SUBDIAGONAL AND ALMOST UNIFORM DISTRIBUTIONS

PAUL RESSEL
Mathematisch - Geographische Fakultät, Katholische Universität Eichstätt, 85071 EICHSTÄTT, Germany.
email: paul.ressel@ku-eichstaett.de

submitted July 30, 2001 Final version accepted September 10, 2001
AMS 2000 Subject classification: 60E99, 60E15, 46A55
Subdiagonal distribution, almost uniform distribution, exchangeable random order

Abstract

A distribution (function) F on $[0,1]$ with $F(t)$ less or equal to t for all t is called subdiagonal. The extreme subdiagonal distributions are identified as those whose distribution functions are almost surely the identity, or equivalently for which $F \circ F=F$. There exists a close connection to exchangeable random orders on $\{1,2,3, \ldots\}$.
In connection with the characterization of exchangeable random total orders on \mathbb{N} an interesting class of probability distributions on $[0,1]$ arizes, the socalled almost uniform distributions, defined as those $w \in M_{+}^{1}([0,1])$ for which $w(\{t \in[0,1] \mid w([0, t])=t\})=1$, i.e. the distribution function F of w is w-a.s. the identity. The space \mathcal{W} of all almost uniform distributions parametrizes in a canonical way the extreme exchangeable random total orders on \mathbb{N}, as shown in [1]. If ν is any probability measure on \mathbb{R} with distribution function G, then the image measure ν^{G} is almost uniform, see Lemma 3 in [1]. In this paper we show another interesting "extreme" property of \mathcal{W} : calling $\mu \in M_{+}^{1}([0,1])$ subdiagonal if $\mu([0, t]) \leq t$ for all $t \in[0,1]$, we prove that the compact and convex set \mathcal{K} of all subdiagonal distributions on $[0,1]$ has precisely the almost uniform distributions as extreme points. A simple example shows that \mathcal{K} is not a simplex.

Lemma. Let $a<b, c<d$ and

$$
C:=\{\varphi:[a, b] \longrightarrow[c, d] \mid \varphi \text { non-decreasing, } \varphi(a)=c, \varphi(b)=d\}
$$

Then C is compact and convex (w.r. to the pointwise topology) and

$$
\varphi \in e x(C) \Longleftrightarrow \varphi([a, b])=\{c, d\}
$$

Proof. If $\varphi([a, b])=\{c, d\}$ then φ is obviously an extreme point. Suppose now that $\varphi \in e x(C)$. We begin with the simple statement that on $[0,1]$ all functions $f_{\alpha}(x):=x+\alpha\left(x-x^{2}\right)$, for $|\alpha| \leq 1$, are strictly increasing from 0 to 1 . If $\varphi \in C$ then $\psi:=(\varphi-c) /(d-c)$ increases on $[a, b]$ from 0 to 1 , hence $\psi_{\alpha}:=f_{\alpha} \circ \psi$ has the same property. So $\varphi_{\alpha}:=(d-c) \psi_{\alpha}+c$ increases from c to d, i.e. $\varphi_{\alpha} \in C$ for $|\alpha| \leq 1$; note that $\varphi=\varphi_{0}$. Now $\psi=\frac{1}{2}\left(\psi_{\alpha}+\psi_{-\alpha}\right)$ and
$\varphi=\frac{1}{2}\left(\varphi_{\alpha}+\varphi_{-\alpha}\right)$ which shows that φ is not extreme if $\varphi \neq \varphi_{\alpha}$. We note the equivalences (for $\alpha \neq 0$)

$$
\begin{aligned}
\varphi=\varphi_{\alpha} & \Longleftrightarrow \psi=\psi_{\alpha} \Longleftrightarrow f_{\alpha}(\psi(t))=\psi(t) \quad \forall t \in[a, b] \\
& \Longleftrightarrow \psi([a, b])=\{0,1\} \\
& \Longleftrightarrow \varphi([a, b])=\{c, d\} .
\end{aligned}
$$

Hence $\varphi \in e x(C) \Longrightarrow \varphi=\varphi_{\alpha} \Longrightarrow \varphi([a, b])=\{c, d\}$, which was the assertion.

Remarks.

1.) If φ is right-continuous so are the φ_{α}.
2.) Since $\left|f_{\alpha}(x)-x\right| \leq|\alpha| / 4$ we get the uniform estimate $\left\|\varphi_{\alpha}-\varphi\right\| \leq(d-c) \cdot|\alpha| / 4$.
3.) $\varphi_{\alpha} \geq \varphi$ for $\alpha \geq 0, \varphi_{\alpha} \leq \varphi$ for $\alpha \leq 0$.

