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Abstract

We derive a number of estimates for the probability that a chordal SLEκ path in the upper
half plane H intersects a semicircle centred on the real line. We prove that if 0 < κ < 8 and
γ : [0,∞) → H is a chordal SLEκ in H from 0 to ∞, then P{γ[0,∞) ∩ C(x; rx) 6= ∅} ≍ r4a−1

where a = 2/κ and C(x; rx) denotes the semicircle centred at x > 0 of radius rx, 0 < r ≤ 1/3,
in the upper half plane. As an application of our results, for 0 < κ < 8, we derive an estimate
for the diameter of a chordal SLEκ path in H between two real boundary points 0 and x > 0.
For 4 < κ < 8, we also estimate the probability that an entire semicircle on the real line is
swallowed at once by a chordal SLEκ path in H from 0 to ∞.

1 Introduction

The Schramm-Loewner evolution (SLE) is a one-parameter family of random growth processes
introduced by O. Schramm [9] which has been successfully used to establish a number of
rigorous mathematical results about various two-dimensional models from statistical mechanics
including percolation, loop-erased random walk, and the Ising model. There are actually two
variants of SLE that one can consider. Radial SLE describes the growth of a curve connecting
a given boundary point to a given interior point whereas chordal SLE describes the growth
of a curve connecting two distinct boundary points. It is assumed that the reader is familiar
with the basic properties of SLE as found in [7].
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The primary purpose of this paper is to derive estimates for the probability that a chordal
SLE path in H from 0 to ∞ intersects a semicircle in the upper half plane centred at a fixed
point x > 0 on the real line. Specifically, suppose that γ : [0,∞) → H is (the trace of) a
chordal SLEκ in H from 0 to ∞ where κ ∈ (0, 8). For ǫ > 0 and x ∈ R, denote the semicircle
of radius ǫ centred at x in the upper half plane by C(x; ǫ). In the 0 < κ < 8 regime, we will
derive estimates for the intersection probability

P{γ[0,∞) ∩ C(x; rx) 6= ∅}

where 0 < r ≤ 1/3 and x > 0. An example is shown in Figure 1.

C(x; rx)

0 x − rx x + rx

γ[0,∞)

Figure 1: The event {γ[0,∞) ∩ C(x; rx) = ∅} in the 0 < κ ≤ 4 case.

We conclude the introduction with the statement of our primary theorems. Most of this paper is
devoted to their proof. In the final section we give some applications of our results. Recall that
g(r) ≍ h(r) if there exist non-zero, finite constants c1 and c2 such that c1h(r) ≤ g(r) ≤ c2h(r).
Furthermore, g(r) ∼ h(r) if g(r)/h(r) → 1 as r ↓ 0.

Theorem 1.1. Suppose x > 0 is a real number, 0 < r ≤ 1/3, and C(x; rx) = {x + rxeiθ : 0 <
θ < π} denotes the semicircle of radius rx centred at x in the upper half plane. If 0 < κ < 8
and γ : [0,∞) → H is a chordal SLEκ in H from 0 to ∞, then

P{γ[0,∞) ∩ C(x; rx) 6= ∅} ≍ r
8−κ

κ .

By an appropriate conformal transformation, an equivalent formulation of Theorem 1.1 gives
an estimate for the diameter of a chordal SLEκ path in H from 0 to x > 0. This is illustrated
in Figure 2.

0 x Rx

C(0;Rx)

γ′[0, tγ ]

Figure 2: The event {γ′[0, tγ′ ] ∩ C(0;Rx) = ∅} in the 0 < κ ≤ 4 case.
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Corollary 1.2. Suppose x > 0 is a real number, R ≥ 3, and C(0;Rx) = {Rxeiθ : 0 < θ < π}
denotes the circle of radius Rx centred at 0 in the upper half plane. If 0 < κ < 8 and
γ′ : [0, tγ′ ] → H is a chordal SLEκ in H from 0 to x, then

P{γ′[0, tγ′ ] ∩ C(0;Rx) 6= ∅} ≍ R
κ−8

κ .

Remark. In the particular case when κ = 8/3 it is possible to compute the intersection
probabilities in Theorem 1.1 and Corollary 1.2 exactly. We show in Section 5 that if 0 < r < 1,
then

P{γ[0,∞) ∩ C(x; rx) 6= ∅} = 1 − (1 − r2)5/8, (1)

and if R > 1, then

P{γ′[0, tγ′ ] ∩ C(0;Rx) 6= ∅} = 1 − (1 − R−2)5/8.

