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Abstract

There are two types of particles interacting on a homogeneous tree of degree d+1. The particles
of the first type colonize the empty space with exponential rate 1, but cannot take over the
vertices that are occupied by the second type. The particles of the second type spread with
exponential rate λ. They colonize the neighboring vertices that are either vacant or occupied
by the representatives of the opposite type, and annihilate the particles of the type 1 as they
reach them. There exists a critical value λc = (2d−1)+

√

(2d− 1)2 − 1 such that the first type
survives with positive probability for λ < λc, and dies out with probability one for λ > λc.
We also find the growth profile which characterizes the rate of growth of the type 1 in the
space-time on the event of survival.

1 Introduction

We consider a model of a predator-prey type which we call the Escape model. There are two
entities growing on the vertices of a homogeneous tree Td = T of degree d+1. The entities may
be thought of as biological species, political parties or manufacturers competing on a market.
The second entity dominates the first in the sense that the representatives of the second entity
can take over the vertices occupied by the representatives of the first entity but not vice versa.
It is also assumed that the second entity grows faster. We are interested in the possibility of
the long-term coexistence of the species which occurs when the first species survives.

There are several multi-type interacting particle systems for which either mutual coexistence
or mutual unbounded growth were studied. In [3] and [4], Häggström and Pemantle introduced
a two-type Richardson model on the integer lattice. Neuhauser [7] has considered a multi-type
contact process. A two-type competition model was studied in [5]. In the models mentioned
above, the particles interacted on the integer lattice Zd. In many cases, the integer lattice is a
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natural choice since it geometrically corresponds to the locations of the species representatives
in space. However if we are dealing with several types of infections (or political ideas) in
a population of people in a city, then the infections would spread between individuals who
have contact with each other. Hence, a tree might be a better approximation to the graph of
interactions than an integer lattice.

In the Escape model, at each time t each site of the tree is occupied by at most one represen-
tative of either of the two entities. We refer to the representatives of the entities as particles of
types 1 and 2 respectively. If a site is not occupied, it is said to be vacant. The dynamics of the
process is specified by exponential transition rates. A vacant site gets colonized by a particle
of type 1 with exponential rate equal to the number of nearest neighbors of type 1. The sites
that are either vacant or occupied by type 1 flip to 2 with the rate λ > 1 times the number of
neighbors of type 2. If a vertex is occupied by a particle of type 2, the particle stays at the
vertex forever. We assume that at time zero there are finitely many particles of each type.
The sets of sites occupied by particles of types 1 and 2 at time t ≥ 0 are denoted by A(t) and
B(t) respectively. The event ∩t≥0{A(t) 6= ∅} is referred to as the event of survival of type 1.
If at time zero the cluster A(0) is surrounded by B(0), then all particles of type 1 eventually
die out with probability one. Thus, we are only interested in the initial configurations for
which there exist a vertex x and an infinite geodesic segment γx,∞ such that x ∈ A(0) and
γx,∞ ∩ B(0) = ∅. All such configurations are referred to as non-trivial configurations. The
question of interest is for what values of λ type 1 survives with positive probability in the long
term.

Theorem 1. There exists a critical value λc = (2d − 1) +
√

(2d− 1)2 − 1 such that, for
all λ ∈ (1, λc) and for all non-trivial finite configurations (A(0), B(0)), type 1 survives with
positive probability. For all λ ∈ (λc,∞), type 1 dies out with probability one.

For c > 0 denote by Mn(n/c) the number of vertices x ∈ A(n/c) at distance n from the root
ρ. From the results of Sections 4 and 5, it follows that

lim
1

n
log (EMn(n/c)) = −g(c).

where

g(c) =







(λ/c− log(λ/c)− 1)− log d : 0 < c ≤ 1
(λ/c− log(λ/c)− 1) + (1/c− log(1/c)− 1)− log d : 1 < c < λ
(1/c− log(1/c)− 1)− log d : c ≥ λ

The function g(c) is referred to as the growth profile of type 1. The growth profile was in-
troduced in Lalley [6] (in a slightly different form) to study the weakly supercritical contact
process on a homogeneous tree. The function g(c) has a unique minimum at c0, is strictly
decreasing on (0, c0) and strictly increasing on (c0,∞). For all λ ∈ (1, λc), we have g(c0) < 0,
and let r1 and r2, with 0 < r1 < r2, be the two solutions of g(c) = 0.

