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Abstract
We give a new proof of a theorem by Le Gall & Paulin, showing that scaling limits of random
planar quadrangulations are homeomorphic to the 2-sphere. The main geometric tool is a
reinforcement of the notion of Gromov-Hausdorff convergence, called 1-regular convergence,
that preserves topological properties of metric surfaces.

1 Introduction

A planar map is a combinatorial embedding of a connected graph into the 2-dimensional sphere
S2. Formally, it is a class of proper drawings (without edge-crossings) of a connected graph
into S2, where two drawings are considered equivalent if there exists an orientation-preserving
homeomorphism of S2 that corresponds the two drawings. The connected components of the
complement of the drawing are called the faces of the map, and their degrees are the number
of edges that are incident to each of them.
Random planar maps have drawn much attention in the recent probability literature due
to mathematical physics motivations [2] and a powerful encoding of planar maps in terms of
labeled trees due to Schaeffer [15, 5]. In turn, scaling limits of labeled trees are well-understood
thanks to the works of Aldous, Le Gall and others [1, 8, 9]. Using this line of reasoning, many
results have been obtained on the geometric aspects of large random quadrangulations (where
faces all have degree 4), and other families of maps. Le Gall [10] showed in particular that
scaling limits of random quadrangulations are homeomorphic to the Brownian map introduced
by Marckert & Mokkadem [13], and Le Gall & Paulin [11] showed that the topology of the
latter is that of the 2-dimensional sphere, hence giving a mathematical content to the claim
made by physicists that summing over large random quadrangulations amounts to integrating
with respect to some measure over surfaces.
The aim of this note is to give an alternative proof of Le Gall & Paulin’s result. We strongly
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rely on the results established by Le Gall [10], but use very different methods from [11],
where the reasoning uses geodesic laminations and a theorem due to Moore on the topology
of quotients of the sphere. We feel that our approach is somewhat more economic, as it
only needs certain estimates from [10] and not the technical statements [11, Lemmas 3.1,
3.2] that are necessary to apply Moore’s theorem. On the other hand, this is at the cost of
checking that quadrangulations are close to being path metric spaces, which is quite intuitive
but needs justification (see definitions below). Our main geometric tool is a reinforcement of
Hausdorff convergence, called 1-regular convergence and introduced by Whyburn, and which
has the property of conserving the topology of surfaces. We will see that random planar
quadrangulations converge 1-regularly, therefore entailing that their limits are of the same
topological nature. In the case, considered in this paper, of surfaces with the topology of the
sphere, the 1-regularity property is equivalent to [11, Corollary 1], stating that there are no
small loops separating large random quadrangulations into two large parts. We prove this by
a direct argument rather than obtaining it as a consequence of the theorem.
The basic notations are the following. We let Qn be the set of rooted2 quadrangulations of
the sphere with n faces, which is a finite set of cardinality 2 · 3n(2n)!/(n!(n+ 2)!), see [5]. We
let qn be a random variable picked uniformly in Qn, and endow the set V (qn) of its vertices
with the usual graph distance dgr

n , i.e. dgr
n (x, y) is the length of a minimal (geodesic) chain of

edges going from x to y.
We briefly give the crucial definitions on the Gromov-Hausdorff topology, referring the inter-
ested reader to [4] for more details. The isometry class [X, d] of the metric space (X, d) is the
collection of all metric spaces isometric to (X, d). We let M be the set of isometry-equivalence
classes of compact metric spaces. The latter is endowed with the Gromov-Hausdorff distance
dGH, where dGH(X ,X ′) is defined as the least r > 0 such that there exist a metric space (Z, δ)
and subsets X,X ′ ⊂ Z such that [X, δ] = X , [X ′, δ] = X ′, and such that the Hausdorff distance
between X and X ′ in (Z, δ) is less than or equal to r. This turns M into a complete separable
metric space, see [6] (this article focuses on compact R-trees, which form a closed subspace of
M, but the proofs apply without change to M). Le Gall & Paulin’s result states as follows.

