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Abstract

We study the precise relationship between the subordinate killed and killed subordinate pro-
cesses in the case of an underlying Hunt process, and show that, under minimal conditions,
the former is a subprocess of the latter obtained by killing at a terminal time. Moreover, we
also show that the killed subordinate process can be obtained by resurrecting the subordinate
killed one at most countably many times.

1 Introduction

Let X be a strong Markov process on a state space E. In this paper we will be interested
in two types of probabilistic transformations of X. The first one is subordination of X via
an independent subordinator T giving a Markov process Y = (Yt : t ≥ 0) on E defined by
Yt = X(Tt). The other transformation is killing X upon exiting an open subset D of E. The
resulting process XD is defined by XD

t = Xt for t < τD = inf{t > 0 : Xt /∈ D}, and XD
t = ∂

(the cemetery) otherwise. Now one can kill Y upon exiting D giving the process Y D, and
also subordinate XD by the same subordinator T giving the process that we will denote by
ZD. Both processes are Markov with the same state space D. The process Y D is called the
killed subordinate process (first subordination, then killing), while ZD is called the subordinate
killed process (first killing, then subordination). It is an interesting problem to investigate the
precise relationship between these two processes. This question can be traced back to [4] in
the case when X is a Brownian motion and T a stable subordinator. In this context it was
addressed in [10] where by use of pathwise approach it was shown that the semigroup of ZD

(subordinate killed) is subordinate to the semigroup of Y D (killed subordinate). Recently, by
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use of Dirichlet form techniques, He and Ying gave in [5] an answer in a general setting of
symmetric Borel right processes on a Lusin space E. Again, the semigroup of ZD is subordinate
to the semigroup of Y D. The general theory then implies that ZD can be obtained by killing
Y D via a multiplicative functional.
The goal of this paper is to give (in our opinion) the complete description of the relationship
between ZD and Y D in the context of a Hunt process X (not necessarily symmetric) on a
locally compact second countable Hausdorff space E. By defining X and the subordinator
T on appropriate path spaces, and considering all relevant processes on the product of these
path spaces, we show that ZD is obtained by killing Y D at an identifiable terminal time with
respect to a filtration making Y a strong Markov process. Note that killing at a terminal
time is a special case of killing by a multiplicative functional, but clearly more transparent.
Moreover, we go a step further and show that the process Y D can be recovered from ZD by
resurrecting the latter at most countably many times. This easily follows from our setting in
which both ZD and Y D are described explicitly in terms of the underlying Hunt process X
and the subordinator T . We also compute the resurrection kernel (given, implicitly, in [5]).
Having the resurrection kernel, one can now start from any process with the same distribution
as ZD and use Meyer’s resurrection procedure described in [7] to construct a process with the
distribution of Y D.
The paper is organized as follows: In the next section we precisely describe our setting. In
Section 3 we give a description of the relationship between subordinate killed and killed sub-
ordinate processes. In Section 4 the resurrection kernel is computed. In the last section, as an
application, we give sufficient conditions for Y to be not on the boundary ∂D at the exit time
from D.

2 Setting and notation

Let E be a locally compact second countable Hausdorff space and let E be the corresponding
Borel σ-algebra. Further, let Ω1 be the set of all functions ω1 : [0,∞) → E which are right
continuous and have left limits. For each t ≥ 0, let Xt : Ω1 → E be defined by Xt(ω1) = ω1(t).
The shift operator ϑ1

t : Ω1 → Ω1 is defined by ϑ1
t ω1(·) = ω1(t + ·). Let F

0 = (F0
t : t ≥ 0),

F0
t = σ(Xs : 0 ≤ s ≤ t), be the natural filtration generated by the process X = (Xt : t ≥ 0),

and let F0
t+ = ∩s>tF

0
s . Also, let F = σ(Xt : t ≥ 0). We assume that (Px

1 : x ∈ E) is a
family of probability measures on (Ω1,F) such that (Xt, P

x
1) is a strong Markov process. Let

F = (Ft : t ≥ 0) be the usual augmentation of the natural filtration F
0. From now on we

assume that X = (Ω1,F ,Ft,Xt, ϑ
1
t , P

x
1) is a Hunt process with the state space (E, E).

