , define the approximation f∆ as in Guionnet and Zeitouni [2] as follows. Let

xo = inf K and let

g(x) =







0 x ≤ 0;

x 0≤ x ≤∆;

∆ x ≥∆.

For x ∈ K , define f∆ recursively by f∆(xo) = 0 and

f∆(x) =

⌈ x−xo
∆
⌉
∑

i=0

�

2I
�

f (xo + (i + 1)∆)≥ f∆(xo + i∆)
�

− 1
�

g(x − xo − i∆).

That is, the function f∆ is just an approximation of f by a function which is piecewise linear and

has slope 1 or −1 on each of the intervals [xo+ i∆, xo+(i+1)∆]. Note that, because ‖ f ‖BL ≤ 1,

it follows that ‖ f − f∆‖∞ ≤ ∆ and the number of distinct functions whose linear span is used to

approximate f in this way is bounded by
|K |
∆

, where |K | is the diameter of K . If {hk}Nk=1
denotes the
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set of functions used in the approximation f∆ and εk their coefficients, then for ε2 > 8π|K |
Æ

B

d−1
,

P



 sup
f ∈FBL,K

�

�

�

�

∫

f dµθ
n
−E
∫

f dµθ
n

�

�

�

�

> ε



 ≤ P


 sup
f ∈FBL,K

�

�

�

�

∫

f∆dµθ
n
−E
∫

f∆dµθ
n

�

�

�

�

> ε− 2∆





= P



 sup
f ∈FBL,K

�

�

�

�

�

N
∑

k=1

εk

�∫

hkdµθ
n
−E
∫

hkdµθ
n

�

�

�

�

�

�

>
ε

2





≤ P




N
∑

k=1

�

�

�

�

∫

hkdµθ
n
−E
∫

hkdµθ
n

�

�

�

�

>
ε

2





≤
N
∑

k=1

P

��

�

�

�

∫

hkdµθ
n
−E
∫

hkdµθ
n

�

�

�

�

>
ε

2N

�

≤
Ç

π

2
Ne−

(d−1)

8B

�

ε

2N

�2

≤
2
p

2π|K |
ε

e
− (d−1)

8B

�

ε2

8|K |

�2

.

The second-last line follows from equation (9) above, and the last line from the bound N ≤ 4|K |
ε

.

To move to the full set FBL := { f : ‖ f ‖BL ≤ 1}, we make a truncation argument. Given f ∈ FBL

and M > 0, define fM by

fM (x) =























0 x ≤ −M − | f (−M)|;
sgn( f (−M))
�

x +M + | f (−M)|
�

−M − | f (−M)|< x ≤ −M ;

f (x) −M < x ≤ M ;

sgn( f (M))
�

| f (M)|+M − x
�

M < x ≤ M + | f (M)|;
0 x > M + | f (M)|;

that is, fM is equal to f on [−M , M] and is drops off to zero linearly with slope 1 outside [−M , M].

Then, since f (x) = fM (x) for x ∈ [−M , M] and | f (x)− fM (x)| ≤ 1 for x /∈ [−M , M],

�

�

�

�

∫

�

f − fM

�

dµθ
n

�

�

�

�

≤ P
�

|



x I ,θ
�

|> M
�

≤
1

M2
E
�


x I ,θ
�2 �≤

B

M2
.

Choosing M such that B

M2 =
ε

4
, it follows that for ε5/2 > 3·26πBp

d−1
,

P

�

sup
f ∈FBL

�

�

�

�

∫

f dµθ
n
−E
∫

f dµθ
n

�

�

�

�

> ε

�

≤ P
�

sup
f ∈FBL

�

�

�

�

∫

fM dµθ
n
−E
∫

fM dµθ
n

�

�

�

�

> ε−
2B

M2

�

≤ P
�

sup
g∈FBL,[−M−1,M+1]

�

�

�

�

∫

gdµθ
n
−E
∫

gdµθ
n

�

�

�

�

>
ε

2

�

≤
4
p

2π(M + 1)

ε
e
− (d−1)

8B

�

ε2

16(M+1)

�2

≤
12
p

2πB

ε3/2
e
− (d−1)ε5

9·211B2 ,
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assuming that B ≥ ε.
Recall that E
∫

f dµθ
n
= E f (W ) for W =




θ , x I

�

, and so by the bound (8),

sup
f ∈FBL

�

�

�

�

E

∫

f dµθ
n
−E f (σZ)

�

�

�

�

≤
A+ 2

d − 1
,

thus for ε bounded below as above and also satisfying ε >
2(A+2)

d−1
,

P
�

dBL(W,σZ)> ε
�

≤
48
p
πB

ε3/2
exp

�

−
(d − 1)ε5

9 · 216B2

�

.

Proof of Corollary 4. The proof is essentially trivial. Note that

P[Tε > m]≥
�

1−
c1

p
B

ε3/2
exp

�

c2(d − 1)ε5

B2

��m

by independence of the θ j and Theorem 3, since Tε > m if and only if dBL(µ
θ j

n ,N (0,σ2) ≤ ε for

all 1≤ j ≤ m. This bound can be used in the identity ETε =
∑∞

m=0
P[Tε > m] to obtain the bound

in the corollary.

Remark: One of the features of the proofs given above is that they can be generalized to the case

of k-dimensional projections of the d-dimensional data vectors {x i}, with k fixed or even growing

with d. The proof of the higher-dimensional analog of Theorem 2 goes through essentially the

same way. However, the analog of the proof of Theorem 3 from Theorem 2 is rather more involved

in the multivariate setting and will be the subject of a future paper.
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