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Abstract

In a recent work, Boyd, Diaconis and Xiao introduced a semidefinite programming approach
for computing the fastest mixing Markov chain on a graph of allowed transitions, given a
target stationary distribution. In this paper, we show that standard mixing time analysis
techniques—variational characterizations, conductance, canonical paths—can be used to give
simple, nontrivial lower and upper bounds on the fastest mixing time. To test the applicability
of this idea, we consider several detailed examples including the Glauber dynamics of the Ising
model.

1 Introduction

Sampling from a complex collection of objects is a basic procedure in physics, statistics and
computer science. A widely used technique, known as Markov chain Monte Carlo (MCMC),
consists in designing a Markov chain on the set to be sampled such that the law of the chain
converges to the desired distribution. The chain is run long enough for a sample to be picked
from a good approximation to the stationary distribution—a process known as mixing. The
time one has to wait in order for this approximation to be satisfactory can be measured by
various quantities [AF04], including the so-called relaxation time. In practice, it is crucial that
this parameter be small. See e.g. [J03] for a survey of theoretical results on MCMC.

One way to picture a Markov chain (MC) on a combinatorial structure is to think of the states
as nodes and of the transitions as edges. For a chain to be implementable, the neighborhood
structure surrounding each node must be relatively simple. Under this constraint, one has to
choose a set of allowed transitions that is most likely to produce fast convergence. This is
usually done in a heuristic manner.

Once a graph of transitions has been chosen, there is still room for improvement. Indeed, one
has some freedom in assigning transition probabilities to each edge under the requirement,
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however, that the stationary distribution be of the right form. It turns out that choosing
appropriately those probabilities can lead to a sizable decrease in the relaxation time.

In a seminal work, Boyd et al. [BDX04] recently showed that minimizing the relaxation time
of an MC on a graph of transitions with a given stationary distribution can be formulated as a
semidefinite program (SDP), a well-known generalization of linear programming to matrices.
See e.g. [BV03]. This formulation enables the numerical computation of the fastest mixing
chain on a graph. Boyd et al. [BDX04] solved numerically several examples.

A further benefit of this approach is that it provides a tight lower bound on the optimal
relaxation time through the dual of the SDP. In a follow-up paper, Boyd et al. [BD+04b] used
this bound to exhibit an analytic expression for the fastest chain—and prove its optimality—
when the graph is made of a simple path under uniform distribution.

However, only rather small graphs can be studied thoroughly in the SDP formulation because
numerical solvers run in time polynomial in the size of the graph; in practice, chains have
prohibitively large state spaces. As for the dual, it is potentially useful from a theoretical
point of view even for complex chains, but the lack of an intuitive interpretation makes it
difficult to apply.

In this paper, we propose a different approach arising from the following observation. One can
obtain lower and upper bounds on the relaxation time of completely specified chains by way
of well-known techniques such as path coupling, conductance, canonical paths etc. [J03]. For-
mally, those bounds are parameterized by transition probabilities. This prompts the questions:
can one optimize those bounds as functions of the transition probabilities, and how close to
optimum can one get by doing so?

1.1 Our results

We show through general results and examples that, for well-structured problems, the above
scheme can be implemented, and that it is capable of providing nontrivial, sharp bounds.

On the lower bound side, we use a standard extremal characterization to derive a general lower
bound which has a simple geometrical interpretation. It consists in embedding the nodes of the
graph into an Euclidean space so as to stretch the nodes as much as possible under constraints
on the distance separating nodes connected by an edge. We show through convex optimization
arguments that it is actually tight. The simple interpretation makes it easier to apply than
previous bounds. Our result is similar to a bound obtained recently by Sun et al. [SB+04] in
a different context. We apply our bound to several examples obtaining close-to-optimal lower
bounds.

On the upper bound side, it seems much harder to derive useful, general results. A trivial bound
can be obtained by considering any chain on the graph, e.g. a canonical Metropolis-Hastings
chain, and computing an upper bound on its relaxation time. But as was shown by Boyd
et al. [BDX04], there can be a large (unbounded) gap between standard and optimal chains.
Instead, we show through examples that one can obtain almost tight bounds by studying closely
standard canonical paths arguments and minimizing the bound over transition probabilities.
Put differently, our technique consists in identifying bottleneck edges and increasing the flow
on them. The fact that this scheme can work on nontrivial Markov chains is not obvious a
priori, and this constitutes our main result in the upper bound case. Moreover, this technique
is constructive and it allows to design a chain which might be close to the fastest one. Our
scheme is likely to work only on well-structured problems but, even in that case, there is no
other non-numerical approach known.



284 Electronic Communications in Probability

Our main example is the Glauber dynamics of the Ising model, a problem which we believe is
beyond the reach of the numerical SDP approach. In the case of the tree, by a judicious choice
of rates at which nodes are updated, we improve the relaxation time by an “optimal” factor.

1.2 Organization of the paper

We begin in Section 2 with a description of the setting and approach of [BDX04]. We introduce
our main techniques in Sections 3 and 4. Section 5 is devoted to optimal rates of the Glauber
dynamics of the Ising model.