Theorem 2. Let λ ∈ (1, λc). For every ε > 0 and all large t, the particles of type 1 are
concentrated in the annulus of radii (r1 − ε)t and (r2 + ε)t centered at the root. For every
c ∈ (r1, r2), almost surely on the event of survival of type 1,

lim
1

n
log (Mn(n/c)) = −g(c).
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The growth profile gives the exponential rate of growth of the type 1 particles with time (on
the event of survival). For every c > 0 such that g(c) < 0, at time t the number of type
1 particles at distance ct from the root is of order exp{−cg(c)t + o(t)}. For every c with
g(c) > 0 and all large t, at time t there are no particles of type 1 at distance ct from the root.
The critical value λc is the smallest λ > 1 such that g(c) is non-negative for all c > 0. To
investigate the Escape model, we consider the simplest growth model, the Richardson model,
presented in Section 3. In the Escape model, the cluster of type 2 particles evolves exactly as
the infected set in Richardson model with rate λ > 1. Note also that the set A(t) is dominated
by Richardson model with rate 1. By using the comparison of the two independent Richardson
processes with respective rates λ and 1, we compute the growth profile in Section 4.

The Escape model can be considered on the integer lattice Zd. It is easy to determine that
the critical value does not depend on the dimension and is equal to 1. Change the rules of
interactions in the Escape model so that the second entity is not able to occupy the vacant
sites. This model is referred to as the Chase-Escape model. In this case, the particles of type
2 can be thought of as carnivores and the particles of type 1 as herbivores. The herbivores
colonize the vacant area, while the carnivores try to chase and kill the herbivores. On the
integer lattice Z2, the Chase-Escape model is very difficult to analyze rigorously. Even the
existence of the critical value is not a priori obvious. Note that on a homogeneous tree the
dynamics of the Chase-Escape and Escape models become essentially the same. Hence the
critical rate λc exists and is explicitly computable on T . Furthermore, the critical rate in the
Chase-Escape model on the homogeneous tree of degree 2d can serve as an upper bound for
the critical rate of the model on Zd. This is because in both graphs every vertex has exactly
2d nearest neighbors, but on the tree the escape routes of the prey do not intersect, and hence
the prey has better chance of survival.

2 Preliminaries.

2.1 A homogeneous tree

A homogeneous tree Td = T of degree d + 1 is an infinite tree such that every vertex has
exactly d + 1 nearest neighbors. A distinguished vertex is called root and denoted by ρ. For
every two vertices x and y of the tree, denote by |x, y| the number of edges in the shortest
path from x to y (the path without loops). If x is the root, then we simply write |y|. Note
that |·, ·| is a metric on T .
For every vertex x ∈ T , a geodesic segment γx,∞ is an infinite path in T beginning at x
and having no loops. Define by T+(x), the set of all vertices y such that the shortest path
connecting y with the root ρ goes through x. Consider a geodesic segment γx,∞ such that
γx,∞ ∈ T+(x). Given an integer m, consider also a sequence of vertices (yk)k≥0 on the geodesic
segment γx,∞ such that |yk| = mk + |x| for all integers k ≥ 0. For every k ≥ 1, yk−1 is called
the m-predecessor of yk in T .
Let D(x, r) = {y ∈ T : |x, y| ≤ r} be the closed disk of radius r ∈ (0,∞) centered at x, and
let C(x, r) = {y ∈ T : |x, y| = r} be the circumference of that disk. If x is the root, then we
write Dr and Cr. Note that for all integers n ≥ 1 the number of vertices in Cn is (d+ 1)dn.
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2.2 Construction of the Escape process.

