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Abstract
We state and prove a simple quantitative bound on the total variation distance after k iter-
ations between two Markov chains with different initial distributions but identical transition
probabilities. The result is a simplified and improved version of the result in Rosenthal (1995),
which also takes into account the ε-improvement of Roberts and Tweedie (1999), and which
follows as a special case of the more complicated time-inhomogeneous results of Douc et al.
(2002). However, the proof we present is very short and simple; and we feel that it is worth-
while to boil the proof down to its essence. This paper is purely expository; no new results are
presented.

1 Introduction

Let P be the transition kernel for a Markov chain defined on a state space X . Suppose we
run two different copies of the chain, {Xn} and {X ′

n}, started (independently or otherwise)
from two different initial distributions L(X0) and L(X ′

0). We are interested in quantitative
upper-bounds on the total variation distance between the two chains after k steps of the chain,
which is defined by

‖L(Xk) − L(X ′
k)‖TV ≡ sup

A⊆X
|P (Xk ∈ A) − P (X ′

k ∈ A)| .

Such quantitative bounds on convergence rates of Markov chains have been studied in various
forms by Meyn and Tweedie (1994), Rosenthal (1995), Roberts and Tweedie (1999), Jones
and Hobert (2001), Douc et al. (2002), and others. These investigations have been motivated
largely by interest in Markov chain Monte Carlo (MCMC) algorithms including the Gibbs
sampler and the Metropolis-Hastings algorithm (see e.g. Gilks et al., 1996), where convergence
bounds provide useful information about how long the algorithms must be run to achieve a
prescribed level of accuracy.
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In this paper, we present one such quantitative bound result. This result is a simplified
and improved version of the result in Rosenthal (1995), which also takes into account the ε-
improvement (i.e., replacing αB0 by B in the conclusion) of Roberts and Tweedie (1999). This
result follows directly as a special case of the more complicated time-inhomogeneous results of
Douc et al. (2002). However, the proof we present is very short and simple; and we feel that
it is worthwhile to boil the proof down to its essence.
This paper is purely expository; no new results are presented.

2 Assumptions and Statement of Result

Our result requires a minorisation condition of the form

P (x, ·) ≥ εν(·) x ∈ C , (1)

(i.e. P (x, A) ≥ εν(A) for all x ∈ C and all measurable A ⊆ X ), for some probability measure
ν(·) on X , some subset C ⊆ X , and some ε > 0.
It also requires a drift condition of the form

Ph(x, y) ≤ h(x, y) / α , (x, y) 6∈ C × C (2)

for some function h : X × X → [1,∞) and some α > 1, where

Ph(x, y) ≡
∫
X

∫
X

h(z, w)P (x, dz)P (y, dw) .

Finally, we let

B = max[1, α(1 − ε) sup
C×C

Rh] , (3)

where for (x, y) ∈ C × C,

Rh(x, y) =
∫
X

∫
X

(1 − ε)−2h(z, w) (P (x, dz) − εν(dz)) (P (y, dw) − εν(dw)) .

It is easily seen that B ≤ max[1, α(B0 − ε)] where B0 = sup(x,y)∈C×C P̂ h(x, y); here P̂ =
ε(ν × ν) + (1 − ε)R represents the joint updating of {(Xn, X ′

n)} in the proof below.
In terms of these assumptions, we state our result as follows.

Theorem 1. Consider a Markov chain on a state space X , having transition kernel P .
Suppose there is C ⊆ X , h : X × X → [1,∞), a probability distribution ν(·) on X , α > 1,
and ε > 0, such that (1) and (2) hold. Define B by (3). Then for any joint initial distribution
L(X0, X

′
0), and any integers 1 ≤ j ≤ k, if {Xn} and {X ′

n} are two copies of the Markov chain
started in the joint initial distribution L(X0, X