As well, (1) implies

P{γ[0,∞) ∩ C(x; rx) 6= ∅} ∼
5

8
r2

as r ↓ 0 which is consistent with Theorem 1.1.

The outline of the remainder of the paper is as follows. In Section 2, we introduce some nota-
tion. The proof of Theorem 1.1 is then given in Section 3. In Section 4 we derive Corollary 1.2
and then conclude in Section 6 by using Theorem 1.1 to derive two other intersection proba-
bilities for a chordal SLE path and a semicircle centred on the real line. (These are given by
Theorem 6.1 and Corollary 6.2.) In particular, for 4 < κ < 8, we estimate the probability that
an entire semicircle on the real line is swallowed at once by a chordal SLEκ path in H from 0
to ∞.

2 Notation

We now introduce the notation that will be used throughout the remainder of the paper. Let
C denote the set of complex numbers and write H = {z ∈ C : ℑ(z) > 0} to denote the upper
half plane. If ǫ > 0 and z ∈ C, we write B(z; ǫ) = {w ∈ C : |z −w| < ǫ} for the ball of radius ǫ
centred at z. If x ∈ R, then the half disk and semicircle of radius ǫ centred at x in the upper
half plane are given by

D(x; ǫ) = B(x; ǫ) ∩ H = {x + ρeiθ : 0 < θ < π, 0 < ρ < ǫ} (2)

and
C(x; ǫ) = ∂B(x; ǫ) ∩ H = {x + ǫeiθ : 0 < θ < π}, (3)

respectively.
The chordal Schramm-Loewner evolution in H from 0 to ∞ with parameter κ = 2/a is the
solution of the differential equation

∂tgt(z) =
a

gt(z) − Ut
, g0(z) = z, (4)

where z ∈ H and Ut = −Bt is a standard one-dimensional Brownian motion with B0 = 0. It is
a hard theorem to prove that there exists a curve γ : [0,∞) → H with γ(0) = 0 which generates
the maps {gt, t ≥ 0}. More precisely, for z ∈ H, let Tz denote the first time of explosion of
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the chordal Loewner equation (4), and define the hull Kt by Kt = {z ∈ H : Tz < t}. The hulls
{Kt, t ≥ 0} are an increasing family of compact sets in H and gt is a conformal transformation
of H \Kt onto H. For all κ > 0, there is a continuous curve {γ(t), t ≥ 0} with γ : [0,∞) → H

and γ(0) = 0 such that H \ Kt is the unbounded connected component of H \ γ(0, t] a.s. The
behaviour of the curve γ depends on the parameter κ (or, equivalently, the value of a). If
a ≥ 1/2 (i.e., 0 < κ ≤ 4), then γ is a simple curve with γ(0,∞) ⊂ H and Kt = γ(0, t]. If
1/4 < a < 1/2 (i.e., 4 < κ < 8), then γ is a non-self-crossing curve with self-intersections and
γ(0,∞)∩R 6= ∅. Although the present work will not be concerned with the case a ≤ 1/4 (i.e.,
κ ≥ 8), it is worth recalling that for this regime γ is a space-filling, non-self-crossing curve. Let

µ#
H

(0,∞) denote the chordal SLEκ probability measure on paths in H from 0 to ∞. If D ⊂ C

is a simply connected domain and z, w are distinct points in ∂D, then µ#
D(z, w), the chordal

SLEκ probability measure on paths in D from z to w, is defined to the image of µ#
H

(0,∞)
under a conformal transformation f : H → D with f(0) = z and f(∞) = w. In other words,
SLEκ in D from z to w is simply the conformal image of SLEκ in H from 0 to ∞. For further
details about SLE, consult [7].

3 Proof of Theorem 1.1

In this section we prove Theorem 1.1. The proof is divided into three subsections. For the
lower bound in both the 0 < κ ≤ 4 and 4 < κ < 8 cases, we are able to give an explicit value
for the constant. For the upper bound, however, all that can be determined is the existence
of a constant.