The Escape process can be built using a percolation structure as follows. For each ordered pair
of neighboring vertices x and y in T , define two independent Poisson processes with respective
rates 1 and λ − 1, and respective occurrence times {T x,y

n : n ≥ 1} and {Ux,y
n : n ≥ 1}. Set

T x,y
0 = 0 and Ux,y

0 = 0, and make these Poisson processes independent from pair to pair.
Consider T × R+. Arrows are drawn from x to y at the occurrence times T x,y

n and Ux,y
n . We

say that there is a directed path in T ×R+ from (x0, s0) to (xn, sn+1) if there is a sequence of
times s0 < s1 < .. < sn+1 and sequence of vertices x0, x1, .., xn so that for each j, 1 ≤ j ≤ n,
there is an arrow from xj−1 to xj at time sj . A type 1 path is a directed path that uses only
arrows generated by the Poisson processes Tn. For every vertex y we say that y ∈ B(t) if and
only if there is a vertex x ∈ B(0) and directed path from (x, 0) to (y, t) in the percolation
structure. Define A(t) to be the set of vertices y such that y 6∈ B(t) and there is a type 1 path
that ends at (y, t) and starts at (z, 0) for some z ∈ A(0).

3 The Richardson model on a homogeneous tree

The Richardson process on T with parameter λ > 0 is a continuous time Markov process R(t)
on the set of finite subsets of T . We say that a vertex x is infected (or occupied) at time t
if x ∈ R(t), and is vacant otherwise. The process develops according to the following rules:
if a vertex gets infected, it stays infected forever and starts infecting unoccupied neighboring
vertices with rate λ, i.e. that the infection times have exponential distributions with parameter
λ. The infection times are all independent. Consequently, a vacant site becomes infected with
the rate

λ · (number of infected neighbors).

The model with parameter λ = c can be obtained from the model with parameter λ = 1 by
running the later process at speed c. Therefore we treat just the case λ = 1.
Without loss of generality consider the initial configuration where at time zero the only oc-
cupied site is the root R(0) = {ρ}. The main questions were how fast the infected set grows
and what limiting shape the infected set has. For the tree T the number of vertices in the
disk Dn grows exponentially with n (whereas for Zd it has polynomial growth). Consequently,
the behavior of the Richardson process on T is different from the behavior of the model on
the integer lattice (see [8] and [1]). The infected region R(t) still grows linearly with time,
but there are constants a and b, with a < b, such that as t goes to infinity we can classify
two subregions: a completely infected subregion, having approximately the shape of a ball
Dta, and a partially infected subregion, having approximately the shape of a ring Dtb \Dta.
Consequently, there are two speeds: the speed of invasion b, indicating how fast the infection
spreads, and the speed of occupation a, governing the rate of growth of the region that is
completely covered by the infection.

Proposition 1. Assume that λ = 1, and let d ≥ 2 be an integer. Let

f(c) =
1

c
− log

1

c
− 1− log d (1)

for c ∈ (0,∞), and let a and b, with 0 < a < 1 < b, be the two roots of the equation

f(c) = 0.



117

Then a = sup{a′} and b = inf{b′}, where the sup and inf are taken over all a′ and b′ satisfying

P[∃ a random τ <∞ such that ∀t > τ, Dta′ ⊂ R(t) ⊂ Dtb′ ] = 1.

As d→∞, we have a(d) log d→ 1 and b(d)/d→ e.

Let Nn(t) be the number of vertices at distance n from the root that are infected at time t,
and let Fn(t) be the number of vertices in Cn that are not infected at time t. We compute
asymptotic values of Nn(t) and Fn(t) as n goes to infinity and t = n/c for different values of
c.