Theorem 1 ([11]). A limit in distribution of [V (qn), n−1/4dgr
n ] for the Gromov-Hausdorff

topology, where n→∞ along some subsequence, is homeomorphic to the 2-sphere.

Remarks. • One of the main open questions in the topic of scaling limits of random quadran-
gulations is to uniquely characterize the limit, i.e. to get rid of the somewhat annoying “along
some subsequence” in the previous statement.

• To be perfectly accurate, Le Gall & Paulin showed the same result for uniform 2k-angulations
(maps with degree-2k faces) with n faces. Our methods also apply in this setting (and possibly
to more general families of maps), but we will restrict ourselves to the case of quadrangulations
for the sake of brevity.

• We plan to provide a generalization of this result to higher genera (i.e. maps on orientable
surfaces other than the sphere).

As we are quite strongly relying on Le Gall’s results in [10], we will mainly focus on the
new aspects of our approach. As a consequence, this paper contains two statements whose
proofs will not be detailed (Proposition 2 and Lemma 2), because they are implicit in [10]
and follow directly from the arguments therein, and also because their accurate proof would

2Which means that one oriented edge of the quadrangulation is distinguished as the root
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need a space-consuming introduction to continuum tree and snake formalisms. Taking these
statements for granted, the proofs should in a large part be accessible to readers with no
particular acquaintance with continuum trees.

2 Gromov-Hausdorff convergence and regularity

We say that a metric space (X, d) is a path metric space if any two points x, y ∈ X can be
joined by a path isometric to a real segment, necessarily with length d(x, y). We let PM be the
set of isometry classes of compact path metric spaces, and the latter is a closed subspace of
(M, dGH), see [4, Theorem 7.5.1]. One of the main tools needed in this article is a notion that
reinforces the convergence in the metric space (PM, dGH), which was introduced by Whyburn
in 1935 and was extensively studied in the years 1940’s. Our main source is Begle [3].

Definition 1. Let (Xn, n ≥ 1) be a sequence of spaces in PM converging to a limit X . We
say that Xn converges 1-regularly to X if for every ε > 0, one can find δ,N > 0 such that for
all n ≥ N , every loop in Xn with diameter ≤ δ is homotopic to 0 in its ε-neighborhood.

There are a couple of slight differences between this definition and that in [3]. In the latter
reference, the setting is that Xn are compact subsets of a common compact space, converging
in the Hausdorff sense to a limiting set X. This is not restrictive as Gromov-Hausdorff con-
vergence entails Hausdorff convergence of representative spaces in a common compact space,
see for instance [7, Lemma A.1]. It is also assumed in the definition of 1-regular convergence
that for every ε > 0, there exists δ,N > 0 such that any two points that lie at distance ≤ δ are
in a connected subset of Xn of diameter ≤ ε, but this condition is tautologically satisfied for
path metric spaces. Last, the definition in [3] is stated in terms of homology, so our definition
in terms of homotopy is in fact stronger.
The following theorem is due to Whyburn, see [3, Theorem 6] and comments before.

Theorem 2. Let (Xn, n ≥ 1) be a sequence of elements of PM that are all homeomorphic
to S2. Assume that Xn converges to X for the Gromov-Hausdorff distance, where X is not
reduced to a point, and that the convergence is 1-regular. Then X is homeomorphic to S2 as
well.

3 Quadrangulations

Rooted quadrangulations are rooted maps whose faces all have degree 4, and their set is denoted
by Q :=

⋃
n≥1 Qn with the notations of the Introduction. For q ∈ Q we let V (q), E(q), F (q)

be the set of vertices, edges and faces of q, and denote by dgr
q the graph distance on V (q).