3.1 The upper bound

Throughout this section, suppose that γ : [0,∞) → H is a chordal SLEκ in H from 0 to ∞
with 0 < κ < 8 and a = 2/κ. The primary tool we need to establish the upper bound in
Theorem 1.1 is originally due to Beffara [3, Proposition 2]. We briefly recall the statement
here and refer the reader to [3] for further details.

Proposition 3.1. If z ∈ H, 0 < ǫ ≤ ℑ{z}/2, and B(z; ǫ) = {w ∈ C : |z − w| < ǫ} denotes the
ball of radius ǫ centred at z, then

P{γ[0,∞) ∩ B(z; ǫ) 6= ∅} ≍

(

ǫ

ℑ{z}

)1− 1
4a

(

ℑ{z}

|z|

)4a−1

where the constants implied by ≍ may depend on a.

We would like to stress that this proposition holds for all a > 1/4 (equivalently, all 0 < κ < 8).
The following theorem gives a careful statement of the upper bound that we will establish.

Theorem 3.2. Let 0 < r ≤ 1/3 and x > 0. If γ : [0,∞) → H is a chordal SLEκ in H from 0
to ∞ with 0 < κ < 8 and a = 2/κ, then there exists a constant ca such that

P{γ[0,∞) ∩ C(x; rx) 6= ∅} ≤ car4a−1.

Our general strategy for Theorem 3.2 will be to cover the semicircle C(x; rx) with a sequence
of balls and then apply Proposition 3.1 to each ball. This is illustrated in Figure 3.
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Figure 3: The semicircle C(x; rx) covered by a sequence of balls centred at {z±n, n = 0, 1, . . .}.

Proof of Theorem 3.2. Set z0 = x + irx and for n = 1, 2, . . ., let z±n = x ± rx + irx2−|n|+1.
Using Proposition 3.1, it follows that

P

{

γ[0,∞) ∩ B

(

z±n;
ℑ{z±n}

2

)

6= ∅

}

≍ 2
1
4a

−1

(

ℑ{z±n}

|z±n|

)4a−1

≍
r4a−1

2(4a−1)|n|

since |z±n| ≍ x for 0 < r ≤ 1/3. Hence,

∞
∑

n=−∞

P

{

γ[0,∞) ∩ B

(

zn;
ℑ{zn}

2

)

6= ∅

}

≍ r4a−1. (5)

But if γ[0,∞) intersects C(x; rx), then it also must intersect at least one of B
(

z±n; ℑ{z±n}
2

)

,

as is clear from Figure 3. Hence, (5) implies that there exists a constant ca such that

P {γ[0,∞) ∩ C(x; rx) 6= ∅} ≤
∞
∑

n=−∞

P

{

γ[0,∞) ∩ B

(

zn;
ℑ{zn}

2

)

6= ∅

}

≤ car4a−1

and the proof is complete.

3.2 The lower bound for 4 < κ < 8

In this section we establish the lower bound in Theorem 1.1 for κ ∈ (4, 8).

Theorem 3.3. Let 0 < r ≤ 1/3 and x > 0. If γ : [0,∞) → H is a chordal SLEκ in H from 0
to ∞ with 4 < κ < 8 and a = 2/κ, then there exists a constant ca such that

P{γ[0,∞) ∩ C(x; rx) 6= ∅} ≥ car4a−1.
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0 x − rx x + rx

C(x, rx)

Figure 4: The event that γ[0,∞) intersects the interval [x − rx, x + rx].

Proof. It is clear that if γ[0,∞) intersects the interval [x − rx, x + rx] then it also intersects
the semicircle C(x; rx), as Figure 4 shows. By Proposition 6.34 of [7] and the scale invariance
of SLE,

P {γ[0,∞) ∩ [x − rx, x + rx] 6= ∅} =
Γ(2a)

Γ(1 − 2a)Γ(4a − 1)

∫ 2r

1+r

0

dt

t2−4a(1 − t)2a

≥
Γ(2a)

Γ(1 − 2a)Γ(4a − 1)

∫ 2r

1+r

0

dt

t2−4a(1/2)2a

≥
Γ(2a)22a

Γ(1 − 4a)Γ(4a)
(2r)4a−1.

The first and second inequalities use 0 < r ≤ 1/3. (Actually, all that is required here is that
r > 0 be bounded away from 1. We took 0 < r ≤ 1/3 simply for convenience.)