Proposition 2. For all c ∈ (1, b),

lim
1

n
log (Nn(n/c)) = −f(c) > 0 a.s.. (2)

For all c ∈ (a, 1),

lim
1

n
log (Fn(n/c)) = −f(c) > 0 a.s.. (3)

Proof of Proposition 1. It is enough to verify that for every ε ∈ (0, a)

P[∃τ <∞ : ∀t > τ, Dt(a−ε) ⊂ R(t) ⊂ Dt(b+ε)] = 1, (4)

P[∃τ <∞ : ∀t > τ, R(t) ⊂ Dt(b−ε)] = 0, (5)

P[∃τ <∞ : ∀t > τ, Dt(a+ε) ⊂ R(t)] = 0. (6)

Proof of equation (4). For every vertex x on the tree, let T (x) be the (random) time at which
the vertex gets infected. Consider an arbitrary vertex at distance n from the root, and denote
it by xn. Fix c > 1. Then we have the following estimate (recall that λ = 1):

P [xn ∈ R(n/c)] = P
[

T (xn) ≤
n

c

]

= exp

{

−n

(

1

c
− log

1

c
− 1

)

+ o(n)

}

where

o(n)/n→ 0 as n→∞.

The estimate follows from Cramér’s theorem for i.i.d. random variables (see [2]) and from the
fact that T (xn) is distributed as a sum of n i.i.d. exponentials with parameter 1. Observe that

ENn(n/c) = (the total number of vertices in Cn) · P(xn ∈ R(n/c))

=
d+ 1

d
dn exp

{

−n

(

1

c
− log

1

c
− 1

)

+ o(n)

}

= exp{−nf(c) + o(n)} (7)
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where f was defined in (1).
Similarly, for c < 1 we have:

P[xn /∈ R(n/c)] = P
[

T (xn) ≥
n

c

]

= exp

{

−n

(

1

c
− log

1

c
− 1

)

+ o(n)

}

.

Hence

EFn(n/c) = exp{−nf(c) + o(n)}. (8)

Observe that f is strictly decreasing on (0, 1) and strictly increasing on (1,∞), with unique
minimum at c = 1. Moreover f(1) < 0 and f(0+) = f(∞−) = ∞. Thus, there are just two
roots a and b of the equation f(c) = 0, such that a < 1 < b. For every ε > 0, we have that

P

[

∃x ∈ Cn : T (x) ≤
n

b+ ε

]

≤ ENn(n/(b+ ε)).

Since f(b+ ε) > 0, by (7) the upper bound decays exponentially with n. Consequently the left
side is summable, and by Borel-Cantelli lemma we have

P

[

∃N <∞ : ∀n > N and ∀x ∈ Cn, T (x) >
n

b+ ε

]

= 1.

Finally, observe that this is equivalent to

P
[

∃τ <∞ : ∀t > τ, R(t) ⊂ Dt(b+ε)

]

= 1 (9)

(the events are identical).
Analogously, for all ε ∈ (0, a),

P
[

∃τ <∞ : ∀t > τ, Dt(a−ε) ⊂ R(t)
]

= 1. (10)

To prove (10), note that

P

[

∃x ∈ Cn : T (x) >
n

a− ε

]

≤ EFn(n/(a− ε)),

and it decays exponentially by (8). Applying Borel-Cantelli lemma one more time, we get

P

[

∃N <∞ : ∀n > N and ∀x ∈ Cn, T (x) ≤
n

a− ε

]

= 1

which implies (10). Obviously, (9) and (10) together are equivalent to (4).
Equations (5) and (6) are direct consequences of Proposition 2. As a heuristic argument, note
that (7) implies that, for every c ∈ (1, b), ENn(n/c) grows exponentially, and, similarly, (8)
implies that for every c ∈ (a, 1), EFn(n/c) grows exponentially. These observations suggest
that (5) and (6) should be true.
The limits

lim
d→∞

a(d) log d = 1,

lim
d→∞

b(d)/d = e
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immediately follow from the fact that a and b are the roots of

1

c
− log

1

c
− 1− log d = 0.

The phenomenon is easily anticipated. Since for larger d’s there are more directions for the
infection to spread around, it is natural that the invasion speed is strictly increasing with d.
For the same reason, the occupation speed decreases to zero (the number of vertices in Dn

grows unboundedly with d).