Let Ω2 be the set of all functions ω2 : [0,∞) → [0,∞) which are right continuous and have left
limits. For each t ≥ 0, let Tt : Ω2 → [0,∞) be defined by Tt(ω2) = ω2(t). The shift operator
ϑ2

t : Ω2 → Ω2 is defined by ϑ2
t ω2(·) = ω2(t + ·). Let G

0 = (G0
t : t ≥ 0), G0

t = σ(Ts : 0 ≤ s ≤ t),
be the natural filtration generated by the process T = (Tt : t ≥ 0), and let G0

t+ = ∩s>tG
0
s .

Also, let G = σ(Tt : t ≥ 0). We assume that (Py
2 : y ∈ [0,∞)) is a family of probability

measures on (Ω2,G) such that (Tt, P
y
2) is an increasing Lévy process. In particular, we assume

that under P2 := P
0
2, the law of Tt is given by

E2(exp−λTt) = exp(−tφ(λ)) ,

where

φ(λ) = bλ +

∫

(0,∞)

(1 − e−λx)Π(dx) .
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Here b ≥ 0 is the drift, and Π the Lévy measure of the subordinator T . Further, let U(dy)
denote the potential measure of T under P2:

U(dy) = E2

∫ ∞

0

1(Tt∈ dy) dt .

For y > 0, let σy = inf{t > 0 : Tt > y} be the first passage time of T across the level y. Then
σy is a (G0

t+)-stopping time and the following identity holds true for all t > 0 and y > 0:

{Tt < y} = {σy > t} . (2.1)

Let Ω = Ω1 × Ω2, and, for any x ∈ E and y ∈ [0,∞), let P
x,y = P

x
1 × P

y
2 be the product

probability measure on H = F ×G. The probability P
x,0 will be denoted as P

x. The elements
of Ω are denoted by ω = (ω1, ω2). For each t ≥ 0 we define the shift operator θt : Ω → Ω by

θt(ω)(·) = θt(ω1, ω2)(·) := (ω1(ω2(t) + ·), ω2(t + ·) − ω2(t)) . (2.2)

We will occasionally write θt(ω) = (θ1
t (ω), θ2

t (ω)). Note that for s, t ≥ 0 we have

θs(θtω) = θs(ω1(ω2(t) + ·), ω2(t + ·) − ω2(t))

= (ω1(ω2(t) + (ω2(t + s) − ω2(t)) + ·), (ω2(t + s + ·) − ω2(t)) − (ω2(t + s) − ω2(t)))

= (ω1(ω2(t + s) + ·), ω2(t + s + ·) − ω2(t + s))

= θt+s(ω) .

The subordinate process Y = (Yt : t ≥ 0) with the state space (E, E) is defined on Ω by
Yt(ω) := XTt(ω2)(ω1) = ω1(ω2(t)). Note that

Ys(θtω) = ω1(ω2(t) + (ω2(t + s) − ω2(t)))

= ω1(ω2(t + s)) = Ys+t(ω) .

Following [3] we introduce the following filtration: For t ≥ 0 let

St = {A1 × (A2 ∩ {Tt ≥ u}) : A1 ∈ F0
u, A2 ∈ G0

t , u ≥ 0} ,

and let Ht = σ(St). Then H = (Ht : t ≥ 0) is a filtration on Ω such that for all t ≥ 0,
σ(Ys : 0 ≤ s ≤ t) ⊂ Ht.

Remark 2.1. Suppose that S is a function defined on, say, Ω1. By abusing notation we will
regard S as being defined on Ω by S(ω1, ω2) = S(ω1). We use the same convention if S is a
function defined on Ω2.

The following results are proved in [3]:

Proposition 2.2. (i) ([3], p.65) If S is an (F0
t+)-stopping time, then {S ≤ Tt} ∈ Ht+.

(ii) ([3], p.66) If S is an (Ht+)-stopping time, then

(a) for each ω1, S(ω1, ·) is an (G0
t+)-stopping time;

(b) for each ω2, TS(·, ω2)(ω2) is an (F0
t+)-stopping time.

(iii) ([3], p. 67) The subordinate process Y = (Ω,H,Ht+, Yt, P
x,y) is a strong Markov process.
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In the next result we prove that the subordinate process Y is quasi-left-continuous.

Proposition 2.3. Let (Sn : n ≥ 1) be an increasing sequence of (Ht+)-stopping times, and
let S = limn→∞ Sn. Then limn→∞ YSn

= YS, P
x-a.s. on {S < ∞} for every x ∈ E.

