
Elect. Comm. in Probab. 8 (2003) 167–169 ELECTRONIC

COMMUNICATIONS

in PROBABILITY

A NOTE ON THE RICHNESS OF CONVEX HULLS OF

VC CLASSES
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Abstract

We prove the existence of a class A of subsets of Rd of vc dimension 1 such that the symmetric
convex hull F of the class of characteristic functions of sets in A is rich in the following sense.
For any absolutely continuous probability measure µ on Rd, measurable set B ⊂ Rd and ε > 0,
there exists a function f ∈ F such that the measure of the symmetric difference of B and the
set where f is positive is less than ε. The question was motivated by the investigation of the
theoretical properties of certain algorithms in machine learning.

Let A be a class of sets in Rd and define the symmetric convex hull of A as the class of
functions

absconv(A) =

{

k
∑

i=1

ai � Ai
(x) : k > 0, ai ∈ R,

k
∑

i=1

|ai| = 1, Ai ∈ A

}

where � A(x) denotes the indicator function of A. For every f ∈ absconv(A), define the set
Cf = {x ∈ Rd : f(x) > 0} and let C(A) = {Cf : f ∈ absconv(A)}. We say that absconv(A)
is rich with respect to the probability measure µ on Rd if for every ε > 0 and measurable set
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B ⊂ Rd there exists a C ∈ C(A) such that

µ(B4C) < ε

where B4C denotes the symmetric difference of B and C.
Another way of measuring the richness of a class of sets (rather than the density of the class
of sets) is the Vapnik-Chervonenkis (vc) dimension.

Definition 1 Let A be a class of subsets of Ω. We say that A shatters {x1, ..., xn} ⊂ Ω, if
for every I ⊂ {1, ..., n} there is a set AI ∈ A for which xi ∈ AI if i ∈ I and xi 6∈ AI if i 6∈ I.
The vc dimension of A is the largest cardinality of a subset of Ω, shattered by A.

The problem we investigate in this note is the following. What is the smallest integer V such
that there exists a class A of vc dimension V whose symmetric convex hull is rich with respect
to a “large” collection of probability measures on Rd? It is easy to construct classes of finite
vc dimension that are rich in this sense for all probability measures. For example, the class
of all linear halfspaces, which has vc dimension d+1, is also rich in the sense described above
([4, 6]).
The result of this note is that the minimal vc dimension guaranteeing richness of the symmetric
convex hull with respect to all absolutely continuous probability measures is independent of
the dimension d of the space.

Theorem 1 For any d ≥ 1, there exists a class A of measurable subsets of Rd of vc dimension
equal to one such that absconv(A) is rich with respect to all probability measures which are
absolutely continuous with respect to the Lebesgue measure on Rd.

The problem discussed here is motivated by recent results in Statistical Learning Theory,
where several efficient classification algorithms (e.g. “boosting” [9, 5] and “bagging” [2, 3])
form convex combinations of indicator functions of a small “base” class of sets. In order
to guarantee that the resulting classifier can approximate the optimal one regardless of the
distribution, the richness property described above is a necessary requirement, but the size of
the estimation error is determined primarily by the vc dimension of the base class (see [7], and
references therein). Therefore, it is desirable to use a base class with a vc dimension as small
as possible. For a direct motivation we refer the reader to [1], where a regularized boosting
algorithm is shown to have a rate of convergence faster than O(n−(V +2)/4(V +1)) for a large
class of distributions, which only depends on the richness of the convex hull.
The proof of Theorem 1 presented below is surprisingly simple. It differs from the original
proof we had which was based on the existence of a space-filling curve.
The first step in the proof is the well-known Borel isomorphism Theorem (see, e.g., [8], Theorem
16, page 409) which we recall here for completeness. For a metric space X, let B(X) be the
Borel σ-field. Recall that a mapping φ : (X,B(X)) → (Y,B(Y )) is a Borel equivalence if φ is
a one-to-one and onto mapping, such that φ and φ−1 map Borel sets to Borel sets.

Lemma 1 Let (X,B(X), µ) be a complete, separable metric measure space, where µ is a non-
atomic probability measure, and let λ be the Lebesgue measure on [0, 1]. Then there is a
mapping φ : [0, 1]→ X which is a measure-preserving Borel equivalence.

The proof of Theorem 1 follows almost immediately from the Lemma. Indeed, let A =
{[0, t] : t ∈ [0, 1]}. Note that vc(A) = 1, and it is well known (see, e.g., [1]) that absconv(A)
is rich. Let µ be the standard gaussian measure on Rd and let φ : ([0, 1],B([0, 1]), λ) →
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(Rd,B(Rd), µ) be the Borel isomorphism guaranteed by the Lemma. Set D = {φ(A) : A ∈ A},
and observe that since φ is one-to-one, we have vc(D) = 1. Moreover, f ∈ absconv(D) if and
only if f ◦ φ ∈ absconv(A), and for every such f ,

Cf =
{

x ∈ Rd : f(x) > 0
}

= φ ({t ∈ [0, 1] : f (φ(t)) > 0}) ,

implying that C(D) = {φ(U) : U ∈ C(A)}. The richness of D with respect to µ follows from
the fact that A is rich, and that the function φ is one-to-one and measure preserving. The
richness with respect to the Lebesgue measure follows by absolute continuity.
Note that Theorem 1 is true for much more general structures than Rd and measures that are
absolutely continuous, because the proof relies on the existence of the Borel isomorphism.
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