3.1 A metric surface representation

One of the issues that must be addressed in order to apply Theorem 2 is that the metric
space [V (q), dgr

q ] is not a surface, rather, it is a finite metric space. We take care of this by
constructing a particular graphical representative of q which is a path metric space whose
restriction to the vertices of the graph is isometric to (V (q), dgr

q ).
Let (Xf , df ), f ∈ F (q) be copies of the emptied unit cube “with bottom removed”

Xf = [0, 1]3 \
(
(0, 1)2 × [0, 1)

)
,
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endowed with the intrinsic metric df inherited from the Euclidean metric (the distance between
two points of Xf is the minimal Euclidean length of a path in Xf ). Obviously each (Xf , df ) is
a path metric space homeomorphic to a closed disk of R2. The boundary of each face f ∈ F (q),
when explored turning counterclockwise, is made of four oriented edges e1, e2, e3, e4, where the
labeling is arbitrary among the 4 possible labelings preserving the cyclic order. Then define

ce1(t) = (t, 0, 0)f , 0 ≤ t ≤ 1
ce2(t) = (1, t, 0)f , 0 ≤ t ≤ 1
ce3(t) = (1− t, 1, 0)f , 0 ≤ t ≤ 1
ce4(t) = (0, 1− t, 0)f , 0 ≤ t ≤ 1 .

In these notations, we keep the subscript f to differentiate points of different spaces Xf . In
this way, for every oriented edge e of the map q, we have defined a path ce which goes along
one of the four edges of the square ∂Xf = ([0, 1]2 \ (0, 1)2)× {0}, where f is the face located
to the left of e.
We define a relation ∼ on the disjoint union qf∈F (q)Xf , as the coarsest equivalence relation
such that for every oriented edge e of q, and every t ∈ [0, 1], we have ce(t) ∼ ce(1− t), where
e is e with reversed orientation. By identifying points of the same class, we glue the oriented
sides of the squares ∂Xf pairwise, in a way that is consistent with the map structure. More
precisely, the topological quotient Sq := qf∈F (q)Xf/ ∼ is a surface which has a 2-dimensional
cell complex structure, whose 1-skeleton Eq := qf∈F (q)∂Xf/ ∼ is a graph drawing of the map
q, with faces (2-cells) Xf \ ∂Xf . In particular, Sq is homeomorphic to S2 by [14, Lemma
3.1.4]. With an oriented edge e of q, one associates an edge of the graph drawing Eq in Sq,
more simply called an edge of Sq, made of the equivalence classes of points in ce([0, 1]) (or
ce([0, 1])). We also let Vq be the 0-skeleton of this complex, i.e. the vertices of the graph —
these are the equivalent classes of the corners of the squares ∂Xf . We call them the vertices
of Sq for simplicity.
We next endow the disjoint union qf∈F (q)Xf with the largest pseudo-metric Dq that is com-
patible with df , f ∈ F (q) and with ∼, in the sense that Dq(x, y) ≤ df (x, y) for x, y ∈ Xf ,
and Dq(x, y) = 0 for x ∼ y. Therefore, the function Dq : qf∈F (q)Xf × qf∈F (q)Xf → R+ is
compatible with the equivalence relation, and its quotient mapping dq defines a pseudo-metric
on the quotient space Sq.

Proposition 1. The space (Sq, dq) is a path metric space homeomorphic to S2. Moreover, the
restriction of Sq to the set Vq is isometric to (V (q), dgr

q ), and any geodesic path in Sq between
two elements of Vq is a concatenation of edges of Sq. Last,

dGH([V (q), dgr
q ], [Sq, dq]) ≤ 3 .

Proof. What we first have to check is that dq is a true metric on Sq, i.e. that it separates
points. To see this, we use the fact [4, Theorem 3.1.27] that Dq admits the constructive
expression:

Dq(a, b) = inf

{
n∑
i=0

d(xi, yi) : n ≥ 0, x0 = a, yn = b, yi ∼ xi+1

}
,

where we have set d(x, y) = df (x, y) if x, y ∈ Xf for some f , and d(x, y) = ∞ otherwise. It
follows that for a ∈ Xf \∂Xf , and for b 6= a, Dq(a, b) > min(d(a, b), df (a, ∂Xf )) > 0, so a and
b are separated.
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It remains to treat the case a ∈ ∂Xf , b ∈ ∂Xf ′ for some f, f ′. The crucial observation is that
a shortest path in Xf between two points of ∂Xf is entirely contained in ∂Xf . It is then a
simple exercise to check that for a, b in distinct classes, the distance Dq(a, b) will be larger than
the length of some fixed non-trivial path with values in Eq. More precisely, if (the classes of)
a, b belong to the same edge of Sq, then we can find representatives a′, b′ in the same Xf and
we will have Dq(a, b) ≥ df (a′, b′). If the class of a is not a vertex of Sq but that of b is, then
Dq(a, b) is at least equal to the distance of a ∈ Xf to the closest corner of the square ∂Xf .
Finally, if the (distinct) equivalence classes of a, b are both vertices, then Dq(a, b) ≥ 1. One
deduces that dq is a true distance on Sq, which makes it a path metric space by [4, Corollary
3.1.24]. Since Sq is a compact topological space, the metric space (Sq, dq) is homeomorphic
to S2 by [4, Exercise 3.1.14].
From the last paragraph’s observations, a shortest path between vertices of Sq takes all its
values in Eq. Since an edge of Sq is easily checked to have length 1 for the distance dq, such a
shortest path will have same length as a geodesic path for the (combinatorial) graph distance
between the two vertices. Hence (Vq, dq) is indeed isometric to (V (q), dgr

q ). The last statement
follows immediately from this and the fact that diam (Xf , df ) ≤ 3, entailing that Vq is 3-dense
in (Sq, dq), i.e. its 3-neighborhood in (Sq, dq) equals Sq. �

3.2 Tree encoding of quadrangulations

We briefly introduce the second main ingredient, the Schaeffer bijection (see e.g. [10] for
details). Let Tn be the set of pairs (t, l) where t is a rooted plane tree with n edges, and l
is a function from the set of vertices of t to {1, 2, . . .}, such that |l(x) − l(y)| ≤ 1 if x and y
are neighbors, and l(x0) = 1, where x0 is the root vertex of t. Then the set Qn is in one-to-
one correspondence with Tn. More precisely, this correspondence is such that given a graph
representation of q ∈ Qn on a surface, the corresponding (t, l) ∈ Tn can be realized as a graph
drawn on the same surface, whose vertices are V (t) = V (q) \ {x∗}, where x∗ is the origin of
the root edge of q, and l is the restriction to V (t) of the function l(x) = dgr

q (x, x∗), x ∈ V (q).
Moreover, the edges of t and q only intersect at vertices. The root vertex x0 of t is the tip of
the root edge of q, so it lies at dgr

q -distance 1 from x∗.
Let ξt(0) = x0. Recursively, given {ξt(0), . . . , ξt(i)}, let ξt(i + 1) be the first3 child of ξt(i)
not in {ξt(0), . . . , ξt(i)} if there is any, or the parent of ξt(i) otherwise. This procedure stops
at i = 2n, when we are back to the root and have explored all vertices of the tree. We let
Ci = dgr

t (ξt(i), ξt(0)), and Li = l(ξt(i)). Both C and L are extended by linear interpolation
between integer times into continuous functions, still called C,L, with duration 2n. The
process C, called the contour process, is the usual Dyck path encoding of the rooted tree t,
and the pair (C,L) determines (t, l) completely.

3.3 Estimates on the lengths of geodesics

Our last ingredient is a slight rewriting of the estimates of Le Gall [10] on distances in quad-
rangulations in terms of encoding processes. Precisely, let Cn, Ln be the contour and label
process of a uniform random element tn of Tn, and let qn be the quadrangulation that is the
image of this element by Schaeffer’s bijection. In particular, qn is a uniform random element
of Qn. Also, recall that a graphical representation Tn of tn can be drawn on the space Sqn

of
Sect. 3.1, in such a way that the vertices of Tn are Vqn \ {x∗n}, where x∗n is the root vertex of
qn, considered as an element of Vqn , and Tn intersects Eqn only at vertices. For simplicity we