2 Preliminaries

2.1 Setting

We are given an undirected graph G = (V, E) and a probability distribution π defined on the
nodes of G. We seek to sample from π and do so by running a reversible Markov chain (Xt)t≥0
on the state space V with stationary distribution π, i.e. if P = (P (i, j))i,j∈V denotes the
transition matrix of (Xt)t≥0, we must have π(i)P (i, j) = π(j)P (j, i), ∀i, j ∈ V. We also require
that the only transitions allowed are those given by edges of G, i.e. P (i, j) = 0, ∀(i, j) /∈ E .
For convenience, we assume that all self-loops are present (see below).

The time to reach stationarity is governed by the second largest eigenvalue of P . More precisely,
let n = |V| and 1 = λ1(P ) > λ2(P ) ≥ · · · ≥ λn(P ) ≥ −1 be the eigenvalues of P . We
measure the speed at which stationarity is reached by the relaxation time τ2(P ) = 1

1−λ2(P )
.

See [AF04] for a thorough discussion of other related quantities. The smaller λ2(P )—and
therefore τ2(P )—is, the faster (Xt) approaches π. Given this observation, it is natural to
define the fastest mixing chain on (G, π) as the solution to the optimization problem

min
P≥0

λ2(P )

s.t. P (i, j) = 0, ∀(i, j) /∈ E
∑

j∈V P (i, j) = 1, ∀i ∈ V
π(i)P (i, j) = π(j)P (j, i), ∀(i, j) ∈ E .

(1)

In the remainder of this paper, we save the notation P ? for a solution of (1)—which might
not be unique—and let λ?2 = λ2(P

?), and τ?2 = τ2(P
?). Note that our definition of fastest

mixing differs slightly from that in [BDX04]. Here, we take the usual approach of ignoring
the smallest eigenvalue by considering the possibility of adding a constant probability to each
self-loop afterwards in order to bound the smallest eigenvalue away from −1.

2.2 Fastest mixing via SDP

A crucial observation in [BDX04] is that (1) is actually a semidefinite program (SDP). See
e.g. [BV03] for background on convex and semidefinite programming. This formulation makes
possible the numerical computation of optimal transition matrices. However, since the running
time of SDP algorithms is polynomial in the size of the state space, this allows only to study
rather small graphs—where sampling could possibly be performed using simpler techniques.
One idea put forward by Boyd et al. [BDX04] is to solve the SDP on small instances of large
combinatorial problems and try and guess the structure of the optimal matrix from the results.



Bounding Fastest Mixing 285

This is the approach used in [BD+04b] to identify the optimal chain on the path. This type
of exact result might be hard to obtain in most cases.

From a theoretical point of view, an interesting consequence of the SDP formulation is the
existence of a dual which can be used to give lower bounds on the optimal relaxation time.
Let ‖Y ‖∗ be the sum of the singular values of Y . Then, in the case of the uniform stationary
distribution, the dual (of the more general version taking into account the smallest eigenvalue)
has the form [BDX04]

max
z,Y

n
∑

i=1

z(i)

s.t. z(i) + z(j) ≤ 2Y (i, j), ∀(i, j) ∈ E
∑

j∈V Y (i, j) = 0, ∀i ∈ V
Y = Y T , ‖Y ‖∗ ≤ 1.

(2)

Any feasible solution of (2) provides a lower bound on the best relaxation time achievable on
(G, π). Moreover, strong duality holds. In [BD+04b], this is used to prove optimality of a
conjectured fastest chain when the graph is a path. Note that giving an intuitive interpreta-
tion of this optimization problem is not straightforward. This is a potential obstacle to the
construction of good feasible solutions.

3 Lower bounds

In this section, we discuss general lower bounds on fastest mixing that can be derived from
common techniques for completely specified chains. We apply our bounds to several examples.

3.1 Variational characterization

The standard lower bound for completely specified chains is based on a variational charac-
terization of the second eigenvalue of the transition matrix. See e.g. [AF04]. To reveal the
geometric flavor of our result, we will consider a more general bound. Let ψ1, . . . , ψn : V → R
be functions with 0 expectation under π, i.e.

∑

i∈V π(i)ψl(i) = 0 for all l (where, as before, n
is the number of nodes). For all i ∈ V, think of Ψ(i) = (ψ1(i), . . . , ψn(i)) as a vector associ-
ated to node i. Therefore, Ψ(1), . . . ,Ψ(n) is an embedding of the graph into Rn. For each l
separately, we have the inequality

(1− λ2(P ))
∑

k∈V
π(k)ψ2l (k) ≤

∑

(i,j)∈E
(ψl(i)− ψl(j))

2Q(i, j),

where Q(i, j) = π(i)P (i, j). Summing over l we get the bound

1− λ2(P ) ≤
∑

(i,j)∈E ‖Ψ(i)−Ψ(j)‖2Q(i, j)
∑

k∈V π(k)‖Ψ(k)‖2 ,

where ‖ · ‖ denotes the Euclidean norm in Rn. To turn the r.h.s. into a bound on 1− λ?2, we
maximize over Q. But note that, for ψ1, . . . , ψn fixed, the r.h.s. is linear in Q so this can be
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expressed as the linear program

1− λ?2 ≤ max
Q≥0

∑

(i,j)∈E

‖Ψ(i)−Ψ(j)‖2
∑

k∈V π(k)‖Ψ(k)‖2Q(i, j)

s.t. Q(i, j) = 0, ∀(i, j) /∈ E
∑

j∈V Q(i, j) = π(i), ∀i ∈ V
Q(i, j) = Q(j, i), ∀(i, j) ∈ E .