Proof. Without loss of generality we assume that S < ∞, P
x-a.s., for every x ∈ E. Let

A = {ω = (ω1, ω2) : limn TSn(ω1,ω2)(ω2) = TS(ω1,ω2)(ω2)}, and let Aω1
be the ω1-section of

A. For each fixed ω1, it follows from Proposition 2.2(ii)(a) that Sn(ω1, ·) is a (G0
t+)-stopping

time, hence by quasi-left-continuity of the subordinator T , we have that P2(Aω1
) = 1. Thus

by Fubini’s theorem we have that P
x(A) = 1, for every x ∈ E.

Let T̃ (ω1, ω2) = limn→∞ TSn(ω1,ω2)(ω2). Since for each fixed ω2, TSn(·,ω2)(ω2) is an (F0
t+)-

stopping time by Proposition 2.2(ii)(b), it follows that T̃ (·, ω2) is also an (F0
t+)-stopping time.

The assumptions S < ∞ P
x-a.s. implies that T̃ (·, ω2) < ∞, P

x
1 -a.s., for every x ∈ E. By the

quasi-left-continuity of the process X we obtain that

lim
n→∞

XTSn(ω1,ω2)
(ω1) = X eT (ω1,ω2)

(ω1) P
x
1 -a.e. ω1 .

Let B = {ω = (ω1, ω2) : limn→∞ XTSn
(ω) = X eT

(ω)}. Again by using Fubini’s theorem, it
follows that P

x(B) = 1 for every x ∈ E. Therefore, P
x(A∩B) = 1, and for ω ∈ A∩B it holds

that limn→∞ YSn
(ω) = limn→∞ XTSn

(ω) = X eT
(ω) = XTS

(ω) = YS(ω). ¤

Lemma 2.4. Let S be an (F0
t+)-stopping time. Then σS = inf{t > 0 : Tt > S} is an

(Ht+)-stopping time.

Proof. By (2.1) we have that {σS ≤ t} = {Tt ≥ S}. The claim now follows from Proposition
2.2(i). ¤

Let D be an open subset of E, and let τD = inf{t > 0 : Xt /∈ D} be the first exit time of X
from D. We assume for simplicity that P

x
1(τD < ∞) = 1 for all x ∈ E. By the previous lemma

it follows that στD
is an (Ht+)-stopping time. In the next lemma we prove that it is also a

terminal time with respect to (Ht+).

Lemma 2.5. For every t ≥ 0, στD
= t + στD

◦ θt on {t < στD
}.

Proof. First note that στD
(ω) = στD

(ω1, ω2) = inf{t > 0 : ω2(t) > τD(ω1)}. Further, by
(2.1), {t < στD

} = {Tt < τD} = {(ω1, ω2) : ω2(t) < inf{u > 0 : ω1(u) /∈ D}}. Therefore, on
{t < στD

},

στD
(θtω) = inf{s > 0 : θ2

t ω2(s) > τD(θtω)}

= inf{s > 0 : ω2(t + s) − ω2(t) > inf{u > 0 : (θ1
t ω)(u) /∈ D}}

= inf{s > 0 : ω2(t + s) > ω2(t) + inf{u > 0 : ω1(ω2(t) + u) /∈ D}}

= inf{s > 0 : ω2(t + s) > inf{u > 0 : ω1(u) /∈ D}} ,

where the last line follows from ω2(t) < inf{u > 0 : ω1(u) /∈ D}. Hence,

t + (στD
◦ θt)(ω) = t + inf{s > 0 : ω2(t + s) > τD(ω)}

= inf{s > 0 : ω2(s) > τD(ω)} = στD
(ω) .

¤

We also record the fact that for each fixed ω2, TστD
(·,ω2)(ω2) is an (F0

t+)-stopping time. This

follows from Proposition 2.2(ii)(b). Further, for each fixed ω2, TστD
(·,ω2)(ω2) is a function of

τD, and hence F0
τD

-measurable.
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3 Subordinate killed and killed subordinate processes

Let τY
D = inf{t > 0 : Yt /∈ D} be the first exit time of the subordinate process Y from D. Then

τY
D is an (Ht+)-stopping time. We note that even when P

x
1(τD < ∞) = 1 for all x ∈ D, it may

happen that τY
D = ∞, P

x-a.s. for every x ∈ D. Indeed, let X be a one-dimensional Brownian
motion, D = (−∞, 0) ∪ (0,∞), and let T be an α/2-stable subordinator with 0 < α < 1. The
subordinate process Y is an α-stable process in R. Since 0 < α < 1, points are polar for Y ,
and in particular, the hitting time to zero, which is precisely equal to τY

D , is infinite. Clearly,
P

x
1(τD < ∞) = 1.