3.3 The lower bound for 0 < κ ≤ 4

In this section we establish the lower bound in Theorem 1.1 for κ ∈ (0, 4).

Theorem 3.4. Let 0 < r < 1 and x > 0. If γ : [0,∞) → H is a chordal SLEκ in H from 0 to
∞ with 0 < κ ≤ 4 and a = 2/κ, then there exists a constant ca such that

P{γ[0,∞) ∩ C(x; rx) 6= ∅} ≥ car4a−1.

To prove the theorem we recall the probability that a fixed point z ∈ H lies to the left of
γ[0,∞). This result is originally due to Schramm [10], although the form that we include is
from Garban and Trujillo Ferreras [5].

Proposition 3.5. Let z = ρeiθ ∈ H, and set f(z) = P{z is to the left of γ[0,∞)}. By scaling,
the function f only depends on θ and is given by

f(θ) =

∫ θ

0
(sin α)4a−2 dα

∫ π

0
(sin α)4a−2 dα

.

Proof of Theorem 3.4. Figure 5 clearly shows that

P{γ[0,∞) ∩ C(x; rx) 6= ∅} ≥ P{x + irx is to the left of γ[0,∞)}.

Since arg(x + irx) = arctan(r) and since 2 sin t ≥ t for 0 ≤ t ≤ π/4, we conclude from
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x − rx x + rx

x + irx

0

γ[0,∞)

Figure 5: The point z = x + irx is to the left of γ[0,∞).

Proposition 3.5 that

P{x + irx is to the left of γ[0,∞)} ·

∫ π

0

(sin α)4a−2 dα =

∫ arctan(r)

0

(sin α)4a−2 dα

≥
1

2

∫ arctan(r)

0

α4a−2 dα

=
arctan4a−1(r)

8a − 2
. (6)

Since 8 arctan t ≥ πt for 0 ≤ t ≤ 1, we see that (6) implies that there exists a constant ca,
namely

ca =
π4a−1

46a−1(4a − 1)
∫ π

0
(sin α)4a−2 dα

,

such that P{x + irx is to the left of γ[0,∞)} ≥ car4a−1.

4 Estimating the diameter of a chordal SLE path

In this section, we derive Corollary 1.2 from Theorem 1.1. The proof is not difficult; the
basic idea is to determine the appropriate conformal transformation and use the conformal
invariance of chordal SLE. Recall that if D ⊂ C is a simply connected domain and z, w are
two distinct points in ∂D, then chordal SLEκ in D from z to w is defined to be the conformal
image of chordal SLEκ in H from 0 to ∞ as discussed in Section 2. Let x > 0 be real, and
suppose that γ′ : [0, tγ′ ] → H is an SLEκ in H from 0 to x. We also note that we are not
interested in the parametrization of the SLE path, but only in the set of points visited by its
trace. Suppose that R ≥ 3, and consider C(0;Rx) = {Rxeiθ : 0 < θ < π}. For z ∈ H, let

h(z) =
R2

R2 − 1

z

x − z

so that h : H → H is a conformal (Möbius) transformation with h(0) = 0 and h(x) = ∞. It is
straightforward (although a bit tedious) to verify that

h (C(0;Rx)) = C

(

−1;
1

R

)

.
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If γ : [0,∞) → H is a chordal SLEκ in H from 0 to ∞, then the conformal invariance of SLE
implies that

P{γ′[0, tγ′ ]∩C(0;Rx) 6= ∅}=P{h(γ′[0, tγ′ ])∩h(C(0;Rx)) 6= ∅}=P

{

γ[0,∞) ∩ C

(

−1,
1

R

)

6= ∅

}

.

By the symmetry of SLE about the imaginary axis,

P

{

γ[0,∞) ∩ C

(

−1,
1

R

)

6= ∅

}

= P

{

γ[0,∞) ∩ C

(

1,
1

R

)

6= ∅

}

≍ R1−4a

where the last bound follows from Theorem 1.1 with r = 1/R.

5 The κ = 8/3 case

In this section we derive the facts given in the remark following Corollary 1.2. The key result
that is needed is the restriction property of chordal SLE8/3. Indeed, the following remarkable
formula due to Lawler, Schramm, and Werner solves the κ = 8/3 case immediately. See
Theorem 6.17 of [7] for a proof; compare this with Proposition 9.4 and Example 9.7 of [7] as
well.