(3)

The dual of this linear program is2

1− λ?2 ≤ min
z

n
∑

i=1

π(i)z(i)

s.t. z(i) + z(j) ≥ ‖Ψ(i)−Ψ(j)‖2
∑

k∈V π(k)‖Ψ(k)‖2 , ∀(i, j) ∈ E .
(4)

where variable z(i) ∈ R is dual to the equality constraint
∑

j∈V Q(i, j) = π(i). Note the
similarity with (2). Note also that we can now minimize over ψ1, . . . , ψn as well to get the best
bound possible. Make the change of variables w(i) = z(i)

∑

k∈V π(k)‖Ψ(k)‖2 for all i ∈ E ,
assume w.l.o.g. that

∑

i∈V π(i)w(i) = 1 and take the multiplicative inverse of the objective
function (one can always renormalize the Ψ’s by

∑

i∈V π(i)w(i); in particular, one can check
that if π(k) > 0 for all k and the Ψ(k)’s are not all equal to 0, then the inequalities in (4)
ensure

∑

i∈V π(i)w(i) > 0). This finally leads to the lower bound implicit in:

Proposition 1 The optimal relaxation time on (G, π) admits the following characterization

τ?2 = max
w,Ψ(1),...,Ψ(n)

∑

k∈V
π(k)‖Ψ(k)‖2

s.t. ‖Ψ(i)−Ψ(j)‖2 ≤ w(i) + w(j), ∀(i, j) ∈ E
∑n

k=1 π(k)Ψ(k) = 0
∑n

i=1 π(i)w(i) = 1.

(5)

In particular, any feasible solution to the optimization problem above yields a lower bound on
τ?2 .

Informally, to obtain a lower bound on τ ?2 we seek to embed the graph into Rn so as to “spread”
the nodes as much as possible under constraints over the distances separating nodes connected
by edges. The w’s give some slack in choosing which edges are bound by stronger or weaker
constraints. See the examples. This bound is similar to that obtained recently by [SB+04] in
a continuous-time context. There, however, the r.h.s. in the inter-node distance constraint is
a fixed weight dij (instead of w(i) + w(j)), giving rise to a quite different problem.

Proof (of tightness): This follows from convex optimization duality. We refer the reader
to [BV03] for background on convex programming. We go back to formulation (4). Note
that we can assume w.l.o.g. that

∑

k∈V π(k)‖Ψ(k)‖2 = 1. Make the change of variables
h(i) = ‖Ψ(i)‖2 − z(i) for all i ∈ V, change the objective to 1−∑n

i=1 π(i)z(i) =
∑n

i=1 π(i)h(i),
and set Y (i, j) = Ψ(i)TΨ(j) for all i, j ∈ V (where xT denotes the transpose of x). Then,
using the Gram matrix representation for symmetric positive semidefinite matrices (an n× n

2To obtain this particular form, one needs to consider only those Q(i, j)’s such that (i, j) ∈ E and then only
one of Q(i, j) and Q(j, i).
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matrix M is symmetric positive semidefinite if and only if there is a set x1, . . . ,xn of vectors
in Rn such that Mij = xT

j xi; see e.g. [HJ85]), we get the equivalent formulation

max
h,Y=Y Tº0

n
∑

i=1

π(i)h(i)

s.t. h(i) + h(j) ≤ 2Y (i, j), ∀(i, j) ∈ E
∑

i,j∈V π(i)π(j)Y (i, j) = 0,
∑n

k=1 π(k)Y (k, k) = 1,

(6)

where A º 0 indicates that A is positive semidefinite. We now check that the dual of this
convex optimization problem is equivalent to minimizing the second largest eigenvalue over
reversible transition matrices on (G, π). The Lagrangian (for the minimization version) is

L(h, Y ;Q,Z, λ, γ) = −πTh− tr(YZ) +
∑

(i,j)∈E
Q(i, j)[h(i) + h(j)− 2Y (i, j)]

+γ tr(YππT ) + λ [tr(YΠ)− 1],

where π is the distribution π seen as a vector, Π is the n × n diagonal matrix with diagonal
π, Z is a symmetric matrix, γ, λ and Q(i, j) are real variables, and tr(A) denotes the trace
of A. Extending Q to all pairs (i, j) by fixing Q(i, j) = Q(j, i) if (j, i) ∈ E and Q(i, j) = 0 if
(i, j), (j, i) /∈ E , we get to