The process Y killed upon exiting D is defined by

Y D
t :=

{
Yt , t < τY

D

∂ , t ≥ τY
D

=

{
XTt

, t < τY
D

∂ , t ≥ τY
D

where ∂ is a cemetery point . We call Y D the killed subordinate process. Note that Y D is a
strong Markov process with respect to the filtration (Ht+).
The other process that we are going to consider is obtained by killing Y at the terminal time
στD

. Define

ZD
t :=

{
Yt , t < στD

∂ , t ≥ στD

=

{
XTt

, Tt < τD

∂ , Tt ≥ τD

where the equality is a consequence of (2.1). Since στD
is a terminal time, it follows (similarly

as in the proof of Theorem 12.23(i) of [9], p. 71) that ZD is also a strong Markov process with
respect to the filtration (Ht+).
We can also introduce the process XD as the process X killed upon exiting D. Clearly, if
Tt < τD, then XD

Tt
= XTt

. This shows that ZD is in fact obtained by first killing X as it exits
D, and then by subordinating the killed process with the subordinator T . Therefore we call
ZD the subordinate killed process.
Note that if t < στD

, then Tt < τD, and therefore Yt = XTt
∈ D. This shows that στD

≤ τY
D .

As a consequence, we see that ZD can be obtained by killing Y D at the terminal time στD
:

ZD
t :=

{
Y D

t , t < στD

∂ , t ≥ στD
.

(3.1)

For any nonnegative Borel function f on D let QD
t f(x) := E

x[f(Y D
t )] be the semigroup of

Y D, and RD
t f(x) := E

x[f(ZD
t )] = E

x[f(Y D
t ), t < στD

] be the semigroup of ZD. The following
result is now obvious.

Proposition 3.1. The semigroup (RD
t : t ≥ 0) is subordinate to the semigroup (QD

t : t ≥ 0)
in the sense that for every nonnegative Borel function f on D it holds that RD

t f ≤ QD
t f .

Let S1 = στD
and define inductively Sn+1 = Sn +S1 ◦θSn

with the convention that if Sn = τY
D ,

then for all k > n, Sk = τY
D . Then (Sn : n ≥ 1) is an increasing sequence of (Ht+)-stopping

times. The limit S = limn→∞ Sn is an (Ht+)-stopping time. Clearly, S ≤ τY
D . The next

proposition shows that these stopping times are in fact equal P
x-a.s. for every x ∈ D.

Proposition 3.2. It holds that τY
D = S, P

x-a.s. for every x ∈ D.

Proof. Let A = {ω = (ω1, ω2) : limn TSn(ω1,ω2)(ω2) = TS(ω1,ω2)(ω2)}. It was shown in

Proposition 2.3 that P
x(A) = 1 for all x ∈ E. Therefore, there exists Ω̃2 ⊂ Ω2 with P2(Ω̃2) = 1

and such that P
x
1(Aω2

) = 1 for every ω2 ⊂ Ω̃2. Let us fix ω2 ∈ Ω̃2. If for some n ≥ 1 it holds
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that Sn(·, ω2) = τY
D (·, ω2) there is nothing to prove. Therefore we assume that S1(·, ω2) <

S2(·, ω2) < · · · < S(·, ω2). By Proposition 2.2, TS(·,ω2
)(ω2) and TSn(·,ω2

)(ω2), n ∈ N, are
(F0

t+)-stopping times. For n ≥ 1 define

τn+1 = inf{t > TSn(·,ω2
)(ω2) : Xt /∈ D} .

Then τn+1 is an (F0
t+)-stopping time. Moreover, we have that

TS1(·,ω2
)(ω2) ≤ τ2 ≤ TSs(·,ω2

)(ω2) ≤ τ3 ≤ · · · ≤ TS(·,ω2
)(ω2) .

