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Abstract
We present a class of processes which enjoy an exponential analogue of Pitman’s 2M-X theorem,
improving hence some works of H. Matsumoto and M. Yor.

1 Introduction

In a recent series of papers [6-13], H. Matsumoto and M. Yor have shown the following theorem:

Theorem 1 Let e
(µ)
t := exp(Bt +µt), t ≥ 0, a geometric Brownian motion with drift µ ∈ R∗

+ .
The following identity (called Dufresne identity) holds( 1∫ t

0
(e(−µ)

s )2ds
, t > 0

)
law=

1∫ t

0
(e(µ)

s )2ds
+

1∫ +∞
0

(ẽ(−µ)
s )2ds

, t > 0
)

where
∫ +∞
0 (ẽ(−µ)

s )2ds is a copy of
∫ +∞
0 (e(−µ)

s )2ds independent of the process
(∫ t

0 (e(µ)
s )2ds

)
t≥0

.

Moreover, the process
∫ t
0 (e(µ)

s )2ds

e
(µ)
t

, t ≥ 0, is, in its own filtration which is strictly included in

the original Brownian filtration, a diffusion with infinitesimal generator

G =
1
2
x2 d2

dx2
+
[(− µ +

1
2
)
x +

K1+µ

Kµ

( 1
x

)] d

dx

As shown in [9], by an elementary Laplace method argument, this theorem allows to recover
the classical 2M − X Pitman’s theorem.
In this work, we show that theorem 1 can be extended to a large class of processes which
are constructed from the geometric Brownian motion by a simple transformation and which
satisfy a generalized Dufresne identity (originally discussed in [5] and [10]).
This paper is essentially self-contained and contains a new proof of theorem 1.
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2 Diffusions for which (X−1
t

∫ t

0 X2
s ds)t≥0 is also a diffusion

Let (Ω, (Ft)t≥0 , P) a filtered probability space on which a standard Brownian motion (Bt)t≥0

and Z a positive F∞ -measurable variable independent of the process (Bt)t≥0 are defined.
In [6], C. Donati-Martin, H. Matsumoto and M. Yor introduced the following transforms from
C (R+ ,R) to itself

Tα (φ)t = φ (t) − ln
(

1 + α

∫ t

0

exp (2φ (s)) ds

)
In their paper these authors have shown that if the law of Z is equivalent to the Lebesgue
measure, then the laws of the processes TZ

(
B(µ)

)
s
, s ≤ t, and B

(µ)
s = Bs + µs, s ≤ t are

equivalent.
In what follows we study TZ

(
B(µ)

)
in its own filtration and we characterize the variables Z

such that TZ

(
B(µ)

)
is a diffusion. As a consequence of this characterization, we will be able

to give a new proof of Matsumoto-Yor’s theorem 1. More precisely, in all this paper, we deal
with the process (Xt)t≥0 defined as follows

Xt =
e
(µ)
t

1 + Z
∫ t

0
(e(µ)

s )2ds
, t ≥ 0

where e
(µ)
t := x0 exp(Bt + µt), t ≥ 0, is the geometric Brownian motion with drift µ ∈ R∗

+ and
started at x0 > 0.

Proposition 2 The process (
∫ t

0 X2
sds)t≥0 converges P a.s. when t → +∞ to 1

Z and the
following generalized Dufresne identity holds:( 1∫ t

0
X2

s ds
, t > 0

)
a.s.=
( 1∫ t

0
(e(µ)

s )2ds
+ Z , t > 0

)
Moreover, ( Xt∫ t

0
X2

sds
, t > 0

)
a.s.=
( e

(µ)
t∫ t

0 (e(µ)
s )2ds

, t > 0
)
,

thus ( Xt∫
t
0 X2

s ds
, t > 0) is independent of

∫ +∞
0 X2

s ds.