L(h, Y ;Q,Z, λ, γ) = hT (Q
� − π) + tr(Y [−Z −Q+ λΠ+ γππT ])− λ,

where
�
is the all-one vector. To obtain the dual, we minimize the Lagrangian over h, Y , and

get
max

Q≥0,Z=ZTº0,λ,γ
−λ

s.t. Q
� − π = 0,
−Z −Q+ λΠ+ γππT = 0,

(7)

where Q is implicitly of the form defined above. Make the change of variables Q(i, j) =
π(i)P (i, j) for all i, j. Then the first constraint above ensures that P is a stochastic matrix
satisfying the same conditions as in (1). To reveal the content of the second constraint, we
remove the auxiliary variable Z and divide entry (i, j) of all matrices by

√

π(i)π(j). We then
have the constaint

Π1/2PΠ−1/2 − γqqT ¹ λI, (8)

where q = (
√

π(1), . . . ,
√

π(n)) and I is the identity matrix. A standard result in eigenvalue
optimization [BV03] indicates that minimizing λ over the constraint (8) is equivalent to mini-
mizing the largest eigenvalue of Π1/2PΠ−1/2−γqqT . It is well-known [AF04] that Π1/2PΠ−1/2

is symmetric, has the same eigenvalues as P and admits q as eigenvector with eigenvalue 1.
Therefore, the largest eigenvalue of Π1/2PΠ−1/2−γqqT is max{λ2(P ), 1−γ}. We can always
choose γ so that this is λ2(P ), and therefore (7) is equivalent to (1) as claimed. Because all
the constraints in (1) are linear, the linear version of Slater’s condition [BV03] implies that
strong duality follows from feasibility. ¥

Contrary to the standard setting, the multidimensionality of the embedding seems necessary
in the fastest mixing context. In particular, plugging the eigenvector corresponding to the
second largest eigenvalue of the optimal matrix as ψ1 (with all other coordinates 0) into (5)
does not necessarily give a tight bound because there is no guarantee that the optimal w’s will
allow enough room for a 1-dimensional embedding to spread sufficiently.
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Remark 1 The above bound is actually very similar to that in the case of completely specified
chains which can be reformulated as

τ2(P ) = max
Ψ(1),...,Ψ(n)

∑

k∈V
π(k)‖Ψ(k)‖2

s.t.
∑

(i,j)∈E ‖Ψ(i)−Ψ(j)‖2Q(i, j) = 1
∑n

k=1 π(k)Ψ(k) = 0.

(9)

Here the “slack” takes the form of a fixed weighted average over inter-node distances. The
multidimensionality turns out not to be necessary in this case.

Remark 2 The same scheme can be applied to the log-Sobolev constant. In that case, one
maximizes the entropy instead of the variance. See also [BDX04].

Remark 3 If one were to maximize the smallest eigenvalue instead, the bound would be similar
but with the term ‖Ψ(i) − Ψ(j)‖2 in the inter-node distance constraint replaced by ‖Ψ(i) +
Ψ(j)‖2, giving rise to a different geometrical problem. The formulation (2) is equivalent to a
combination of the two problems (smallest and second largest eigenvalues).

3.2 Conductance

As an illustration of Proposition 1 we give a simple adaptation of the conductance bound to
the context of fastest mixing.

Proposition 2 Let Υ be the weighted vertex expansion of (G, π)

Υ ≡ min

{

π(δS)

π(S) ∧ π(Sc)
: S ⊆ V

}

,

where a ∧ b = min{a, b} and δS is the set of nodes i ∈ Sc such that there is a j ∈ S with
(i, j) ∈ E. We have the following bound

τ?2 ≥ 1

2Υ
.

This bound is easily derived from the usual conductance bound and is often used to obtain
lower bounds on completely specified chains. Here we give a direct proof.

Proof: We use the bound in Proposition 1. Let S ⊆ V be any subset and assume w.l.o.g.
that π(δSc) ≤ π(δS). A simple embedding of G in Rn is to map each node to one of only
2 points x0,x1 in which case we can assume x0 = (x0, 0, . . . , 0) and x1 = (x1, 0, . . . , 0). Say

subset S (resp. Sc) is mapped to x0 (resp. x1) and consider the choice x0 = 1−π(S)√
π(δSc)

and

x1 = − π(S)√
π(δSc)

. Then, the constraint π(S)x0 + π(Sc)x1 = 0 is satisfied. Also, since the

distance between the nodes in S (resp. Sc) is 0, we can set the w’s of nodes not on the

boundary of S (resp. Sc) to 0. We assign the value w0 = (π(δSc))−1 (resp. w1 = 0) to the
points in δSc (resp. δS). This choice satisfies π(δSc)w0 + π(δS)w1 = 1 and ‖x0 − x1‖2 =