Since P
x
1(Aω2

) = 1, we have that TS(·,ω2
)(ω2) = ↑ limn→∞ τn, P

x
1 -a.s., and by the quasi-left-

continuity of X, we conclude that XTS(·,ω2
)(ω2) = limn→∞ Xτn

, P
x
1 -a.s. on {TS(·,ω2

)(ω2) <

∞} = {S(·, ω2) < ∞} for every x ∈ D. Since Xτn
/∈ D, we conclude that P

x
1(XTS(·,ω2

)(ω2) /∈

D,S(·, ω2) < ∞)) = P
x
1(S(·, ω2) < ∞) for every x ∈ D. Since ω2 ∈ Ω̃2, integrating the last

equality with respect to P2, gives that for every x ∈ D, P
x(YS /∈ D,S < ∞) = P

x(XTS
/∈

D,S < ∞) = P
x(S < ∞). But this means that S ≥ τY

D , P
x-a.s. on {S < ∞}. Clearly, S ≥ τY

D

on {S = ∞}. ¤

Remark 3.3. Assume that Sn < S for every n ≥ 1. Note that in this case YSn
∈ D. Since

S = limn→∞ Sn, the quasi-left-continuity of Y implies that on {S < ∞}, YS = limn→∞ YSn
∈

D, the closure of D. From the proof of Proposition 3.2, we have that YS ∈ Dc on {S < ∞}.
Therefore, YS = YτY

D
∈ ∂D on {S < ∞} = {τY

D < ∞}.

4 Resurrection kernel

Proposition 3.2 clearly shows that the process Y D can be obtained from ZD by resurrecting
the latter at most countably many times. Our next goal is to compute the resurrection kernel.
For t ≥ 0 and x ∈ E, let Pt(x, dy) denote the transition kernel of X. To be more precise,
Pt(x, dy) = P

x
1(Xt ∈ dy) = P

x(Xt ∈ dy). Similarly, for x ∈ D, let PD
t (x, dy) denotes the

transition kernel of the killed process XD. Throughout this paper we will assume the following
(A1) X admits a Lévy system of the form (JX , dt).
Here JX(x, dy) is a kernel on (E, E). The assumption (A1) is not very restrictive. For
example, all Lévy processes satisfy this assumption. Under the assumption (A1), one can

easily check that the killed process XD has a Lévy system of the form (JXD

, dt), where

JXD

(x, dy) is the restriction of JX on (D,B(D)). That is, for x ∈ D and a Borel subset

B ⊂ D, JXD

(x,B) = JX(x,B). By slightly abusing the notation, we will denote JXD

simply
by JX .
The subordinate process Y admits a Lévy system of the form (JY , dt), where

JY (x, dy) = bJX(x, dy) +

∫

(0,∞)

Pt(x, dy)Π(dt) , x ∈ E , (4.1)

(see [8] for a proof, and also [3], p.74, for the case b = 0).

Similarly, the subordinate killed process ZD admits a Lévy system of the form (JZD

, dt), where

JZD

(x, dy) = bJX(x, dy) +

∫

(0,∞)

PD
t (x, dy)Π(dt) , x ∈ D . (4.2)
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It is also well known that the potential kernel UZD

(x, dy) of ZD is given by

UZD

(x, dy) =

∫ ∞

0

PD
t (x, dy)U(dt) , (4.3)

where U(ds) is the potential measure of the subordinator T . Finally, we recall the following
first-passage formulae for the subordinator (see, e.g., [1], p.76): For each fixed x ≥ 0 and every
0 ≤ s ≤ x < t,

P2(Tσx− ∈ ds, Tσx
∈ dt) = U(ds)Π(dt − s) . (4.4)

If b = 0, then P2(Tσx
= x) = 0, while if b > 0, then U(dx) has a continuous density u and

P2(Tσx
= x) = b u(x) , (4.5)

(see, e.g., [1], pp.77-79). Moreover, P2(Tσx
= x) = P2(Tσx− = Tσx

= x).

We are mainly interested in the case when the Lévy measure Π of T is infinite. So from now
on, we assume

(A2) The Lévy measure Π of T is infinite.

In this case, the potential measure U(dt) has no atoms (e.g. [6], Theorem 5.4).

