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Abstract
This paper presents two results on sample paths for the Yule process: one fluid limit theorem
and one sample path large deviation result. The main interest is to understand the way
large deviation occurs in the case of non-homogeneous processes. There are indeed two new
phenomena. First there is no “typical” speed of large deviation. Second, the large deviation
event is concentrated on a finite interval of time.

1 Introduction

1.1 The model

This paper deals with asymptotics for the Yule process which is defined as follows: {Yt(n), t ≥
0} is a pure birth Markov process with initial state Y0(n) = n and birth rate λYt(n) at time t.
When n is not specified, Yt

def= Yt(1).
The Yule process is a model for many phenomenon and pertains to several queuing systems
and branching processes. For example, Yt represents the total number of nodes for random
trees without deletions: the tree begins with a single root and then new nodes arrive at all
nodes with intensity λ. For a classical introduction to branching processes, see [AN72].
The main motivation of this paper was to understand the asymptotic behavior of random
trees as in [FKL04]. However, asymptotics of non-homogeneous processes is quite difficult
and we want to understand first how simple processes behave. The fluid limits and large
deviations asymptotics presented here show new phenomenon that we believe are shared by
many processes similar to the Yule process, including random trees. For a presentation of large
deviations we refer to [DZ98] and references therein.
A great amount of research has been done around the Yule process, mostly related to Binary
Search Trees (BST). For example, the martingale defined in (8) can be linked to the so-called
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BST martingale (see [RC04]). Some references are provided at the end of the paper. However,
we analyze specific features which, up to our knowledge, are not discussed in the literature.

The peculiarities of the large deviations of the Yule process are, first that there is no “typical”
speed of large deviation, i.e. there is no “natural” scaling such as Euler’s scaling in queuing
networks, but the probability decay rate has the same form whatever the speed of divergence
from the standard behavior is. Second phenomenon, the large deviation event is not built on
the whole interval [0, T ] for large T by “twisting” constantly the transition rates (e.g. as for
queueing networks) but the process is “twisted” on a finite interval of time at the beginning,
and then continues quite“normally”. It means this deformation is concentrated on an infinitely
small proportion of the transitions, yet on an infinite number of transitions!

1.2 Some results on the Yule process

The distribution of the Yule process Yt is a geometric one

IP [Yt = k] = e−λt
(
1− e−λt

)k−1
, if k ≥ 1. (1)

The distribution of Yt(n) is equal in law to the sum of n independent Yule processes Yt(1) so
that the distribution is a negative binomial

IP [Yt(n) = k] =
(

n− 1
k − 1

)
e−nλt

(
1− e−λt

)k−1
, if k ≥ n. (2)

Hence there is no major challenge in the calculation of the large deviations decay rate for the
Yule process. Indeed, the probability to grow faster than “usual” is easily calculated for large
t, e.g.

IP
[
Yt ≥ eaλt

]
' exp{−e(a−1)λt} ∀a > 0, (3)

hence the decay rate is exp{(a− 1)λt}, far greater (for a > 1) than the usual linear one. Now,
this calculation does not give any insight on the way this deviation occurs. This is what we
intend to show in this paper.

1.3 Large deviations behavior

The first step to large deviation is to define a typical path, from which large deviations are
calculated. Such a typical path is properly defined using a convenient scaling and fluid limits.
Proposition 1 shows that the right scaling is n−1(Yt(n) − n) (that is not the usual Euler’s
scaling). The scaled process converges for large n to the deterministic path t → eλt − 1: this
is the typical path.
Using a heuristic, it happens that the most probable path for Yt(1) to go from 1 to Ceλt is
t → C(eλt − 1). Using the fluid limit result, we are able to derive the large deviation lower
bound. The upper bound is also calculated and is the same: decay rate is exp(C). This is
the main result of the paper, Proposition 2. However, this is not a regular sample path large
deviations theorem since we only have the large deviations bounds for a few trajectories.
Now, note that the upper bound for the probability to reach CeλT at time T can also be
obtaind using equation (3): take C = exp{(a − 1)λT}. Since the decay rate is the same, our
few trajectories are in fact optimal trajectories (we have not proved they are unique but they
are) and we have found the large deviation behavior for the Yule process Yt(1) to reach CeλT

at time T .
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Usually the large deviations events are calculated for C = C(T ) linear in T , corresponding to
linear typical paths. Here the only condition for C(T ) is to go to infinity with T . This is why
we claim there is no typical speed.
Furthermore, we will see that in the large deviation event {YT ≥ C exp(λT )} the process
behaves like a Yule process with individual reproduction rate λ and immigration rate C.
Comparing the immigration rate with the individual reproduction rate yields the following
conclusion. The large deviation is formed by two different periods. A small “twisted” period
[0, T ′] when there is a deviant behiavior: the process grows from 1 to C. Then a “normal”
period [T ′, T ] where the process continues with an almost unmodified behavior. Since T ′ does
not depend on T nor on C, the first period is really smaller than the second one.