(π(δSc))−1 = w0 + w1. Finally, we have π(S)‖x0‖2 + π(Sc)‖x1‖2 = π(S)π(Sc)
π(δSc) and the result

follows from Proposition 1 and the fact that S is arbitrary. ¥



Bounding Fastest Mixing 289

3.3 Examples

3.3.1 Kn −Kn

This is the graph made of two n-node complete graphs joined by an edge. We denote the
nodes on one side of the linking edge by 1, . . . , n and those on the other side by 1′, . . . , n′. The
linking edge is (1, 1′). The stationary distribution is uniform. The vertex expansion bound

gives Υ = 1/(2n)
n/(2n) =

1
n and τ?2 ≥ n/2. To get something sharper, we appeal to our more general

bound. The bottleneck in this graph is intrinsically one-dimensional, so we take all coordinates
except the first one to be 0, i.e. we consider only ψ1. By symmetry, it is natural to map the
nodes to ψ1(1) = −ψ1(1′) = x0 and ψ1(i) = −ψ1(i′) = x1, for i 6= 1, with 0 ≤ x0 ≤ x1. The
main insight here is that we should make the distance between 1 and 1′ as large as possible
because that pushes away from 0 all the other points at the same time (because of the local
constraints). So we take w(i) = w(i′) = 0, for all i 6= 1, and w(1) = w(1′) = n, which gives

x0 =
√
2
2

√
n and x1 =

√
2+2
2

√
n. Summing the squares leads to a lower bound asymptotic to

( 32+
√
2)n ≥ 2.914n. In Section 4, we give an almost matching upper bound. See also [BD+04a]

for a similar upper bound.

3.3.2 n-cycle and d-dimensional torus

In constrast to our preceding example, the n-cycle gives rise naturally to a multidimensional
embedding. We let the stationary distribution be uniform. By symmetry we choose all w’s
equal. So all pairs of consecutive nodes have to be embedded to points at distance (at most)√
2. Our goal of maximizing the sum of the squared norms—and the natural symmetry— leads

to spreading the points evenly on a circle centered around the origin (in any 2-dimensional
subspace of Rn). That is, we take all coordinates except the first two to be 0 and, numbering the
nodes from 1 to n in order of traversal, we let (ψ1(i), ψ2(i)) = (R cos(2πi/n), R sin(2πi/n)), i =
1, . . . , n, for a value of R which remains to be determined. The distance between consecutive

points has to be
√
2 so a little geometry suggests R =

√
2

2 sin(π/n) ≥
√
2n
2π . Thus the lower bound

is τ?2 ≥ n2

2π2 , matching the relaxation time of the symmetric walk. See e.g. [AF04].

One can generalize this result to the md-point grid on a d-dimensional torus by considering a
2d-dimensional embedding. For 1 ≤ i1, . . . , id ≤ m, node (i1, . . . , id) is mapped to

(R cos(2πi1/m), R sin(2πi1/m), . . . , R cos(2πid/m), R sin(2πid/m)),

with R as above. Thus, τ ?2 ≥ dm2

2π2 , again matching the relaxation time of the symmetric walk.
See [AF04].

3.3.3 Geometric random graphs

In their analysis of random walks on geometric random graphs, Boyd et al. [BG+04] consider,
in a key step, a variant of the d-dimensional grid of the previous example. Let k be a fixed
integer smaller than m. Again, our graph is made of the md points of the d-dimensional torus
Zd
m (integers modulo m) with uniform stationary distribution. Two nodes (i1, . . . , id) and

(j1, . . . , jd) are connected by an edge if il − jl modulo m is less or equal to k for all 1 ≤ l ≤ d
(the points are at most k cells apart in every dimension). Because of the “diagonal” edges, it
seems natural to collapse all nodes on a single m-cycle. More precisely, we map (i1, . . . , id) to
(R cos(2πi1/m), R sin(2πi1/m)). We take uniform w’s. Because some edges connect nodes k



290 Electronic Communications in Probability

steps apart, the radius (which is constrained by the fact that points connected by an edge are

at most
√
2 apart) is now R =

√
2

2 sin(kπ/m) ≥
√
2m
2kπ (assume that k divides n for convenience).

Thus τ?2 ≥ m2

2k2π2 = Θ((n/Dd)
2/d), where Dd is the degree of each node and n is the number

of nodes. Asymptotically, this bound matches the lower bound in [BG+04] (the constant is off
by a factor of d). There, exact expressions for the eigenvalues of tensor products of circulant
matrices and the analysis of a linear program lead to a lower bound on fastest mixing on this
graph. Our geometric method is simpler.

Remark 4 In the previous two examples, plugging the same embeddings into the completely
specifed setting (9) gives tight lower bounds on the symmetric walks. More generally, the
lower bound in Proposition 1 applies to any completely specified chain—as do all lower bounds
on fastest mixing—and it could prove useful as an alternative to the standard variational
characterization when the precise details of the transition matrix appear too cumbersome.

4 Upper bounds

It seems difficult to give general upper bounds on fastest mixing. An obvious technique is to
pick an arbitrary chain and compute an upper bound on its relaxation time. For example,
one might use the canonical (max-degree like) chain defined by the transition probabilities
Pd(i, j) = π(j)/π∗ if (i, j) ∈ E (and 0 otherwise) with π∗ = max{∑j:(i,j)∈E π(j) : i ∈ V}. It is
easy to check using the standard Cheeger inequality that

τ?2 ≤
(

π∗
π0

)2
2

Υ2
.

where π0 = mini∈V π(i). A different chain would have provided a different—and possibly
better—bound. Anyhow, this Cheeger-type bound is very unlikely to lead to useful results,
and moreover it provides no insight on the optimal chain.