Both the classes of subdiagonal as well as almost uniform distributions being defined via their distribution functions, we will now work directly with these and consider \mathcal{K} as those distribution functions F on $[0,1]$ for which $F \leq i d$. Theorem 2 in [1] can then be reformulated as

$$
\mathcal{W}=\{F \in \mathcal{K} \mid F \circ F=F\}
$$

The announced result is the following:
Theorem. $\quad e x(\mathcal{K})=\mathcal{W}$.
Proof. "?": Let $F \in \mathcal{W}, G, H \in \mathcal{K}$ such that $F=\frac{1}{2}(G+H)$. We now make use of the particular "shape" of almost uniform distribution functions: either t is a "diagonal point" of F, i.e. $F(t)=t$, or t is contained in a "flat" of F, i.e. in an interval $] a, b[$ on which F has the constant value a, cf. Lemma 2 in [1]. If $F(t)=t$ then certainly $G(t)=H(t)=t$ as well. If t is in the flat $] a, b[$ of F then

$$
F(t)=a=F(a)=G(a)=H(a)
$$

so $G(t) \geq a$ and $H(t) \geq a$ and therefore $G(t)=a=H(t)$. We see that $F=G=H$, i.e. $F \in e x(\mathcal{K})$.
" \subseteq ": Assume $F \in \mathcal{K}$ and $F \circ F \neq F$; we want to show that $F \notin \operatorname{ex}(\mathcal{K})$. There is some $s \in[0,1]$ such that $F(F(s))<F(s)$, implying $0<s<1$ and $F(s)<s$. We may and do assume that $F(t)<F(s)$ for all $t<s$, otherwise with $s_{0}:=\inf \{t<s \mid F(t)=F(s)\}$ we would still have

$$
F\left(F\left(s_{0}\right)\right)=F(F(s))<F(s)=F\left(s_{0}\right)
$$

We shall first consider the case that F is constant in a right neighbourhood of s, i.e. for some $v \in] s, 1]$ we have $F \mid[s, v[\equiv F(s)$, and again we may and do assume that v is maximal with this property, i.e. $F(v)>F(s)$.

If $F(s-)<F(s)$, then for sufficiently small $\varepsilon>0$

$$
G_{ \pm}(t):=\left\{\begin{array}{l}
F(t) \pm \varepsilon, t \in[s, v[\\
F(t), \text { else }
\end{array}\right.
$$

are both subdiagonal, and $F=\frac{1}{2}\left(G_{+}+G_{-}\right)$, so $F \notin e x(\mathcal{K})$. If $F(s-)=F(s)$ we put $u:=F(s)$ and have a non-degenerate interval $[u, s]$ on which F increases from $F(u)$ to u, and with $F([u, s]) \underset{\neq}{\supset}\{F(u), F(s)\}$ since $F(t)<F(s)$ for $t<s$. We apply the Lemma and Remark 1 to $F \mid[u, s]$ and get right-continuous functions $F_{\alpha}:[u, s] \longrightarrow[F(u), u]$ increasing from $F(u)$ to $u,|\alpha| \leq 1$, for which $F_{\alpha} \neq F$ if $\alpha \neq 0$. Put

$$
G_{\alpha}(t):= \begin{cases}F_{\alpha}(t), & t \in[u, s] \\ F(t), & \text { else }\end{cases}
$$

then G_{α} is a distribution function for $|\alpha| \leq 1$. Since $F=\frac{1}{2}\left(G_{\alpha}+G_{-\alpha}\right)$ we are done once we know that G_{α} is subdiagonal for sufficiently small $|\alpha|$. For this to hold we only need to know that

$$
\begin{equation*}
\inf _{u \leq t \leq s}(t-F(t))>0 \tag{*}
\end{equation*}
$$

cf. Remark 2. Now by right continuity there is some $\left.t_{0} \in\right] u, s\left[\right.$ such that $F\left(t_{0}\right) \leq \frac{1}{2}(u+F(u))$, i.e.

$$
t-F(t) \geq u-\frac{u+F(u)}{2}=\frac{u-F(u)}{2}>0
$$

for $t \in\left[u, t_{0}\right]$; and for $t \in\left[t_{0}, s\right]$ we have $F(t) \leq F(s)=u$ and so $t-F(t) \geq t-u \geq t_{0}-u$. Together this gives ($*$).

It remains to consider the case $F(t)>F(s)$ for $t>s$. Choose $v \in] s, 1[$ such that $F(v)<$ $\frac{1}{2}(s+F(s))$. Then again F increases on $[s, v]$ from $F(s)$ to $F(v)$ and $F([s, v]) \xrightarrow{\ngtr}\{F(s), F(v)\}$ as well as

$$
\inf _{s \leq t \leq v}(t-F(t)) \geq s-F(v)>\frac{s-F(s)}{2}>0
$$

so that another application of the Lemma shows F to be not extreme in \mathcal{K}.
In order to see that \mathcal{K} is not a simplex, consider the following four almost uniform distribution functions $F_{1}, \ldots F_{4}$, determined by their resp. set of diagonal points D_{1}, \ldots, D_{4} :

$$
\begin{aligned}
D_{1} & :=\{0,1\} \cup\left[\frac{1}{4}, \frac{3}{4}\right] \\
D_{2} & :=\left[0, \frac{1}{4}\right] \cup\left\{\frac{1}{2}\right\} \cup\left[\frac{3}{4}, 1\right] \\
D_{3} & :=\left[0, \frac{1}{4}\right] \cup\left[\frac{1}{2}, \frac{3}{4}\right] \cup\{1\} \\
D_{4} & :=\{0\} \cup\left[\frac{1}{4}, \frac{1}{2}\right] \cup\left[\frac{3}{4}, 1\right] .
\end{aligned}
$$