The structure of the report is the following. A fluid limit theorem is proved in Section 2 and
large deviations asymptotics are proved in Section 3. Some more detailed calculations (e.g.
how one can guess heuristically the change of measure or detailed calculations for bounds) are
presented in [dLF05].

2 Fluid limit

The Yule process can be considered as the time-reversed of the M/M/∞ queue with no en-
trance. Therefore many tools are similar. First, it is easily checked that, for all c > −1

h(x, t) = (1 + ce−λt)−x

is space-time harmonic w.r.t. the Yule process generator. The decomposition

(1 + w)−x =
∞∑

n=0

(−1)n

n!
(x + n− 1)!

(x− 1)!
wn

yields the martingales e−nλtYt(Yt + 1) . . . (Yt + n − 1). Most useful are the martingales for
n = 1 and n = 2:

Yte
−λt, (4)

Yt(Yt + 1)e−2λt. (5)

It is easily checked that these martingales are uniformly bounded, hence converge a.s. and in
L1. It is well known that the first one converges to an exponential r.v. with parameter 1 if
Y0 = 1. Since the law of Yt(n) is equal to the sum of n independent Yule processes beginning
at 0, the martingale Yt(n)e−λt converges to the sum of n i.i.d. exponential r.v. with parameter
1.
The fluid limit is obtained by applying Doob’s inequality to the martingale Yt(n)e−λt − n.

IP
[
sup
t≤T

|Yt(n)e−λt − n| ≥ nα

]
≤

IE
[
|YT (n)e−λT − n|

]
nα

.

Using IE [|X|] ≤
√

IE [X2] and the martingales (4) and (5), one gets

IP
[
sup
t≤T

|Yt(n)e−λt − n| ≥ nα

]
≤ n

1
2−α. (6)
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This inequality is stronger than the usual fluid limit formulation, where one classically chooses
α = 1. Of course this does not look like classical fluid limits, since the scaling is not Euler’s
scaling, but this is precisely what is necessary for the large deviations asymptotics.
Moreover, one can show that the scaled process Zt

def= n−1(Yt(n) − n) converges to the fluid
equation y′ = λ(1 + y) with initial condition y(0) = 0. The solution is y(t) = eλt − 1. On a
fluid limit scale, we should then have Yt(n) ' n(eλt − 1) + n = neλt. This is precisely what
states Proposition 1.

Proposition 1 (Fluid limit) For all α > 1/2, for all T ≥ 0,

lim
n→∞

IP
[
sup
t≤T

|Yt(n)e−λt − n| ≥ nα

]
= 0.

3 Large deviations

3.1 Change of Measure

Following the heuristics of [dLF05, Appendix A], for a given constant C ≥ 0, we set

f(n) def=
n∑

i=1

log
i + C

i
, ∀n ≥ 0. (7)

and we define the process
Mt

def= exp {f(Yt − 1)− λCt} . (8)

One easily checks that Mt is a martingale:

d
ds

IE [Mt+s|Ft] =
(
λYt

(
ef(Yt)−f(Yt−1) − 1

)
− λC

)
Mt = 0.

It is then classical to define a new probability measure, the “twisted” probability, by

IP∗ [A] def= IE
[
1I{A}Mt

]
, ∀A ∈ Ft.

Under this twisted probability, the process Yt is still Markovian with intensity λ(C + Yt): for
any bounded function h,

d
ds

IE∗ [h(Yt+s)|Ft] = M−1
t

d
ds

IE [h(Yt+sMt+s)|Ft]

= λYt

(
ef(Yt+1)−f(Yt)h(Yt + 1)− h(Yt)

)
− λCh(Yt)

= λ(C + Yt) (h(Yt + 1)− h(Yt))) .

This means that, under IP∗, Yt(1) has the same law as Yt(C + 1) − C under IP. As will be
useful later, this yields, combining with the fluid inequality (6) where n = C + 1:

IP∗ [Eld(T,C, α)] ≥ 1− (C + 1)
1
2−α (9)

denoting, for the sake of simplicity, the large deviation event by

Eld(T,C, α) def=
{

sup
t≤T

|(Yt(1) + C)e−λt − C − 1| < (C + 1)α

}
(10)
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3.2 Lower bound

Since Mt > 0 a.s, IP and IP∗ are reciprocally absolutely continuous and IP [A] = IE∗
[
1I{A}M−1

t

]
for all A ∈ Ft. Therefore we derive, for any integer C ≥ 0 and any real T > 0

IP [Eld(T,C, α)] = IE∗
[
1I{Eld(T,C,α)}M

−1
T

]
(11)