′
0), then

‖L(Xk) − L(X ′
k)‖TV ≤ (1 − ε)j + α−kBj−1 E[h(X0, X

′
0)] .
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3 Proof of Result

The proof uses a coupling approach. We begin by constructing {Xn} and {X ′
n} simultaneously

using a “splitting technique” (Athreya and Ney, 1978; Nummelin, 1984; Meyn and Tweedie,
1993) as follows.
Let X0 and X ′

0 be drawn jointly from their given initial distribution. We shall let dn be
the “bell variable” indicating whether or not the chains have coupled by time n. Begin with
dn = 0. For n = 0, 1, 2, . . ., proceed as follows. If dn = 1, then choose Xn+1 ∼ P (Xn, ·), and
set X ′

n+1 = Xn+1 and dn+1 = 1. If dn = 0 and (Xn, X ′
n) ∈ C × C, then flip (independently)

a coin with probability of heads ε. If the coin comes up heads, then choose a point x ∈
X from the distribution ν(·), and set Xn+1 = X ′

n+1 = x, and set dn+1 = 1. If the coin
comes up tails, then choose Xn+1 and X ′

n+1 independently according to the residual kernels
(1 − ε)−1(P (Xn, ·) − εν(·)) and (1 − ε)−1(P (X ′

n, ·) − εν(·)), respectively, and set dn+1 = 0.
Finally, if dn = 0 and (Xn, X ′

n) 6∈ C × C, then draw Xn+1 ∼ P (Xn, ·) and X ′
n+1 ∼ P (X ′

n, ·),
independently, and set dn+1 = 0.
It is then easily checked that Xn and X ′

n are each marginally updated according to the tran-
sition kernel P . Also, X ′

n = Xn whenever dn = 1. Hence, by the coupling inequality (e.g.
Pitman, 1976; Lindvall, 1992), we have

‖L(Xk) − L(X ′
k)‖TV ≤ P [Xk 6= X ′

k] ≤ P [dk = 0] . (4)

Now, let
Nk = #{m : 0 ≤ m ≤ k, (Xm, X ′

m) ∈ C × C} ,

and let τ1, τ2, . . . be the times of the successive visits of {(Xn, X ′
n)} to C × C. Then for any

integer j with 1 ≤ j ≤ k,

P [dk = 0] = P [dk = 0, Nk−1 ≥ j] + P [dk = 0, Nk−1 < j] . (5)

Now, the event {dk = 0, Nk−1 ≥ j} is contained in the event that the first j coin flips all came
up tails. Hence, P [dk = 0, Nk−1 ≥ j] ≤ (1 − ε)j . which bounds the first term in (5).
To bound the second term in (5), let

Mk = αkB−Nk−1h(Xk, X ′
k)1(dk = 0) , k = 0, 1, 2, . . .

(where N−1 = 0). We claim that

E[Mk+1 |X0, . . . , Xk, X ′
0, . . . , X

′
k, d0, . . . , dk] ≤ Mk ,

i.e. that {Mk} is a supermartingale. Indeed, from the Markov property,

E[Mk+1 |X0, . . . , Xk, X ′
0, . . . , X

′
k, d0, . . . , dk] = E[Mk+1 |Xk, X ′

k, dk] .

Then, if (Xk, X ′
k) 6∈ C × C, then Nk = Nk−1 and dk+1 = dk, so

E[Mk+1 |Xk, X ′
k, {T > k}] = αk+1B−Nk−1E[h(Xk+1, X

′
k+1) |Xk, X ′

k]1(dk = 0)

= Mk αE[h(Xk+1, X
′
k+1) |Xk, X ′

k] / h(Xk, X ′
k)

≤ Mk ,
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by (2). Similarly, if (Xk, X ′
k) ∈ C × C, then Nk = Nk−1 + 1, so assuming dk = 0 (since if

dk = 1 then dk+1 = 1 so the result is trivial), we have

E[Mk+1 |Xk, X ′
k, dk] = αk+1B−Nk−1−1E[h(Xk+1, X

′
k+1)1(dk+1 = 0) |Xk, X ′

k, dk]