Proof of Proposition 2. We only prove (2). The proof of (3) is identical. First we claim that
for any ε > 0

lim sup
1

n
log (Nn(n/c)) ≤ −f(c) + ε

almost surely. By Markov’s inequality and (7),

P

[

1

n
log (Nn(n/c)) > −f(c) + ε

]

= P [Nn(n/c) > exp {n(−f(c) + ε)}] ≤

≤ E [Nn(n/c)] · exp {nf(c)− nε} = exp {−nε+ o(n)} ,

and the claim follows by Borel-Cantelli lemma.
Let α = 1

c
. To finish the proof, it is enough to show that, for an arbitrarily small ε > 0, with

probability 1

lim inf
1

n
log (Nn(αn)) ≥ −f (1/α)− ε (11)

Recall that 1 < c < b, so f (1/α) < 0. Assume that ε is small enough to satisfy f (1/α)+ε < 0.
To make the notation less complicated, let

µ = µ(ε) = exp {− (f (1/α) + ε)} .

By the continuity of f , there exists an ε1 > 0 such that

f (1/(α− 2ε1)) < f (1/α) + ε < 0.

Then, for every fixed w > 1, there exists an integer m > 0 large enough such that

ENm((α− 2ε1)m) > w · exp {−m (f (1/α) + ε)}

= w · µm > 1. (12)

Choose m to satisfy (12). Fix an arbitrary vertex x of the tree and consider a geodesic segment
γx,∞ ∈ T+(x). Consider a sequence of vertices (yi)i≥0 on the geodesic segment γx,∞ such that
|yi| = mi + |x| for all integers i ≥ 0. Note that infection times T (yi) are increasing in i.
For every pair of non-negative integers n1 and n2 such that n1 < n2, say that yn2

is an
m-descendant of yn1

if, for all integers i ∈ [n1, n2),

T (yi+1)− T (yi) < (α− 2ε1)m.

Define
Zk(x) =

{

z ∈ Ckm+|x| : z is an m-descendant of x
}

,
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Zk(x) = cardinality of Zk(x).

Note that (Zk(x))k≥0 is a Galton-Watson process with mean offspring number

EZ1(x) > w · µm > 1. (13)

Claim 1. For every vertex x, almost surely on the event of (Zk(x))k≥0 survival, there exists
a (random) K < +∞ such that, for all k > K,

Nmk+|x|((α− ε1)(mk + |x|)) ≥ Zk(x) ≥ µmk+|x| · dm. (14)

Proof. The first inequality follows from the fact that for sufficiently large k’s

(α− ε1)(mk + |x|) ≥ (α− 2ε1)mk + T (x).

To obtain the second inequality, observe that, for all large enough k, wk ≥ dmµ|x|, and hence,
EZk(x) > (µm · w)k ≥ µmk+|x| · dm. A standard theorem from the elementary theory of
Galton-Watson processes states that if EZ1(x) > 1 and the variance of Z1(x) is finite, then

on the event of survival Z
(x)
k /(EZ

(x)
1 )k converges almost surely to a positive random variable.

Thus, the second inequality is obtained by direct application of (13).

Therefore, on the event of non-extinction of (Zk(x))k≥0, (14) is true and implies (11) for n’s
of the form mk+ |x|. To establish the result for all positive integers, consider mk+ |x| < n <
m(k+1)+ |x|. Observe that K might be also chosen large enough that, for all k > K, we have

(α− ε1)(m(k + 1) + |x| ) < α(mk + |x| ).

By (14) at time (α− ε1)(m(k + 1) + |x|) we have at least

µm(k+1)+|x| · dm

infected vertices on level m(k + 1) + |x|. Since each particle can generate at most d offspring,
it follows that, for each integer n satisfying mk + |x| < n < m(k + 1) + |x|, there are at least

µm(k+1)+|x| dn−(mk+|x|)

infected predecessors in Cn at time (α− ε1)(m(k + 1) + |x|). Obviously,

Nn(αn) > Nn(α(mk + |x|))

> Nn((α− ε1)(m(k + 1) + |x|)) > µm(k+1)+|x| > µn.