Theorem 4.1. Suppose that (A1) and (A2) are valid. Let B ⊂ D and C be Borel subsets of
E. Then for every x ∈ D,

P
x(YστD

− ∈ B, YστD
∈ C)

=

∫

B∩D

UZD

(x, dy)

∫

C∩Dc

(JY (y, dz) − bJX(y, dz))

+

∫

B∩D

UZD

(x, dy)

∫

C∩D

(JY (y, dz) − JZD

(y, dz))

+ b E
x(u(τD),X(τD−) ∈ B,X(τD) ∈ C ∩ Dc) . (4.6)

Remark: In case when b = 0, the last line vanishes.

Proof. Note that

YστD
− = lim

t↑στD

Yt = lim
t↑στD

X(Tt) = X(TστD
− −) .

We first split the left-hand side in (4.6) depending on whether the subordinator jumps over,
or hits, the level τD at the first passage over τD:

P
x(YστD

− ∈ B, YστD
∈ C) = P

x(YστD
− ∈ B, YστD

∈ C, TστD
− ≤ τD < TστD

)

+P
x(YστD

− ∈ B, YστD
∈ C, TστD

− = τD = TστD
)

=: A1 + A2 .
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Next, A1 can be written as

A1 = P
x

(
X(TστD

− −)(ω1, ω2) ∈ B,X(TστD
)(ω1, ω2) ∈ C,

TστD(ω1)−(ω2) ≤ τD(ω1) < TστD(ω1)
(ω2)

)

= (Px
1 × P2)

(
X(TστD(ω1)−(ω2)−)(ω1) ∈ B,X(TστD(ω1)

(ω2))(ω1) ∈ C,

TστD(ω1)−(ω2) ≤ τD(ω1) < TστD(ω1)
(ω2))

)

= E
x
1

[∫ τD(ω1)

0

∫ ∞

τD(ω1)

P2(TστD(ω1)− ∈ ds, TστD(ω1)
∈ dt) 1(Xs−(ω1)∈B)1(Xt(ω1)∈C)

]

= E
x
1

∫ τD

0

U(ds)

∫ ∞

τD

Π(dt − s)1(Xs−∈B)1(Xt∈C)

=

∫ ∞

0

U(ds) E
x
1

[
1(s<τD)1(Xs∈B)

∫ ∞

τD

Π(dt − s)1(Xt∈C)

]
, (4.7)

where the next to last line follows from (4.4), and the last line from the fact that U has no
atoms, and Xs− = Xs, P

x
1 -a.e. for every fixed s ≥ 0. Next,

E
x
1

[
1(s<τD)1(Xs∈B)

∫ ∞

τD

Π(dt − s)1(Xt∈C)

]

= E
x
1

[
1(s<τD)1(Xs∈B∩D) E

x
1

[∫ ∞

τD

Π(dt − s)1(Xt∈C)

∣∣F0
s+

]]

= E
x
1

[
1(s<τD)1(Xs∈B∩D) E

x
1

[∫ ∞

s+τD◦ϑ1
s

Π(dt − s)1(Xt∈C)

∣∣F0
s+

]]

= E
x
1

[
1(s<τD)1(Xs∈B∩D) E

x
1

[∫ ∞

τD◦ϑ1
s

Π(dw)1(Xw◦ϑ1
s∈C)

∣∣F0
s+

]]

= E
x
1

[
1(s<τD)1(Xs∈B∩D) E

Xs

1

∫ ∞

τD

Π(dw)1(Xw∈C)

]

=

∫

B∩D

PD
s (x, dy)f(y) , (4.8)

where

f(y) = E
y
1

[∫ ∞

τD

Π(dw)1(Xw∈C)

]

=

∫ ∞

0

Π(dw) P
y
1(Xw ∈ C,w ≥ τD) .

Since

P
y
1(Xw ∈ C,w ≥ τD) = P

y
1(Xw ∈ C) − P

y
1(Xw ∈ C,w < τD)

=

∫

C

Pw(y, dz) −

∫

C∩D

PD
w (y, dz) ,
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it follows from (4.1) and (4.2) that

f(y) =

∫

C

∫ ∞

0

Π(dw)Pw(y, dz) −

∫

C∩D

∫ ∞

0

Π(dw)PD
w (y, dz)

=

∫

C

(JY (y, dz) − bJX(y, dz)) −

∫

C∩D

(JZD

(y, dz) − bJX(y, dz))

=

∫

C∩Dc

(JY (y, dz) − bJX(y, dz)) +

∫

C∩D

(JY (y, dz) − JZD

(y, dz)) . (4.9)