Theorem 3 Assume that the law of Z admits a bounded C2 density with respect to the law
2
x2
0
γµ. Then (Xt)t≥0 is a diffusion in its own filtration if and only if there exists δ ≥ 0 such

that:

P (Z ∈ dx) =
xµ

0

2δµKµ (δx0)
xµ−1e−

δ2
2x− x2

0
2 xdx , x > 0 (2.1)

Moreover, in this case there exists a standard Brownian motion (βt)t≥0 adapted to the natural
filtration of (Xt)t≥0 such that

dXt = Xt

[(
µ +

1
2
− δXt

K1+µ (δXt)
Kµ (δXt)

)
dt + dβt

]
, t ≥ 0 (2.2)
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Remark 4 For δ = 0, Z
law= 2

x2
0
γµ and (2.2) becomes

dXt = Xt

[(− µ +
1
2
)
dt + dβt

]
, t ≥ 0

Corollary 5 The process Zt :=
∫

t
0 X2

s ds

Xt
, t ≥ 0, is, in its own filtration, a diffusion independent

of
∫ +∞
0

X2
s ds with infinitesimal generator

Gx0 =
1
2
x2 d2

dx2
+
[(− µ +

1
2
)
x + x0

K1+µ

Kµ

(x0

x

)] d

dx

Moreover, under the assumption (2.1) , for t > 0 and x, z > 0

P (Xt ∈ dx | Zt, Zt = z) =
( x

x0

)2µ Kµ(δx)
Kµ(δx0)

e−
δ2
2 zx− 1

2z

(
x

x0
+

x0
x

)
dx

2xKµ

(
1
z

)
where (Zt)t≥0 is the natural filtration of (Zt)t≥0 = (

∫
t
0 X2

s ds

Xt
)t≥0.

Proposition 6 Under the assumption (2.1), for all t ≥ 0

E
( X2

t∫ +∞
t

X2
sds

− δ2

∫ +∞

t

X2
sds

∣∣∣Xt

)
= 2µ (2.3)

where (Xt)t≥0 is the natural filtration of (Xt)t≥0.

In the following remarks, we assume that (2.1) is satisfied for some δ ≥ 0.

Remark 7

1. We recall the definition of the Mac-Donald function

Kµ (x) =
1
2

(x

2

)µ
∫ +∞

0

e−t− x2
4t

t1+µ
dt

but for further details, we refer to [7].

2. The law (2.1) is called a generalized inverse Gaussian distribution. These laws have been
widely discussed by Barndorff-Nielsen [1], Letac-Wesolowski [8], Matsumoto-Yor [12],
and Vallois [19] among others.

3. We get the theorem 1.1. by taking δ = 0, because in this case

(Xt , t ≥ 0) law= (e(−µ)
t , t ≥ 0)

4. The stochastic differential equation (2.2) solved by (Xt)t≥0, enjoys the pathwise unique-
ness property. Indeed, a simple computation shows that a scale function is given by

s(x) =
Iµ

Kµ
(δx)
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where Iµ is the classical modified Bessel function with index µ. Using Wronskian relation
for Bessel functions, we get then the speed measure

m (dx) = − 2
x

Kµ (δx)2 dx

And finally, Feller’s test for explosions (see for example [17] pp.386) gives

P (e = +∞) = 1

where e is the lifetime of a solution.

5. If we apply Itô’s formula conditionally to Z, we see that in the natural filtration of (Xt)t≥0

enlarged by
∫ +∞
0

X2
sds the process (Xt)t≥0 is a semimartingale whose decomposition is

dXt = Xt

[(
µ +

1
2
− X2

t∫ +∞
t X2

s ds

)
dt + dBt

]
, t ≥ 0

6. For µ = 1
2 , (2.2) becomes

dXt = −δX2
t dt + Xtdβt

and this equation is solved by

Xt =
x0e

− 1
2 t+βt

1 + δx0

∫ t

0 e−
1
2 s+βsds

, t ≥ 0

We have then the following surprising identity in law(
x0e

− 1
2 t+βt

1 + δx0

∫ t

0
e−

1
2 s+βsds

, t ≥ 0

)
law=

(
x0e

1
2 t+Bt

1 + Zx2
0

∫ t

0
es+2Bsds

, t ≥ 0

)
for which it would be interesting to have a direct proof.
For µ 6= 1

2 , it seems difficult to solve explicitly the equation (2.2) , even in the case
µ = n + 1

2 , with n ∈ N. Let us just mention that

Xt =
x0e

−µt+βt

1 + δx0

∫ t

0 e−µs+βsds

solves

dXt =
[(− µ +

1
2
)
Xt − δX2

t

]
dt + Xtdβt

which coincides with (2.2) if and only if µ = 1
2 .