Therefore we proved that, almost surely on the event of the survival of (Zk(x))k≥0, (11) is
true. To show that (11) holds with probability one, observe that, for each integer j > 0, there
are (d + 1)dmj−1 Galton-Watson processes (Zk(x))k≥0 with |x| = mj. Let Sj be the event
of non-extinction for at least one of the processes. Since the Galton-Watson processes are
independent, the probability of Sj tends to 1 as j tends to +∞. Moreover, for each j > 0,
Sj ⊂ Sj+1 which guarantees the almost sure result.
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4 Two independent Richardson models.

To motivate the proof of Theorem 1 consider two independent Richardson processes R1(t) and
Rλ(t) with respective rates 1 and λ > 1. The processes have initial configurations R1(0) =
Rλ(0) = {ρ}, and are built on a homogeneous tree T .
For c ∈ (0,∞), estimate the expected number of vertices in (R1(n/c) \ Rλ(n/c)) ∩ Cn, that
is the number of vertices at distance n from the root that are occupied by R1 but not by Rλ

at time n/c. Let xn be a vertex with |xn| = n, un(n/c) = P [xn ∈ {R1(n/c) \Rλ(n/c)}], and
Vn(n/c) = # {xn : xn ∈ R1(n/c) \Rλ(n/c)}.
Case 1: For every c ∈ (0, 1],

un(n/c) = P [xn 6∈ Rλ(n/c)] P [xn ∈ R1(n/c)] =

= exp

{

−n

(

λ

c
− log

λ

c
− 1

)

+ o(n)

}

.

Recall that the number of vertices in Cn is d+1
d

dn and define

g1(c) =

(

λ

c
− log

λ

c
− 1

)

− log d.

Then, for all c ∈ (0, 1],
EVn(n/c) = exp {−n · g1(c) + o(n)} .

Case 2: For every c ∈ (1, λ)

un(n/c) = P [xn 6∈ Rλ(n/c)] P [xn ∈ R1(n/c)] =

exp

{

−n

(

λ

c
− log

λ

c
− 1

)

+ o(n)

}

exp

{

−n

(

1

c
− log

1

c
− 1

)

+ o(n)

}

.

Let

g2(c) =

(

λ

c
− log

λ

c
− 1

)

+

(

1

c
− log

1

c
− 1

)

− log d.

Then, for all c ∈ (1, λ),
EVn(n/c) = exp {−n · g2(c) + o(n)} .

Case 3: For every c ∈ [λ,∞),

un(n/c) = exp

{

−n

(

1

c
− log

1

c
− 1

)

+ o(n)

}

.

Thus,
EVn(n/c) = exp {−n · g3(c) + o(n)}

where g3(c) =
(

1
c
− log 1

c
− 1

)

− log d = f(c).
Define function g(c) on (0,∞) by combining g1(c), g2(c) and g3(c) on their domains. Note that
for every c > 0 and non-negative integers m and n

um(m/c)un(n/c) ≤ um+n((m+ n)/c).
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Hence
EVn(n/c) ≤ exp {−n · g(c)} . (15)

The function g(c) is continuously differentiable, strictly decreasing on
(0, (λ+1)/2) and strictly increasing on ((λ+1)/2,∞) with the unique minimum at c0(λ) =

λ+1
2 .

Furthermore, gλ(c0) = log (λ+1)2

4λd . It follows that

g(c0) > 0 if λ > (2d− 1) +
√

(2d− 1)2 − 1,

g(c0) < 0 if 1 < λ < (2d− 1) +
√

(2d− 1)2 − 1.

Proposition 3. Fix λ > λc = (2d − 1) +
√

(2d− 1)2 − 1. Almost surely, for all sufficiently
large t,

R1(t) ⊂ Rλ(t).

Proof. According to Proposition 1, for any ε1 > 0 and all large t,

Rλ(t) ⊃ Dt(aλ−ε1).

Thus, we are only interested to see what happens in the region Dc
t(aλ−ε1)

. Note that by (15),
for every ε > 0 and large n,

E [# {xn : xn ∈ R1(n/c) \Rλ(n/c− 1)}] ≤ exp {−n · g(c) + nε} .