3For the natural order inherited from the planar structure of t
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let Vn = V (qn), dgr
n = dgr

qn
, Sn = Sqn

, dn = dqn
and ξn(·) = ξtn

(·). We will also assimilate the
vertex ξn(i) of tn with a point of Tn ⊂ Sn, which is a vertex of Sn.
The main result of [9] says that the convergence in distribution in C([0, 1],R)2 holds:( 1√

2n
Cn2nt

)
0≤t≤1

,

((
9

8n

)1/4

Ln2nt

)
0≤t≤1

 (d)−→
n→∞

(e, Z) , (1)

where (e, Z) is the Brownian snake conditioned to be positive introduced by Le Gall & Weill
[12]. Moreover, it is shown in [10] that the laws of [Vn, n−1/4dgr

n ] form a relatively compact
family in the set of probability measures on M endowed with the weak topology. Since Vn is 3-
dense in Sn, the same holds for [Sn, n−1/4dn]. We argue as in [10], and assume by Skorokhod’s
theorem that the trees tn (hence also the quadrangulations qn) are defined on the same
probability space, on which we have, almost-surely

• [Sn, n−1/4dn] → [S, d], some random limiting space in PM, along some (fixed, nonran-
dom) subsequence nk →∞, and

• the convergence (1) holds a.s. along this subsequence.

From this point on, we will always assume that n is taken along this subsequence. In particular,
we have that diamS = limn n

−1/4diamSn ≥ limn supn−1/4Ln = (8/9)1/4 supZ > 0 a.s., so S
is not reduced to a point and Theorem 2 may be applied if we check that the convergence is
1-regular. We are going to rely on proposition 4.2 of [10], which can be rephrased as follows.

Proposition 2. The following property is true with probability 1. Let in, jn be integers such
that in/2n→ s, jn/2n→ t in [0, 1], where s < t satisfy

es = inf
s≤u≤t

eu < et .

Then it holds that
lim inf
n→∞

n−1/4dn(ξn(in), ξn(jn)) > 0 .

In [10], this proposition was a first step in the proof of the fact that a limit in distribution
of (Vn, dgr

n ) can be expressed as a quotient of the continuum tree with contour function e.
Proposition 2 says that two points of the latter such that one is an ancestor of the other are
not identified. Le Gall completed this study by exactly characterizing which are the points
that are identified.

4 Proof of Theorem 1

Lemma 1. Almost-surely, for every ε > 0, there exists a δ ∈ (0, ε) such that for n large
enough, any simple loop γn made of edges of Sn, with diameter ≤ n1/4δ, splits Sn in two
Jordan domains, one of which has diameter ≤ n1/4ε.

Proof. Assume that with positive probability, along some (random) subsequence, there exist
simple loops γn made of edges of Sn, with diameters o(n1/4) as n → ∞, such that the two
Jordan domains bounded by γn are of diameters ≥ n1/4ε, where ε > 0 is some fixed constant.
Reasoning on this event, let ln be the minimal label on γn, i.e. ln = dn(x∗n, γn). Then the
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labels of vertices that are in a connected component Dn of Sn \ γn not containing x∗n are all
larger than ln, since a geodesic from x∗n to any such vertex must pass through γn.
The intuitive idea of the proof is the following. Starting from the root of the tree Tn, follow
a simple path in Tn that enters in Dn at some stage. If all such paths remained in Dn after
entering, then all the descendents of the entrance vertices would have labels larger than ln,
which is close in the scale n1/4 to the label of the entrance vertex. The property of admitting
a subtree with labels all larger than that of its root is of of zero probability under the limiting
Brownian snake measure, see [10, Lemma 2.2] and Lemma 2 below. Thus, some of these paths
must go out of Dn after entering, but they can do it only by passing through γn again, which
entails that strict ancestors in Tn will be at distance o(n1/4). This is prohibited by Proposition
2. This reasoning is summed up in Figure 1, which gathers some of the notations to come.

a′n

Dn
yn

bn

an

xn

Figure 1: Illustration of the proof. The surface Sn is depicted as a sphere with a bottleneck
circled by γn (thick line). The root edge of the quadrangulation is drawn at the bottom, and
the tree Tn originates from its tip. In dashed lines are represented the two branches of Tn that
are useful in the proof: one enters the component Dn, and the other goes out after entering,
identifying strict ancestors in the limit