Then

$$
\frac{1}{2}\left(F_{1}+F_{2}\right)=\frac{1}{2}\left(F_{3}+F_{4}\right)=\frac{1}{2} i d+\frac{1}{8}\left(1_{\left[\frac{1}{4}, 1\right]}+1_{\left[\frac{1}{2}, 1\right]}+1_{\left[\frac{3}{4}, 1\right]}+1_{\{1\}}\right) \in \mathcal{K},
$$

so the integral representation in \mathcal{K} is not unique.
Let us shortly describe the connection of the above theorem to exchangeable random orders. A (total) order (on \mathbb{N} always) is a subset $V \subseteq \mathbb{N} \times \mathbb{N}$) with $(j, j) \in V$ for all $j \in \mathbb{N}$, with $(i, j),(j, k) \in V \Longrightarrow(i, k) \in V$, and such that either (j, k) or $(k, j) \in V$ for all $j, k \in \mathbb{N}$. The set \mathcal{V} of all total orders is compact and metrisable in its natural topology, and a probability measure μ on \mathcal{V} is called exchangeable if it is invariant under the canonical action of all finite permutations of \mathbb{N} (see [1] for a more detailed description). A particular class of such measures arises in this way: let X_{1}, X_{2}, \ldots be an iid-sequence with a distribution $w \in \mathcal{W}$. For any $\emptyset \neq U \subseteq \mathbb{N}^{2}$ put

$$
\mu_{w}(\{V \in \mathcal{V} \mid U \subseteq V\}):=P\left(X_{j} \leq X_{k} \forall(j, k) \in U\right)
$$

This defines (uniquely) an exchangeable random total order, and the main result in [1] shows that $\left\{\mu_{w} \mid w \in \mathcal{W}\right\}$ is the extreme boundary of the compact and convex set of all exchangeable random total orders (on \mathbb{N}), which furthermore is a simplex.

Now, given some exchangeable random total order μ, there is a unique probability measure ν on \mathcal{W} such that

$$
\mu=\int \mu_{w} d \nu(w),
$$

and ν determines the subdiagonal distribution

$$
\bar{\nu}(B):=\int w(B) d \nu(w), \quad B \in \mathbb{B} \cap[0,1],
$$

which in a way is the "first moment measure" of ν.
One might believe that only very „simple" probability values depend on ν via $\bar{\nu}$, but in fact, due to the defining property of almost uniform distributions, also many „higher order" probabilities have this property. For example

$$
\begin{aligned}
\mu(1 \preceq 2) & =\mu(\{V \in \mathcal{V} \mid(1,2) \in V\}) \\
& =\int \mu_{w}(1 \preceq 2) d \nu(w) \\
& =\int w \otimes w\left(X_{1} \leq X_{2}\right) d \nu(w) \\
& =\iint w\left(X_{1} \leq x_{2}\right) d w\left(x_{2}\right) d \nu(w) \\
& =\iint x_{2} d w\left(x_{2}\right) d \nu(w) \\
& =\int_{0}^{1} x d \bar{\nu}(x),
\end{aligned}
$$

where $X_{1}, X_{2}:[0,1]^{2} \longrightarrow[0,1]$ denote the two projections.

More generally, for different $j, j_{1}, \ldots, j_{n} \in \mathbb{N}$

$$
\begin{aligned}
& \mu\left(j_{1} \preceq j, j_{2} \preceq j, \ldots, j_{n} \preceq j\right) \\
& =\mu\left(\left\{V \in \mathcal{V} \mid\left(j_{i}, j\right) \in V \text { for } i=1, \ldots, n\right\}\right) \\
& =\int w^{n+1}\left(X_{j_{1}} \leq X_{j}, \ldots, X_{j_{n}} \leq X_{j}\right) d \nu(w) \\
& =\iint w^{n}\left(X_{j_{1}} \leq x, \ldots, X_{j_{n}} \leq x\right) d w(x) d \nu(w) \\
& =\iint(w([0, x]))^{n} d w(x) d \nu(w) \\
& =\iint x^{n} d w(x) d \nu(w) \\
& =\int_{0}^{1} x^{n} d \bar{\nu}(x)
\end{aligned}
$$

still is a function of $\bar{\nu}$.

References.

[1] Hirth, U. and Ressel, P.: Exchangeable Random Orders and Almost Uniform Distributions. J. Theoretical Probability, Vol. 13 n o 3, 2000, pp. $609-634$.

