
Elect. Comm. in Probab. 7 (2002) 97–100 ELECTRONIC
COMMUNICATIONS
in PROBABILITY

SUBDIAGONAL AND ALMOST UNIFORM
DISTRIBUTIONS

PAUL RESSEL
Mathematisch - Geographische Fakultät, Katholische Universität Eichstätt, 85071 EICHSTÄTT,
Germany.
email: paul.ressel@ku-eichstaett.de

submitted July 30, 2001 Final version accepted September 10, 2001

AMS 2000 Subject classification: 60E99, 60E15, 46A55
Subdiagonal distribution, almost uniform distribution, exchangeable random order

Abstract
A distribution (function) F on [0, 1] with F (t) less or equal to t for all t is called subdiagonal.
The extreme subdiagonal distributions are identified as those whose distribution functions are
almost surely the identity, or equivalently for which F ◦F = F . There exists a close connection
to exchangeable random orders on {1, 2, 3, . . .}.
In connection with the characterization of exchangeable random total orders on N an interest-
ing class of probability distributions on [0, 1] arizes, the socalled almost uniform distributions,
defined as those w ∈M1

+([0, 1]) for which w({t ∈ [0, 1]|w([0, t]) = t}) = 1 , i.e. the distribution
function F of w is w–a.s. the identity. The space W of all almost uniform distributions
parametrizes in a canonical way the extreme exchangeable random total orders on N , as shown
in [1]. If ν is any probability measure on R with distribution function G , then the image
measure νG is almost uniform, see Lemma 3 in [1]. In this paper we show another interesting
“extreme” property of W : calling µ ∈M1

+([0, 1]) subdiagonal if µ([0, t]) ≤ t for all t ∈ [0, 1] ,
we prove that the compact and convex set K of all subdiagonal distributions on [0, 1] has
precisely the almost uniform distributions as extreme points. A simple example shows that K
is not a simplex.

Lemma. Let a < b, c < d and

C := {ϕ : [a, b] −→ [c, d] |ϕ non–decreasing, ϕ(a) = c, ϕ(b) = d} .

Then C is compact and convex (w.r. to the pointwise topology) and

ϕ ∈ ex(C) ⇐⇒ ϕ([a, b]) = {c, d} .
Proof. If ϕ([a, b]) = {c, d} then ϕ is obviously an extreme point. Suppose now that ϕ ∈ ex(C).
We begin with the simple statement that on [0, 1] all functions fα(x) := x + α(x − x2) , for
|α| ≤ 1 , are strictly increasing from 0 to 1. If ϕ ∈ C then ψ := (ϕ− c)/(d− c) increases on
[a, b] from 0 to 1, hence ψα := fα ◦ψ has the same property. So ϕα := (d− c)ψα + c increases
from c to d , i.e. ϕα ∈ C for |α| ≤ 1 ; note that ϕ = ϕ0 . Now ψ = 1

2 (ψα + ψ−α) and
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ϕ = 1
2 (ϕα + ϕ−α) which shows that ϕ is not extreme if ϕ 6= ϕα . We note the equivalences

(for α 6= 0)

ϕ = ϕα ⇐⇒ ψ = ψα ⇐⇒ fα(ψ(t)) = ψ(t) ∀ t ∈ [a, b]

⇐⇒ ψ([a, b]) = {0, 1}
⇐⇒ ϕ([a, b]) = {c, d} .

Hence ϕ ∈ ex(C) =⇒ ϕ = ϕα =⇒ ϕ([a, b]) = {c, d} , which was the assertion. 2

Remarks.

1.) If ϕ is right–continuous so are the ϕα .

2.) Since |fα(x) − x| ≤ |α|/4 we get the uniform estimate ||ϕα − ϕ|| ≤ (d− c) · |α|/4 .
3.) ϕα ≥ ϕ for α ≥ 0, ϕα ≤ ϕ for α ≤ 0 .

Both the classes of subdiagonal as well as almost uniform distributions being defined via
their distribution functions, we will now work directly with these and consider K as those
distribution functions F on [0, 1] for which F ≤ id. Theorem 2 in [1] can then be reformulated
as

W = {F ∈ K |F ◦ F = F} .
The announced result is the following:

Theorem. ex(K) = W .

Proof. “⊇”: Let F ∈ W , G,H ∈ K such that F = 1
2 (G +H) . We now make use of the

particular “shape” of almost uniform distribution functions: either t is a “diagonal point” of
F , i.e. F (t) = t , or t is contained in a “flat” of F , i.e. in an interval ]a, b[ on which F
has the constant value a , cf. Lemma 2 in [1]. If F (t) = t then certainly G(t) = H(t) = t as
well. If t is in the flat ]a, b[ of F then

F (t) = a = F (a) = G(a) = H(a)

so G(t) ≥ a and H(t) ≥ a and therefore G(t) = a = H(t) . We see that F = G = H , i.e.
F ∈ ex(K) .

“⊆”: Assume F ∈ K and F ◦ F 6= F ; we want to show that F 6∈ ex(K) . There is some
s ∈ [0, 1] such that F (F (s)) < F (s) , implying 0 < s < 1 and F (s) < s . We may and do
assume that F (t) < F (s) for all t < s , otherwise with s0 := inf{t < s|F (t) = F (s)} we
would still have

F (F (s0)) = F (F (s)) < F (s) = F (s0) .