Equalities (4.7), (4.8) and (4.9) yield that A1 is equal to the first two lines on the right-hand
side of (4.6).
In order to compute A2 we proceed as follows:

A2 = P
x(YστD

− ∈ B, YστD
∈ C, TστD

− = τD = TστD
)

= P
x(X(τD−) ∈ B,X(τD) ∈ C, TστD

− = τD = TστD
)

= E
x
1 [X(τD−)(ω1) ∈ B,X(τD)(ω1) ∈ C, P2(TστD(ω1)

= τD(ω1))]

= b E
x[u(τD),X(τD−) ∈ B,X(τD) ∈ C ∩ Dc] ,

where the last line follows from (4.5) and the fact that X(τD) /∈ D. ¤

For y ∈ D, let q(y, dz) := JY (y, dz)−JZD

(y, dz). We call q the resurrection kernel. Note that
for Borel sets B ⊂ D and C ⊂ D, the formula (4.6) can be written as

P
x(YστD

− ∈ B, YστD
∈ C) =

∫

B

UZD

(x, dy) q(y, C) .

By use of (4.1) and (4.2) one can write the resurrection kernel as

q(y, dz) =

∫

(0,∞)

(Pt(y, dz) − PD
t (y, dz))Π(dt) .

This is the form that the resurrection kernel appears in [5].

Corollary 4.2. Assume that (A1) and (A2) are valid.

(i) If the subordinator has no drift, i.e., b = 0, then P
x(TστD

= τD) = P
x(TστD

− = τD) = 0
and P

x(YστD
− ∈ D) = 1 for every x ∈ D.

(ii) If b > 0, then for every Borel set C ⊂ E,

P
x(YστD

∈ C, TστD
= τD) = b E

x[u(τD),X(τD) ∈ C ∩ Dc)] .

Proof.

(i) That P
x(TστD

= τD) = P
x(TστD

− = τD) = 0 is an immediate consequence of the first
passage formulae stated before Theorem 4.1 and the fact that the potential measure U
has no atoms. In order to show that P

x(YστD
− ∈ D) = 1 we use (4.7):

P
x(YστD

− ∈ D) =

∫ ∞

0

U(ds) E
x
1

[
1(s<τD)1(Xs∈D)

∫ ∞

τD

Π(dt − s)1(Xt∈E)

]

=

∫ ∞

0

U(ds) E
x
1

[
1(s<τD)

∫ ∞

τD

Π(dt − s)

]

= E
x
1

[∫ τD

0

U(ds)

∫ ∞

τD

Π(dt − s)

]
= 1 ,
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because the quantity in the last bracket is P
x
1 -a.s. equal to 1.

(ii) This follows immediately from the expression for A2 in the proof of Theorem 4.1 by
taking B = D.

¤

Corollary 4.3. Suppose that (A1) and (A2) are valid. Assume that JX(x, ∂D) = 0 and
Pt(x, ∂D) = 0, for all x ∈ D and all t > 0. Then for every Borel subset C ⊂ ∂D,

P
x(YστD

∈ C) = b E
x[u(τD),X(τD) ∈ C] , x ∈ D . (4.10)

In particular, if b = 0, JX(x, ∂D) = 0 and Pt(x, ∂D) = 0, for all x ∈ D and all t > 0, then

P
x(YστD

∈ ∂D) = 0 . (4.11)

Proof. It follows from (4.1) that JY (x, ∂D) = 0, x ∈ D. Now (4.10) follows from Theorem
4.1 by taking B = D and C = ∂D, having (4.11) as an immediate consequence. ¤

Corollary 4.4. Suppose that (A2) is valid. Assume that X has continuous paths and Pt(x, ∂D) =
0 for all x ∈ D and all t > 0. Then for every Borel set C ⊂ ∂D it holds that

P
x(YστD

− ∈ C) = P
x(YστD

∈ C) = b E
x[u(τD),X(τD) ∈ C] .

In particular,

P
x(YστD

− ∈ ∂D) = P
x(YστD

∈ ∂D) = b E
x[u(τD)] .