Instead, the goal of this section is to illustrate the computation of a nontrivial upper bound
through a canonical paths argument [JS89, DS91, S92]. The underlying idea is similar to that
used for the lower bound above. That is, we think of a standard upper bound for completely
specified chains as parameterized by transition probabilities and attempt to minimize the
bound over those probabilities. It turns out that because of its straightforward dependence
on the transition matrix, the canonical paths bound appears to be the most manageable. In
this section and the next one, we show by way of examples that it can actually lead to sharp
results.

4.1 Canonical paths: Kn −Kn example continued

We illustrate our proposed technique on the Kn −Kn graph with uniform distribution. This
chain is analyzed in details in [BD+04a], where using sophisticated group-theoretic-based sym-
metry analysis, all eigenvalues are computed. Here, we give a different, more elementary treat-
ment which might be applicable more generally. We proceed as follows: we write down the
canonical paths upper bound as a function of P ; we then choose P among π-reversible chains
so as to minimize the bound. Given a set Γ of paths γxy in G for all pairs of nodes x, y, the
canonical paths upper bound is

τ2(P ) ≤ ρ̄(P,Γ),
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with

ρ̄(P,Γ) = max
e

∑

γxy3e π(x)π(y)|γxy|
Q(e)

, (10)

where |γxy| is the number of edges in γxy. Notice that the choice of paths depends—crucially—
only on the graph and is therefore valid for any transition matrix consistent with (G, π). Let
W (e) be the numerator in (10). On Kn −Kn, the natural choice of paths is to let γxy be the
shortest path (in terms of number of edges) between x and y. Then

W (i, j) =
1

(2n)2
, ∀i, j 6= 1, W (i, 1) =

1

(2n)2
(1 + 2 + 3(n− 1)) =

3n

(2n)2
, ∀i,

W (1, 1′) =
1

(2n)2
(1 + 4(n− 1) + 3(n− 1)2) =

3n2 − 2n

(2n)2
.

Similar values hold for the other complete subgraph. The largest contribution to the maximum
above clearly comes from W (1, 1′). In order to decrease the ratio in ρ̄(P,Γ), we need to choose
a large value for Q(1, 1′). But as we increase Q(1, 1′), the Q(1, i)’s and Q(1′, i′)’s have to be
lowered accordingly. We do so until congestion is the same on edges (1, 1′), (1, i)’s and (1′, i′)’s.
That is, we require

W (1, 1′)

Q(1, 1′)
=
W (1, i)

Q(1, i)
, ∀i 6= 1 Q(1, 1′) +

n
∑

i=2

Q(1, i) =
1

2n
,

and similarly for the other side. The solution is

Q(1, i) = Q(1′, i′) =
1

2n(2n− 5/3)
, ∀i 6= 1, Q(1, 1′) =

n− 2/3

2n(2n− 5/3)
.

We extend this to all edges by

Q(i, j) = Q(i′, j′) =
1

n− 1

[

1− 1

2n(2n− 5/3)

]

, ∀i, j 6= 1.

The upper bound becomes

τ?2 ≤ 3n(1− 5/(6n)).

Recall that our lower bound was τ ?2 ≥ 2.9n. Note that the standard chain would have consisted
in choosing a neighbor uniformly at random at each step. The same calculation gives an upper
bound of Ω(n2) in that case.

Remark 5 In summary, our upper bound technique consists in two steps: identifying transi-
tions contributing to slow mixing by computing the congestion ratio in (10); then increasing
as much as possible the probability of transition on those bottleneck edges. Instead, one might
try to use the same idea with conductance (or other upper bounds). But in that case, the fact
that all cuts—instead of edges—have to be accounted for simultaneously makes the task more
difficult.



292 Electronic Communications in Probability

5 Optimal rates for Glauber dynamics

In this section, we show that the framework discussed so far can be applied to large, well-
structured combinatorial problems where the numerical SDP method has little chance of being
helpful.

5.1 Glauber dynamics

Let G = (V,E) be a finite graph3. A configuration on G is a map σ : V → C, where C is a
finite set. Typically, σ is a spin or a color. We consider the following stationary distribution
on CV

π(σ) =
1

Z

∏

(v,w)∈E
αvw(σ(v), σ(w)),

where Z is a normalization constant and (v, w) is an undirected edge with endpoints v, w. Let
S ⊆ CV be the subset of CV on which π is nonzero. We wish to sample from π by running
a reversible MC on S, but allow only transitions that change the state of one node at a time,
i.e. the transition graph is G = (V, E) with V = S and (σ, σ′) ∈ E if and only if σ(v) = σ′(v)
for all but at most one node v ∈ V . Let σav be the configuration

σav (w) =

{

σ(w), if w 6= v,
a, if w = v.