Proposition 5.1. If γ : [0,∞) → H is a chordal SLE8/3 in H from 0 to ∞, and A is a bounded

subset of H such that H \ A is simply connected, A = H ∩ A, and 0 6∈ A, then

P{γ[0,∞) ∩ A = ∅} = [Φ′
A(0)]

5/8

where ΦA : H \ A → H is the unique conformal transformation of H \ A to H with ΦA(0) = 0
and ΦA(z) ∼ z as z → ∞.

Applying Proposition 5.1 to our situation implies that if 0 < r < 1, then

P{γ[0,∞) ∩ C(x; rx) = ∅} = P{γ[0,∞) ∩ D(x; rx) = ∅} =
[

Φ′
D(x;rx)(0)

]5/8

where D(x; rx) is the half disk of radius rx centred at x in the upper half plane as given by (2)
and ΦD(x;rx)(z) is the conformal transformation from H\D(x; rx) onto H with ΦD(x;rx)(0) = 0
and ΦD(x;rx)(z) ∼ z as z → ∞. In fact, the exact form of ΦD(x;rx)(z) is given by

ΦD(x;rx)(z) = z +
r2x2

z − x
+ r2x.

Note that ΦD(x;rx)(0) = 0, ΦD(x;rx)(∞) = ∞, and Φ′
D(x;rx)(∞) = 1. We easily calculate

Φ′
D(x;rx)(0) = 1 − r2 and therefore conclude that

P{γ[0,∞) ∩ C(x; rx) = ∅} = (1 − r2)5/8

as required.

Remark. It is worth noting that Proposition 5.1 with the exact form of the conformal trans-
formation ΦD(x;rx) : H \ D(x; rx) → H was used by Kennedy [6] to produce strong numerical
evidence that the scaling limit of planar self-avoiding walk is chordal SLE8/3.
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6 An application of Theorem 1.1

In this section, we derive estimates for two more intersection probabilities for a chordal SLE
path and a semicircle centred on the real line. In particular, Corollary 6.2 gives an estimate
in the 4 < κ < 8 regime for the probability that an entire semicircle is swallowed at once by
a chordal SLEκ path in H from 0 to ∞. By the scaling properties of SLE, we may rewrite
Theorem 1.1 in terms of a semicircle centred at x > 0 of radius ǫ, 0 < ǫ ≤ x/3. For the
convenience of the reader, we repeat the statement of Theorem 1.1 in this slightly different
form, and note that it is seen to generalize a result due to Rohde and Schramm [8, Lemma 6.6].

Theorem 1.1. Let x > 0 be a fixed real number, and suppose 0 < ǫ ≤ x/3. If γ : [0,∞) → H

is a chordal SLEκ in H from 0 to ∞ with 0 < κ < 8 and a = 2/κ, then

P{γ[0,∞) ∩ C(x; ǫ) 6= ∅} ≍
( ǫ

x

)4a−1

where C(x; ǫ) is the semicircle of radius ǫ centred at x in the upper half plane as given by (3).

We conclude with an application of Theorem 1.1 by combining it with a method due to
Dubédat [4]. For the remainder of the paper suppose that 4 < κ < 8; as before, let a = 2/κ.
Suppose that 0 < r ≤ 1/3 and consider the two semicircles

Cr = C
(

1 − r;
r

2

)

=
{

z ∈ H : |z − 1 + r| =
r

2

}

(7)

and

C′
r = C

(

1 −
3r

4
;
3r

4

)

=

{

z ∈ H :

∣

∣

∣

∣

z − 1 +
3r

4

∣

∣

∣

∣

=
3r

4

}

(8)

as illustrated in Figure 6.

11 − r
1 −

3r

2

C′

r

Cr

1 −
3r

4
1 −

r

2

Figure 6: The semicircles C′
r and Cr.