= αk+1B−Nk−1−1(1 − ε)(Rh)(Xk, X ′
k)

= Mk α B−1(1 − ε)(Rh)(Xk, X ′
k)

≤ Mk ,

by (3). Hence, {Mk} is a supermartingale. Then, since B ≥ 1,

P [dk = 0, Nk−1 < j] = P [dk = 0, Nk−1 ≤ j − 1] ≤ P [dk = 0, B−Nk−1 ≥ B−(j−1)]

= P [1(dk = 0)B−Nk−1 ≥ B−(j−1)]

≤ Bj−1E[1(dk = 0)B−Nk−1 ] (by Markov’s inequality)

≤ Bj−1E[1(dk = 0)B−Nk−1 h(Xk, X ′
k)] (since h ≥ 1)

= α−kBj−1E[Mk] (by defn of Mk)

≤ α−kBj−1E[M0] (since {Mk} is supermartingale)

= α−kBj−1E[h(X0, X
′
0)] (by defn of M0) .

Theorem 1 now follows from combining these two bounds with (5) and (4).

4 Extensions and Applications

If P has a stationary distribution π(·), then in Theorem 1 we can choose L(X ′
0) = π(·), so

that L(X ′
k) = π(·) for all k. Theorem 1 then implies that

‖L(Xk) − π(·)‖TV ≤ (1 − ε)j + α−kBj−1 E[h(X0, X
′
0)] ,

where the expectation is now taken with respect to X ′
0 ∼ π(·). Furthermore, we can allow j

to grow with k, for example by setting j = brkc where 0 < r < 1, to make (1 − ε)j → 0 as
k → ∞.
The minorisation condition (1) can be relaxed to a pseudo-minorisation condition, where
the measure ν = νx,x′ may depend upon the pair (x, x′) ∈ C × C (Roberts and Rosenthal,
2000). More generally, the set C × C can be replaced by a non-rectangular ε-coupling set
C ⊆ X × X (Bickel and Ritov, 2002; Douc et al., 2002). Also, P and R need not update the
two components independently as they do above; it is required only that they have the correct
marginal distributions (Douc et al., 2002).
The joint drift condition (2) can be derived from univariate drift conditions of the form PV ≤
λV + b or PV ≤ λV + b 1C in various ways (see e.g. Rosenthal, 2001, Proposition 9); such
univariate drift conditions may be easier to identify in specific examples.
Extensions of Theorem 1 have been developed for stochastically monotone chains (Lund et al.,
1996; Roberts and Tweedie, 2000), for time-inhomogeneous chains (Douc et al., 2002; Bickel
and Ritov, 2002), for nearly-periodic chains (Rosenthal, 2001), and in the context of shift-
coupling (Aldous and Thorisson, 1993; Roberts and Rosenthal, 1997; Roberts and Tweedie,
1999).
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Versions of Theorem 1 have been applied to a number of simple Markov chain examples in
Meyn and Tweedie (1994), Rosenthal (1995), and Roberts and Tweedie (1999). They have
also been applied to more substantial examples of the Gibbs sampler, including a hierarchical
Poisson model (Rosenthal, 1995), a version of the variance components model (Rosenthal,
1996), and some other MCMC examples (Jones and Hobert, 2001). Furthermore, with the
aid of auxiliary simulation to only approximately verify (1) and (2), approximate versions
of Theorem 1 have been applied successfully to more complicated Gibbs sampler examples
(Cowles and Rosenthal, 1998; Cowles, 2001).
In spite of these successes in particular applications, it remains true that verifying (1) and (2)
for complicated Markov chains is usually a difficult task. Nevertheless, it is of clear theoretical,
and sometimes practical, importance to be able to identify convergence bounds solely in terms
of drift and minorisation conditions, as in Theorem 1.
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make use of the unpublished work of Douc et al. (2002). I thank the referees for very helpful
comments.
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