For large t > 0 and integers i ≥ 1, let ci = i/t. By Markov’s inequality,

P
[

(R1(t) \Rλ(t− 1)) ∩Dc
t(aλ−ε1)

6= ∅
]

≤
∞
∑

i=[t(aλ−ε1)]

exp {−i · g(ci) + iε} ≤

≤
∞
∑

i=[t(aλ−ε1)]

exp {−ig(c0) + iε} ≤ C exp {−t(aλ− ε1) · (g(c0)− ε)} .

A routine application of Borel-Cantelli lemma for integer values of t implies the result.

5 The Escape model.

Proof of Theorem 2. Since A(t) can not grow faster than the infected set in the Richardson
model with rate 1, from the results of Section 4 (use (15)) it follows that for any initial
configuration (A(0), B(0)) and all sufficiently large n

EMn(n/c) ≤ exp {−n · g(c) + nε} .

Thus, using the same lines of argument as in Proposition 3, it may be shown that for all large
t

A(t) ⊂ Dc
t(r1−ε)

,

A(t) ⊂ Dt(r2+ε).
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Furthermore, for every c ∈ (r1, r2) and any ε > 0

lim sup
1

n
log (Mn(n/c)) ≤ −g(c) + ε.

(Similarly to the proof of Proposition 2, apply Markov’s inequality to get

P

[

1

n
log (Mn(n/c)) > −g(c) + ε

]

= P [Mn(n/c) > exp {n(−g(c) + ε)}] ≤

≤ E [Mn(n/c)] · exp {ng(c)− nε} ≤ exp {−nε}

and the claim follows by Borel-Cantelli lemma.) Next, we show that on the event of survival

lim inf
1

n
log (Mn(n/c)) ≥ −g(c)− ε. (16)

Note that for every non-trivial configuration (A(0), B(0)), for all large t and all x ∈ A(t) we
have T+(x) ∩ B(t) = ∅. Furthermore, almost surely on the event of type 1 survival, for every
integer m there exist 0 < t < ∞ and a vertex x with m-predecessor y such that x ∈ A(t)
and B(t) ∩ T+(y) = ∅. Define Z1(x) to be a subset of C|x|+m ∩ T+(x) such that z1 ∈ Z1(x) if
and only if there is a type 1 path from (x, t) to (z1, t + m/c) and there are no directed paths
from (y, t) to (x, t + m/c). In general, for k ≥ 2, Zk(x) is defined as a subset of vertices in
C|x|+mk ∩ T+(x) such that zk ∈ Zk(x) if and only if

1. zk−1 ∈ Zk−1(x) where zk−1 is the m-predecessor of zk;

2. there is a type 1 path from (zk−1, t+ (k − 1)m/c) to (zk, t+ km/c);

3. there are no directed paths from (zk−2, t+ (k − 1)m/c) to (zk−1, t+ km/c) where zk−2

is the m-predecessor of zk−1 .

Let Zk(x) be the cardinality of the set Zk(x). It is clear from the definition that (Zk(x))k≥0

is a Galton-Watson process with the mean offspring number

E[Z1(x)] = exp{−mg(c) + o(m)}.

Thus, for all sufficiently large m, E[Z1(x)] > 1. Note that M|x|+mk(t + km/c) dominates
Zk(x), and hence, on the event of non-extinction of (Zk(x))k≥0, (16) holds. Observe that
for every m, almost surely on the event of survival of the type 1, there are infinitely many
vertices x at which the Galton-Watson processes (Zk(x))k≥0 can be originated. Hence, (16)
holds almost surely on the event of non-extinction of the first type. This finishes the proof of
Theorem 2.

Proof of Theorem 1. Fix λ ∈ (1, λc), and consider any non-trivial initial configuration. With
positive probability, there exists a vertex x and a Galton-Watson process (Zk(x))k≥0 (con-
structed in the proof of Theorem 2) with EZ1(x) > 1. Hence, the Galton-Watson process
survives with positive probability and so does type 1.
Consider the case λ ∈ (λc,∞). Since A(t) is dominated by the Richardson model with rate 1,
by Proposition 3 in Section 4 type 1 dies out almost surely.
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