It follows from Theorem 1.1 that P{γ[0,∞) ∩ C′
r 6= ∅} ≍ r4a−1 and so there exists a constant

c′a such that 1 − c′ar4a−1 ≤ P{γ[0,∞) ∩ C′
r = ∅}. Besides,

P{γ[0,∞) ∩ C′
r = ∅} ≤ inf

z∈Cr

P{Tz = T1}

where Tz is the swallowing time of the point z ∈ H (and the infimum is over all z ∈ Cr not
z ∈ C′

r). From this we conclude that there exists a constant c′a such that

1 − c′ar4a−1 ≤ inf
z∈Cr

P{Tz = T1}. (9)
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In order to derive an upper bound for the expression in (9), we use a method from Dubédat [4].
We now outline this method referring the reader to that paper for further details. Let gt denote
the solution to the chordal Loewner equation (4) with driving function Ut = −Bt where Bt is
a standard one-dimensional Brownian motion with B0 = 0. For t < T1, the swallowing time
of the point 1, consider the conformal transformation g̃t : H \ Kt → H given by

g̃t(z) =
gt(z) + Bt

gt(1) + Bt
, g̃0(z) = z.

Note that g̃t(γ(t)) = 0, g̃t(1) = 1, g̃t(∞) = ∞, and that g̃t(z) satisfies the stochastic differential
equation

dg̃t(z) =

[

a

g̃t(z)
+ (1 − a)g̃t(z) − 1

]

dt

(gt(1) + Bt)2
+ [1 − g̃t(z)]

dBt

gt(1) + Bt
.

If we now perform the time-change

σ(t) =

∫ t

0

ds

(gs(1) + Bs)2
,

then g̃σ(t)(z) satisfies the stochastic differential equation

dg̃t(z) =

[

a

g̃t(z)
+ (1 − a)g̃t(z) − 1

]

dt + [1 − g̃t(z)] dBt (10)

For ease of notation, and because it does not concern us at present, we have also denoted the
time-changed flow by {g̃t(z), t ≥ 0}. Furthermore, it is shown in detail in [4] that for all
κ > 0, the time-changed stochastic flow {g̃t(z), t ≥ 0} given by (10) does not explode in finite
time a.s. Therefore, if F is an analytic function on H such that {F (g̃t(z)), t ≥ 0} is a local
martingale, then Itô’s formula (at t = 0) implies that F must be a solution to the differential
equation

w(1 − w)F ′′(w) + [2a − (2 − 2a)w]F ′(w) = 0. (11)

An explicit solution to (11) is given by

F (w) =
Γ(2a)

Γ(1 − 2a)Γ(4a − 1)

∫ w

0

ζ−2a(1 − ζ)4a−2dζ (12)

which is normalized so that F (0) = 0 and F (1) = 1. Note that (12) is a Schwarz-Christoffel
transformation of the upper half plane onto the isosceles triangle whose interior angles are
(1 − 2a)π, (1 − 2a)π, and (4a − 1)π. The boundary values F (0) = 0 and F (1) = 1 imply that
two of the vertices of the triangle are at 0 and 1, and from (12) we conclude that the third
vertex of the triangle is at

F (∞) =
Γ(2a)Γ(1 − 2a)

Γ(2 − 4a)Γ(4a − 1)
e(1−2a)πi

which follows from (6.2.1) and (6.2.2) of [1]. Using (6.1.17) of [1], namely Γ(z)Γ(1 − z) =
π csc(πz), one can deduce that

2 cos((1 − 2a)π) =
Γ(2a)Γ(1 − 2a)

Γ(2 − 4a)Γ(4a − 1)
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F (0) = 0 F (1) = 1

(1 − 2a)π (4a − 1)π

(1 − 2a)π

F (∞)

Figure 7: The isosceles triangle with vertices at 0, 1, and F (∞).

from which it follows that ℜ(F (∞)) ≥ 0 and that |F (∞) − 1| = 1 as is to be expected for
this isosceles triangle. The image of H under F is illustrated in Figure 7. We now apply
the optional sampling theorem to the martingale F (g̃t∧Tz∧T1

(z)) to find (see the discussion
surrounding Proposition 1 of [4]) that for z ∈ H,

F (g̃0(z)) = F (z) = F (0)P{Tz < T1} + F (1)P{Tz = T1} + F (∞)P{Tz > T1}

= P{Tz = T1} + F (∞)P{Tz > T1}. (13)

Consequently, identifying the imaginary and real parts of the previous equation (13) implies
that

ℜ{F (z)} = P{Tz = T1} + ℜ{F (∞)}P{Tz > T1}.