We shall first consider the case that F is constant in a right neighbourhood of s , i.e. for
some v ∈]s, 1] we have F |[s, v[ ≡ F (s) , and again we may and do assume that v is maximal
with this property, i.e. F (v) > F (s) .
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If F (s−) < F (s) , then for sufficiently small ε > 0

G±(t) :=

{
F (t) ± ε, t ∈ [s, v[

F (t), else

are both subdiagonal, and F = 1
2 (G+ + G−) , so F 6∈ ex(K) . If F (s−) = F (s) we put

u := F (s) and have a non–degenerate interval [u, s] on which F increases from F (u) to u ,

and with F ([u, s]) ⊃
6= {F (u), F (s)} since F (t) < F (s) for t < s . We apply the Lemma and

Remark 1 to F |[u, s] and get right–continuous functions Fα : [u, s] −→ [F (u), u] increasing
from F (u) to u , |α| ≤ 1 , for which Fα 6= F if α 6= 0 . Put

Gα(t) :=

{
Fα(t), t ∈ [u, s]

F (t), else ,

then Gα is a distribution function for |α| ≤ 1 . Since F = 1
2 (Gα +G−α) we are done once

we know that Gα is subdiagonal for sufficiently small |α| . For this to hold we only need to
know that

(∗) infu≤t≤s(t− F (t)) > 0 ,

cf. Remark 2. Now by right continuity there is some t0 ∈ ]u, s[ such that F (t0) ≤ 1
2 (u+F (u)),

i.e.

t− F (t) ≥ u− u+ F (u)
2

=
u− F (u)

2
> 0

for t ∈ [u, t0] ; and for t ∈ [t0, s] we have F (t) ≤ F (s) = u and so t− F (t) ≥ t− u ≥ t0 − u .
Together this gives (∗) .

It remains to consider the case F (t) > F (s) for t > s . Choose v ∈ ]s, 1[ such that F (v) <
1
2 (s+F (s)). Then again F increases on [s, v] from F (s) to F (v) and F ([s, v]) ⊃

6= {F (s), F (v)}
as well as

inf
s≤t≤v

(t− F (t)) ≥ s− F (v) >
s− F (s)

2
> 0 ,

so that another application of the Lemma shows F to be not extreme in K . 2

In order to see that K is not a simplex, consider the following four almost uniform distribution
functions F1, ...F4 , determined by their resp. set of diagonal points D1, ..., D4 :

D1 := {0, 1} ∪ [
1
4 ,

3
4

]
D2 :=

[
0, 1

4

] ∪ {
1
2

} ∪ [
3
4 , 1

]
D3 :=

[
0, 1

4

] ∪ [
1
2 ,

3
4

] ∪ {1}

D4 := {0} ∪ [
1
4 ,

1
2

] ∪ [
3
4 , 1

]
.
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Then

1
2 (F1 + F2) = 1

2 (F3 + F4) = 1
2 id+ 1

8

(
1[ 1

4 ,1] + 1[ 1
2 ,1] + 1[ 3

4 ,1] + 1{1}
)
∈ K ,

so the integral representation in K is not unique.

Let us shortly describe the connection of the above theorem to exchangeable random orders.
A (total) order (on N always) is a subset V ⊆ N × N) with (j, j) ∈ V for all j ∈ N , with
(i, j), (j, k) ∈ V =⇒ (i, k) ∈ V , and such that either (j, k) or (k, j) ∈ V for all j, k ∈ N . The
set V of all total orders is compact and metrisable in its natural topology, and a probability
measure µ on V is called exchangeable if it is invariant under the canonical action of all
finite permutations of N (see [1] for a more detailed description). A particular class of such
measures arises in this way: let X1, X2, ... be an iid–sequence with a distribution w ∈ W .
For any ∅ 6= U ⊆ N

2 put

µw({V ∈ V|U ⊆ V }) := P (Xj ≤ Xk ∀ (j, k) ∈ U)

This defines (uniquely) an exchangeable random total order, and the main result in [1] shows
that {µw|w ∈ W} is the extreme boundary of the compact and convex set of all exchangeable
random total orders (on N ), which furthermore is a simplex.

Now, given some exchangeable random total order µ , there is a unique probability measure
ν on W such that

µ =
∫
µw dν(w) ,

and ν determines the subdiagonal distribution

ν(B) :=
∫
w(B) dν(w), B ∈ IB ∩ [0, 1] ,

which in a way is the ”first moment measure“ of ν .

One might believe that only very ”simple“ probability values depend on ν via ν , but in
fact, due to the defining property of almost uniform distributions, also many ”higher order“
probabilities have this property. For example

µ(1 � 2) = µ({V ∈ V|(1, 2) ∈ V })

=
∫
µw(1 � 2) dν(w)

=
∫
w ⊗ w(X1 ≤ X2) dν(w)

=
∫ ∫

w(X1 ≤ x2) dw(x2) dν(w)

=
∫ ∫

x2 dw(x2) dν(w)

=
∫ 1

0

x dν̄(x) ,

where X1, X2 : [0, 1]2 −→ [0, 1] denote the two projections.
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More generally, for different j, j1, ..., jn ∈ N

µ(j1 � j, j2 � j, ..., jn � j)

= µ({V ∈ V|(ji, j) ∈ V for i = 1, ..., n})

=
∫
wn+1(Xj1 ≤ Xj , ..., Xjn ≤ Xj) dν(w)

=
∫ ∫

wn(Xj1 ≤ x, ..., Xjn ≤ x) dw(x) dν(w)

=
∫ ∫

(w([0, x]))n dw(x) dν(w)

=
∫ ∫

xn dw(x) dν(w)

=
∫ 1

0

xn dν̄(x)

still is a function of ν̄ .
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