We proceed to the rigorous proof. Let yn be a vertex in Dn at maximal distance from γn.
Since every point in Sn is at distance at most 3 from some vertex, this shows diam (Dn) ≤
diam (γn) + 2dn(yn, γn) + 6. Thus dn(yn, γn) ≥ (ε/2 + o(1))n1/4. Since every path in Sn from
yn to x∗n has to cross γn, we obtain that l(yn) = dn(yn, x∗n) ≥ dn(yn, γn) + dn(γn, x∗n), so that

l(yn) ≥ ln + n1/4ε/4 for large enough n . (2)
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We let xn be the highest ancestor of yn in Tn lying at dn-distance ≤ 1 from γn, so that
l(xn) = ln + o(n1/4) and all vertices in the ancestral line from xn to yn are in Dn. Then, we
can find integers in < jn such that xn = ξn(in), yn = ξn(jn), so that l(xn) = Lnin , l(yn) = Lnjn .
Up to further extraction, we may and will assume that

(9/8n)1/4ln → l , in/2n→ s , jn/2n→ t , s ≤ t . (3)

Since xn ≺ yn, we have Cnin = infin≤r≤jn C
n
r , as a basic property of Dyck path encodings of

trees. Using (1), we have es = infu∈[s,t] eu. More precisely, by (1), (2) and (3), we have Zs = l

and Zt ≥ l + (9/8)1/4ε/4, which implies s < t, and es < et (outside of a set of probability
zero). In terms of the continuum tree admitting e as contour process, this amounts to the fact
that s, t encode two vertices such that the first is an ancestor of the second, and that are not
the same because the snake Z takes distinct values at these points. Now, we need the following
statement:

Lemma 2. Assume that s > 0. Outside of a set of probability 0, there exist η > 0 and vertices
an, bn of Tn such that xn ≺ bn ≺ yn and bn ≺ an, where ≺ denotes “is an ancestor of”, with
labels satisfying

l(bn) > l(xn) + ηn1/4 ,

and
l(an) ≤ l(xn)− ηn1/4 .

In words, there exist subtrees of Tn branching on a vertex bn of the ancestral line from xn to
yn that attain labels that are significantly smaller (in the scale n1/4) than l(yn), but such that
l(bn) is significantly larger than l(xn).

Proof (sketch). Standard properties of Dyck paths encodings imply that xn is an ancestor
in Tn of ξn(i) for every integer i ∈ [in, jn]. Let s′ = sup{u ∈ [s, t] : es′ = es} ≤ t. Then
infu∈[s,s′] eu = es = e

′
s, which yields Zs = Zs′ , by a basic property of the label process Z (see

[12] for instance). Thus s′ < t and

es′ < eu for every u ∈ (s′, t] . (4)

By [10, Lemma 2.2], this implies that for some α > 0, and with full probability,

inf
u∈[s′,s′+α]

Zu < Zs′ = l . (5)

We take integers i′n ∈ [in, jn] so that i′n/2n → s′ and Cni ≥ Cni′n for all i ∈ [i′n, jn]. Then
x′n := ξn(i′n) satisfies xn ≺ x′n ≺ yn.
Finally, if mn ∈ [i′n, jn] is such that x′n ≺ ξn(mn) ≺ yn, then l(ξn(mn)) = Lnmn

≥ ln, because
ξn(mn) lies in Dn. If moreover mn/2n → u ∈ [s′, t], we obtain that (9/8n)1/4Lnmn