Since ℜ{F (∞)} ≥ 0, we conclude P{Tz = T1} ≤ ℜ{F (z)} ≤ |F (z)|. But now integrating
along the straight line from 0 to z (i.e., letting θ = arg(z), ζ = ρeiθ, 0 ≤ ρ ≤ |z|) gives

|F (z)| =
Γ(2a)

Γ(1 − 2a)Γ(4a − 1)

∣

∣

∣

∣

∣

∫ |z|

0

(ρeiθ)−2a(1 − ρeiθ)4a−2eiθdρ

∣

∣

∣

∣

∣

≤
Γ(2a)

Γ(1 − 2a)Γ(4a − 1)

∫ |z|

0

ρ−2a|1 − ρ|4a−2dρ

= 1 −
Γ(2a)

Γ(1 − 2a)Γ(4a − 1)

∫ 1

|z|

ρ−2a(1 − ρ)4a−2dρ

which relied on the fact that 4a − 2 < 0. If z ∈ Cr so that 0 < 1 − 3r
2 ≤ |z| ≤ 1 − r

2 < 1 by
definition, then

∫ 1

|z|

ρ−2a(1 − ρ)4a−2dρ ≥

∫ 1

|z|

(1 − ρ)4a−2dρ =
(1 − |z|)4a−1

4a − 1
≥

21−4a

4a − 1
r4a−1.

Hence,
P{Tz = T1} ≤ |F (z)| ≤ 1 − c′′ar4a−1
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where

c′′a =
21−4ac̃a

4a − 1
and c̃a =

Γ(2a)

Γ(1 − 2a)Γ(4a − 1)
.

Taking the supremum of the previous expression over all z ∈ Cr gives us the required upper
bound to (9). Hence, we have proved the following theorem.

Theorem 6.1. Let 0 < r ≤ 1/3. If γ : [0,∞) → H is a chordal SLEκ in H from 0 to ∞ with
4 < κ < 8 and a = 2/κ, then there exist constants c′a and c′′a such that

1 − c′ar4a−1 ≤ inf
z∈Cr

P{Tz = T1} ≤ sup
z∈Cr

P{Tz = T1} ≤ 1 − c′′ar4a−1

where

Cr = C
(

1 − r;
r

2

)

=
{

z ∈ H : |z − 1 + r| =
r

2

}

denotes the circle of radius r/2 centred at 1 − r in the upper half plane as in (7).

This theorem now yields the following corollary.

Corollary 6.2. Let 0 < r ≤ 1/3. If γ : [0,∞) → H is a chordal SLEκ in H from 0 to ∞ with
4 < κ < 8 and a = 2/κ, then there exist constants c′a and c′′a such that

1 − c′ar4a−1 ≤ P{Tz = T1 for all z ∈ Cr} ≤ 1 − c′′ar4a−1

where Cr is given by (7) as above.

Proof. Let z0 = 1 − r + ir
2 so that z0 ∈ Cr. Theorem 6.1 implies that there exists a constant

c′′a such that

P{Tz = T1 for all z ∈ Cr} ≤ P{Tz0
= T1} ≤ sup

z∈Cr

P{Tz = T1} ≤ 1 − c′′ar4a−1. (14)

As noted earlier, it follows from Theorem 1.1 that P{γ[0,∞) ∩ C′
r 6= ∅} ≍ r4a−1 where C′

r is
given by (8), and so there exists a constant c′a such that

P{Tz = T1 for all z ∈ Cr} ≥ P{γ[0,∞) ∩ C′
r = ∅} ≥ 1 − c′ar4a−1. (15)

Taking (14) and (15) together completes the proof.

Addendum

After this paper was completed, two preprints relevant to the subject at hand were released.
Both Alberts and Sheffield [2] and Schramm and Zhou [11] prove, independently and using
different methods, that for 4 < κ < 8 the SLEκ curve intersected with the real line has
Hausdorff dimension 2 − 8/κ a.s. Specifically, Alberts and Sheffield [2] establish an upper
bound on the asymptotic probability of an SLEκ curve hitting two small intervals on the real
line as the interval width goes to zero, whereas Schramm and Zhou [11] examine how close the
chordal SLEκ curve gets to the real line asymptotically far away from its starting point. In
fact, a combination of Lemma 2.1 and Proposition 2.3 from Schramm and Zhou [11] can be
used to derive an alternate proof of our Theorem 1.1.
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