One such “local” MC is the so-called Glauber dynamics which, at each step, picks a node v
of G uniformly at random and updates the value σ(v) according to the transition probability
distribution

K(σ, σav ) =

∏

w:(v,w)∈E
αvw(a, σ(w))

∑

a′∈C

∏

w:(v,w)∈E
αvw(a

′, σ(w))
.

One can check that the resulting (discrete-time) chain is π-reversible. We actually consider a
generalization of the Glauber dynamics by allowing the update rates4 to vary. More precisely,
at each step, we pick a node v of G with probability ρ(v) for some distribution ρ : V → [0, 1],
and we update σ(v) according to K as above. The standard chain corresponds to uniform ρ.

Predictably the question we ask is: can we compute the rates ρminimizing the relaxation time?
Or at least can we get reasonable lower and upper bounds on fastest mixing in this restricted
setting? We do so by following the methodology put forward in the previous sections.

We first give an elementary bound on the best achievable improvement. This result is essen-
tially due to [BDX04].

Proposition 3 Let P ? be the fastest chain on (G, π) (not necessarily of the Glauber dynamics
type). Also, let ρ? (resp. U) be the optimal (resp. uniform) rates for the Glauber dynamics.
Denote by Pρ the Glauber dynamics with rates ρ and let K = maxσ,v,aK

−1(σ, σav ). Then,

τ2(PU ) ≤ K |V |τ2(P ?), and τ2(PU ) ≤ |V |τ2(Pρ?).

3We now have two graphs. As before, calligraphic letters are used to denote the transition graph (see below).
4In what follows, the term rate actually refers to a discrete-time analog of a rate.
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Proof: By the variational characterization of λ2(P
?) and the fact that P ?(σ, σ′) ≤ 1,

1− λ2(P ?) = inf
g

∑

σ

∑

v∈V

∑

a∈C
(g(σ)− g(σav ))2π(σ)P ?(σ, σav )

∑

σ,σ′

(g(σ)− g(σ′))2π(σ)π(σ′)

≤ K |V | inf
g

∑

σ

∑

v∈V

∑

a∈C
(g(σ)− g(σav ))2π(σ)U(v)K(σ, σav )

∑

σ,σ′

(g(σ)− g(σ′))2π(σ)π(σ′)

= K |V | (1− λ2(PU )).

A similar argument gives the second inequality. ¥

Say K is O(1). In that case, the best improvement over PU one can hope for is a factor of
O(|V |).
We now use a canonical paths argument similar to that in Section 4 to obtain a general upper
bound on fastest mixing for Glauber dynamics.

Proposition 4 Let Γ be a set of paths γσ,σ′ in G for each pair σ, σ′ in S. Assume we have a
bound Bv (depending only on v) on the ratio appearing in the canonical paths bound (10) for
edges of the form (σ, σav ) in the uniform rates case. Then,

τ2(PU ) ≤ max
v

Bv, and τ2(Pρ̃) ≤ |V |−1
∑

v

Bv,

with the choice of rates ρ̃(v) = Bv/
∑

uBu.

Proof: The first inequality is the canonical paths bound. For the second one, note that the
ratio in (10) is multiplied by (|V |Bv/

∑

uBu)
−1 when replacing uniform rates with ρ̃(v). We

then apply the canonical paths bound to Pρ̃ using the bound Bv and the previous observation.
Note that ρ̃ is the choice of rates that makes all bounds on the ratio in (10) equal. ¥

The point of Proposition 4 is that optimal improvement can be attained if most Bv’s are small
compared to maxv Bv. We give such an example in the next subsection.

5.2 Special case: the Ising model

We apply the previous result to the case of the Ising model on a finite graph. Here C =
{−1,+1}, S = CV , and αvw(σ(v), σ(w)) = exp (βσ(v)σ(w)), where β > 0 is some constant.

As shown in [BK+04], the relaxation time of the Glauber dynamics on a graph depends on its
cut-width. Let I : V → {1, . . . , |V |} be some ordering of the nodes (not necessarily optimal),
and let ξI(v) be the number of edges from {w : I(w) ≤ I(v)} to {w : I(w) > I(v)}. The
cut-width of a graph G is ξ(G) = minI maxv ξ

I(v). Let ∆ be the maximum degree of G. Then
it follows from [BK+04] that a bound as required in Proposition 4 is

Bv ≡ |V |2 exp
(

(4ξI(v) + 2∆)β
)

,

with in particular maxv Bv = |V |2 exp ((4ξ(G) + 2∆)β) if I is an optimal ordering.



294 Electronic Communications in Probability

One can try and compute
∑

v Bv/|V | in special cases. A rather uninteresting graph is the
s × s grid. There, a natural ordering is to start from a corner, move horizontally as far as
one can, then go to the next line and start over. In this ordering, the width of most nodes,
including the maximum-width node, is approximately s and therefore using non-uniform rates
has essentially no effect.

Here is a more interesting example. Let T
(b)
r = (Vr, Er) be the complete rooted b-ary tree with

r levels (the root is at level 0 and the leafs, at level r). Let nr be the number of vertices in

T
(b)
r . In this case, the maximum degree is ∆ = b+ 1.