→ Zu >

Zs′ = l. Thus Zu ≥ Zs′ = l for every u ∈ [s′, t] such that eu = infv∈[u,t] ev, a continuous
counterpart for the fact that all labels on the ancestral line from x′n to yn are larger than
l(x′n) + o(n1/4) = (8n/9)1/4(l + o(1)).
At this point, the conclusion is obtained from this last fact and (4), (5) by reasoning along the
exact same lines as in the proof of [10, Proposition 4.2 pp. 649-650]. The inequalities (15) and
(17) therein give the existence of η > 0, an, bn with x′n ≺ bn ≺ yn and bn ≺ an, satisfying the
stated inequalities. This implies the result since xn ≺ x′n. �
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Now back to the proof of Lemma 1. Take kn, rn with in < kn < rn < jn, such that ξn(kn) =
an, ξn(rn) = bn. Because of the property of the label of an, it does not lie in Dn, however, its
ancestor bn does because it is on the ancestral path from xn to yn. Hence some ancestor of an
must belong to γn. Let a′n be the highest in the tree, and take k′n ∈ (kn, rn) with ξn(k′n) = a′n.
Since xn is at distance at most 1 from γn, we obtain that dn(a′n, xn) = o(n1/4). However, if
k′n/2n → v, rn/2n → u, taking again an extraction if necessary, then we have es < eu ≤ ev

because of the ancestral relations Cnin ≤ C
n
rn
≤ Cnk′

n
, and the fact

Zs = lim
n→∞

(9/8n)1/4Lnin = l < l + (9/8)1/4η ≤ lim
n→∞

(9/8n)1/4Lnrn
= Zu .

Now the statements dn(a′n, xn) = o(n1/4) and es < ev together hold with zero probability by
Proposition 2, a contradiction.
It remains to rule out the possibility that s = 0, i.e. that γn lies at distance o(n1/4) from x∗n. To
see that this is not possible, argue as in the beginning of the proof and take xn, yn respectively
in the two disjoint connected components of Sn \ γn, and with labels l(xn) ∧ l(yn) ≥ n1/4ε/4.
By symmetry, assume that xn = ξn(in) and yn = ξn(jn) with in < jn. Now take the least
integer kn ∈ [in, jn] such that ξn(k) belongs to γn. Such a k has to exist because any path
from xn to yn in Sn must pass through γn. Then Lnkn

= l(ξn(kn)) = o(n1/4). Up to extraction,
assume in/2n → s, kn/2n → u, jn/2n → t. Then Zu = 0 < Zs ∧ Zt, so that s < u < t, and
this contradicts the fact that Z is a.s. strictly positive on (0, 1), which is a consequence of [12,
Proposition 2.5]. �

We claim that Lemma 1 is enough to obtain 1-regularity of the convergence, and hence to
conclude by Theorem 2 that the limit (S, d) is a sphere. First choose ε < diamS/3 to avoid
trivialities. Let γn be a loop in Sn with diameter ≤ n1/4δ. Consider the union of the closures
of faces of Sn that are visited by γn. The boundary of this union is made of pairwise disjoint
simple loops L made of edges of Sn. If x, y are elements in this family of faces, and since a
face of Sn has diameter less than 3, there exist points x′, y′ of γn at distance at most 3 from
x, y respectively, so that the diameters of the loops in L all are ≤ n1/4δ + 6.
By the Jordan Curve Theorem, each of these loops splits Sn into two simply connected compo-
nents. By definition, one of these two components contains γn entirely. By Lemma 1, one of the
two components has diameter ≤ n1/4ε. If we show that the last two properties hold simultane-
ously for one of the two components associated with some loop in L, then obviously, γn will be
homotopic to 0 in its ε-neighborhood in (Sn, n−1/4dn). So assume the contrary: the component
not containing γn associated with every loop of L is of diameter ≤ n1/4ε. If this holds, then any
point in Sn must be at distance at most n1/4ε+ 3 from some point in γn. Take x, y such that
dn(x, y) = diam (Sn). Then there exist points x′, y′ in γn at distance at most n1/4ε+ 3 respec-
tively from x, y, and we conclude that dn(x′, y′) ≥ diam (Sn)−6−2n1/4ε > n1/4δ ≥ diam (γn)
for n large enough by our choice of ε, a contradiction.

Acknowledgments. Thanks to Pierre Pansu for an interesting discussion on regular conver-
gence, and to an anonymous referee, whose careful reading allowed to improve the exposition
and fix some inaccuracies of an earlier version of the present paper.
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