≥ IP∗ [Eld(T,C, α)] inf
Eld(T,C,α)

M−1
T

The first term is bounded by (9). Bounds on the second term, the infimum, come from the
bounding of f :

C log
n + C

C + 1
+ C − C2

2n
− log(C + 1) ≤ f(n) ≤ C log

n + C + 1
C

+ C. (12)

Indeed, on the event Eld(T,C, α),

(C + 1− (C + 1)α)eλT − C < YT < (C + 1 + (C + 1)α)eλT − C (13)

Therefore, combining inequalities (13) and (12) yields

inf
Eld(T,C,α)

M−1
T ≥ exp {−(C + 1)− (C + 1)α} (14)

Finally we get the large deviations lower bound

log IP [Eld(T,C, α)] ≥ −(C + 1)− (C + 1)α + log
(
1− (C + 1)

1
2−α

)
. (15)

3.3 Upper bound

The large deviations upper bound is obtained by reversing the equation (11). Since the prob-
ability is bounded by 1:

IP [Eld(T,C, α)] ≥ sup
Eld(T,C,α)

M−1
T (16)

Combining, as for the lower bound, (13) with inequalities (12) yields

f(YT − 1) ≥ λCT + C −R1 (17)

with the rest verifying

R1(T,C, α) ≤ Cα + Ce−λT + log(C + 1) (18)

assuming Cα−1 ≤ 1/4 and e−λT ≤ 1/4 which will be the case since C and T will be taken
indefinitely large. Under this condition, we get the large deviations upper bound

log IP [Eld(T,C, α)] ≤ −C + Cα + Ce−λT + log(C + 1). (19)

3.4 Large deviations

Gathering bounds (15) and (19), one gets the large deviations asymptotics. More precisely,
for all C : R+ 7→ Z+ tending to infinity, for all 1/2 < α < 1,

lim
T→∞

1
C(T )

log IP [Eld(T,C(T ), α)] = −1. (20)
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One can simplify the event Eld(T,C, α) (by replacing C+1 by C) and keep the same limit. The
modified lower bound is obtained by changing α and the upper bound by directly modifying the
bounds (16)–(19). Moreover, we can easily relax the condition for C to be integer. Therefore
we get the following proposition.

Proposition 2 (Large deviations) For all C : R+ 7→ R+ tending to infinity, for all 1/2 <
α < 1,

lim
T→∞

1
C(T )

log IP
[
sup
t≤T

|(Yt(1) + C(T ))e−λt − C(T )| < Cα(T )
]

= −1.

What we gained with this demonstration is first an explanation of the form of this relationship
between the speed of divergence C(T ) and the exponential decrease rate exp(C(T )) for any
C(T ) tending to infinity, and second we know the way this large deviation event occurs by
mean of the change of measure. In the present case, we could even state the convergence of the
conditional probabilities, but the proof would lengthen the paper and does not bring further
substantial understanding of the behavior of the process.
Going into details, the change of measure produced by the martingale defined in (8) shows
the typical behavior of such a large deviation event. The transition rate accelerates from nλ
in state n to nλ + C: this is the dynamics of a Yule process with individual reproduction rate
λ and immigration rate C. Recall that n evolves from 1 to CeλT . For small n (n � C), this
is a very large deformation (immigration is dominant) and the “cost” (i.e. the contribution
of this transition to the decay rate C) to do so is very high (the order is log C). For large n
(n � C: reproduction is dominant), the cost is almost null (the order is (Cn−1)2/2). These
approximations can be derived from [dLF05, equation (A.8)].
Therefore, there is only a small fraction of transitions that are significantly changed: taking
into account the C first ones, this make a proportion e−λT that is asymptotically null. Turning
this proportion of number into proportion of time, one calculates easily that the fluid limit
crosses the level C at time T ′ = λ−1 log 2 (the solution of C(eλt − 1) = C). This is a fixed
time: T ′ does not depend on C nor on T . Hence we can shortly describe the large deviations
behavior as in the introduction: a fixed twisted period and a long normal period.
This behavior is understandable if we consider the Yule process as the number of nodes in a
tree. It is easier to accelerate the replication of a small number of nodes than a large number.
Hence the global acceleration is concentrated on the beginning, when there are few nodes.
This explanation is meaningless mathematically (there is no “global acceleration”) but this is
the idea.
We analyzed only the acceleration case. When coming to the deceleration (C → 0), the
behavior is even simpler: the first transition is stopped as long as necessary, then the process
goes on almost normally. The same explanation as before prevails: it is easier to stop one node
than to stop several.
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