Proposition 5 For β large enough, an appropriate choice of rates leads to the estimate

τ2(Pρ?) = O
(

nr e
4(b−1)βr

)

,

as r tends to +∞. In constrast, the best known upper bound on the uniform Glauber dynam-
ics [BK+04] is

τ2(PU ) = O
(

n2r e
4(b−1)βr

)

.

Proof: A good ordering of nodes of T
(b)
r , say I, is given by a depth-first search (DFS) traversal

of the tree starting from the root. Note that the width of a node v is the number of unvisited
neighbors of previously visited vertices when the DFS search reaches v. Therefore, the width
of the root is b. Then, say vertex v is on level 1 ≤ l < r and is the q-th child of its parent
w (in the DFS traversal order). Then ξI(v) = ξI(w) + b− q because (1) v has b children, (2)
q children of w have now been visited, and (3) all descendants of the first q − 1 children of
w have been visited—so these add nothing to the width. As for nodes on level r, we have
ξI(v) = ξI(w)− q if v is the q-th child of w. Thus, the contribution to

∑

v Bv of the l-th level,
1 ≤ l < r, is

B(l) = B(l−1)
(

e4(b−1)β + · · ·+ e4(0)β
)

= B(l−1)
(

e4bβ − 1

e4β − 1

)

≡ B(l−1)ζ(b, β),

and for l = r we have

B(r) = B(r−1)e−4bβζ(b, β).

Summing over all levels, we get

∑

v Bv

|Vr|
= n2r

e(4b+2∆)β

nr

(

1 + ζ(b, β) + · · ·+ ζ(b, β)r−1 + e−4bβζ(b, β)r
)

= nr e
(6b+1)β

(

ζ(b, β)r − 1

ζ(b, β)− 1
+ e−4bβζ(b, β)r

)

.

In the low-temperature regime, i.e. for β large (we actually assume e4β À 1), this is
∑

v Bv

|Vr|
= O

(

nr exp
{

4(b− 1)rβ + (6b+ 1)β
})

,

whereas

max
v

Bv = n2r exp
(

(4ξ(T (b)r ) + 2∆)β
)

≤ n2r exp
{

4(b− 1)rβ + (6b+ 1)β
}

,
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because ξ(T
(b)
r ) ≤ (b − 1)r + 1 [BK+04] (in the DFS ordering, the worst-case vertex is the

parent of the first leaf encountered). Therefore, we get an optimal improvement of O(nr) over
the usual Glauber dynamics. ¥

For completeness sake, we note that it is also possible to obtain a lower bound on the relaxation
time of the fastest mixing chain, as follows. We assume b = 3 for convenience. Let ε =
(1 + e2β)−1. The parameter ε has the following interpretation. In [EK+00], it is shown that
the Ising model on a tree can be simulated by picking the spin of the root uniformly at random
and then from top to bottom assigning to each vertex the spin of its parent with probability
1− ε and the opposite spin with probability ε.

Proposition 6 Assume b = 3. Then

τ?2 = Ω
(

n− ln(2ε+8ε
2)−1

r

)

,

as r tends to +∞. In constrast, the best known lower bound in the uniform case [BK+04] is

τ2(PU ) = Ω
(

n− ln(2ε+8ε
2)

r

)

.

Proof: Berger et al. [BK+04] use recursive majority to define a cut in the space of configu-
rations and apply the conductance bound. The recursive majority m(σ) of a configuration σ
is computed as follows: set M(v) = σ(v) for all v on level r; starting from level r − 1 and up,
compute M on each node by taking the majority of the values of M at the children of that
node; output the value ofM at the root. Let S be the set of configurations σ with m(σ) = +1.
It follows from [BK+04] that, under π, the probability that a configuration is such that its
recursive majority is flipped by changing the value at a fixed leaf is at most (2ε+8ε2)r−1. The
union bound and the {−1,+1} symmetry imply that π(δSc) ≤ 3r

2 (2ε+8ε2)r−1 and π(S) = 1
2 .

By Proposition 2, we deduce λ?2 ≥ 1 − 2(3)r(2ε + 8ε2)r−1. On the other hand, the usual
conductance bound applied to the uniform case gives that λ2(PU ) ≥ 1− 2ΦS , with

ΦS = π(S)−1
∑

σ∈S,τ∈Sc

π(σ)PU (σ, τ) ≤ 2(3)−r
∑

σ∈S,τ∈Sc

(σ,τ)∈E

π(σ) ≤ (2ε+ 8ε2)r−1,

where we have used that PU (σ, τ) ≤ 3−r for neighbors σ, τ [BK+04]. Finally note that 3r =
O(nr). ¥

Obtaining tighter bounds would require a sharper analysis in the standard setting.

Remark 6 We are not claiming that this choice of rates leads to the fastest sampling algorithm
for this model. Indeed, in the case of the Ising model on a tree, a very simple propagation
algorithm (described before Proposition 6) is much faster [EK+00]. Rather, our point is to
establish that fastest mixing analysis is feasible on nontrivial, large-scale chains. It remains to
be seen whether fastest mixing ideas will find useful applications in sampling.
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