Proof. The second equality follows from Corollary 4.3. For the first, notice that by continuity
of X, YστD

− = X(TστD
−) = X(TστD

). If YστD
− ∈ C ⊂ ∂D, then TστD

− = τD = TστD
(see the

proof of Corollary 4.2). Therefore, YστD
− = YστD

. ¤

5 An application

It is of some interest to find sufficient conditions for YτY
D

/∈ ∂D. In [11], Sztonyk gave a
sufficient condition for a rotationally invariant Lévy process with infinite Lévy measure and
no Gaussian component not to hit the boundary ∂D upon exiting a Lipschitz domain D. The
given condition is satisfied for a rotationally invariant processes. In this section we give two
sufficient conditions in our setting.
For t ≥ 0 and x ∈ E define Nt(x, f) = E

x
1 [f(Xt)], where f is a nonnegative Borel function

on E. Note that TστD
= τD + (TστD

− τD), and for each fixed ω2, TστD
(·,ω2)(ω2) − τD(·) is

F0
τD

-measurable. Therefore, by an extended version of the strong Markov property (see [2],
pp.43-44), for each fixed ω2 (with ω2 suppressed in notation),

E
x
1 [1D(YστD

) | F0
τD+] = E

x
1 [1D(XτD+(TστD

−τD)) | F
0
τD+] = NTστD

−τD
(XτD

, 1D) , P
x
1 − a.s.

(5.1)
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Proposition 5.1. Suppose that (A2) is valid. Assume that X has continuous paths, Pt(x, ∂D) =
0 for all x ∈ D and all t > 0, and that there exists a constant c ∈ (0, 1) such that

P
x
1(Xt ∈ D) ≤ c for every x ∈ ∂D and every t > 0 . (5.2)

Assume further that the subordinator T has no drift. Then P
x(YτY

D
∈ ∂D) = 0 for every x ∈ D.

Proof. By the assumptions, XτD
∈ ∂D and Nt(x, 1D) = P

x
1(Xt ∈ D) ≤ c, for all x ∈ ∂D and

all t ≥ 0. By (5.1), this implies that for each fixed ω2, P
x
1(YστD

∈ D | F0
τD+) ≤ c, x ∈ D, and

therefore

P
x(YστD

∈ D) ≤ c , x ∈ D . (5.3)

Recall the notations S1 = στD
, and for n ≥ 1, Sn+1 = Sn + S1 ◦ θSn

. By the strong Markov
property of Y , it follows from (5.3) that

P
x(YSn

∈ D) ≤ cn , n ≥ 1 .

Let N := inf{n ≥ 1 : Sn = τY
D } with the usual convention inf ∅ = ∞. It follows from the last

displayed formula that P
x(N = ∞) = 0 for every x ∈ D. Hence, there are only finitely many

Sn which are less than τY
D . From Corollary 4.4, P

x(YστD
∈ ∂D) = P

x(YS1
∈ ∂D) = 0, and

therefore by iteration P
x(YSn

∈ ∂D) = 0 for all n ∈ N and all x ∈ D. Since τD
Y = Sn for some

n ∈ N, the claim of the proposition follows. ¤

If X is a Brownian motion in R
d, then it was shown in [10] that (5.2) holds true provided D

is a bounded domain satisfying the exterior cone condition.
The next result should be compared to Lemma 1 from [12].

Proposition 5.2. Suppose that (A2) is valid. Assume that X has continuous paths, Pt(x, ∂D) =
0 for all x ∈ D and all t > 0, b = 0, and supx∈D P

x(YστD
∈ D) < 1. Then P

x(YτY
D

∈ ∂D) = 0
for every x ∈ D.

Proof. Again note that by Corollary 4.4, P
x(YστD

∈ ∂D) = 0. Therefore, if YτY
D

∈ ∂D, then

στD
< τY

D , and hence YστD
∈ D. Let γ := supx∈D P

x(YτY
D

∈ ∂D). By the strong Markov
property of Y at στD

and the assumptions we have

P
x(YτY

D
∈ ∂D) = P

x(YτY
D

∈ ∂D, YστD
∈ D)

= P
x(PYστD (YτY

D
∈ ∂D), YστD

∈ D)

≤ γ P
x(YστD

∈ D).

By taking the supremum over x ∈ D, it follows that γ ≤ γ supx∈D P
x(YστD

∈ D). Therefore,
γ = 0. ¤
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[8] A. Miyake, The subordination of Lévy system for Markov processes, Proc. Japan Acad. 45(1969),
601–604. MR0260019

[9] M. Sharpe, General Theory of Markov Processes, Academic Press, San Diego, 1988. MR0958914
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