7. The process (ρt)t≥0 related to (Xt)t≥0 by the Lamperti’s relation Xt = ρ∫ t
0 X2

s ds, t ≥ 0,

is a well-known diffusion discussed in [11], [15], [16], and [20] the BES (µ, δ ↓) process,
i.e. the diffusion process with the infinitesimal generator

1
2

d2

dx2
+
(

µ + 1
2

x
− δ

K1+µ (δx)
Kµ (δx)

)
d

dx

From [6] (see also [3]), it implies then that there exists a Bessel process Q with index µ,
starting at x0 and independent of the first hitting T0 of 0 for ρ such that

(ρt, t < T0)
law=
((

1 − t

T0

)
Q T0t

T0−t
, t < T0

)
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3 Proofs

Proof of proposition 2
This proof is very simple and inspired from [6].
As

Xt =
e
(µ)
t

1 + Z
∫ t

0 (e(µ)
s )2ds

, t ≥ 0 (3.1)

we have

X2
t =

( e
(µ)
t

1 + Z
∫ t

0 (e(µ)
s )2ds

)2

, t ≥ 0

and hence ∫ t

0

X2
s ds =

∫ t

0
(e(µ)

s )2ds

1 + Z
∫ t

0 (e(µ)
s )2ds

, t ≥ 0 (3.2)

This equality implies immediately the P−a.s. convergence of the process
∫ t

0
X2

sds, t ≥ 0, to
1
Z , it also implies

1∫ t

0 X2
s ds

=
1∫ t

0 (e(µ)
s )2ds

+ Z , t > 0

Finally, by dividing (3.2) by (3.1), we deduce∫ t

0
X2

s ds

Xt
=

∫ t

0
(e(µ)

s )2ds

e
(µ)
t

, t ≥ 0

Proof of theorem 3
Let us set in all the proof

Y =
1
Z

=
∫ +∞

0

X2
sds

Let now y > 0 and denote Qy the law of the process (Xt)t≥0 conditioned with Y = y.
From theorem 1.5. of [6], we see that the following absolute continuity relation takes place

dQy
/Ξt

=
(χt

x0

)2µ
( y

y − ∫ t

0 χ2
sds

)1+µ

e
x2
0

2y − χ2
t

2(y−∫ t
0 χ2

sds) 1∫ t
0 χ2

sds<y dP−µ
/Ξt

, t ≥ 0

where (χt)t≥0 is the coordinate process, (Ξt)t≥0 its natural filtration, and P−µ the law of the
process (x0 exp (−µt + Bt))t≥0. By integrating this absolute continuity relation with respect
to the law of Y, i.e.

P (Y ∈ dx) =
x2µ

0 ξ (x)
2µΓ (µ)

e−
x2
0

2x

x1+µ
dx , x > 0

where ξ is the bounded density of Y with respect to 2
x2
0γµ

, we deduce after some elementary
computation that the law Q of our process (Xt)t≥0 satisfies the following equivalence relation

dQ/Ξt
=
(∫ +∞

0

e−uuµ−1

Γ (µ)
ξ

(∫ t

0

χ2
sds +

χ2
t

2u

)
du

)
dP−µ

/Ξt
, t ≥ 0 (3.3)
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Hence, by Girsanov theorem, if X is a diffusion in its own filtration, then the infinitesimal
generator of this diffusion can be written

L =
1
2
x2 d

dx2
+ x

(
−µ +

1
2

+ xb (x)
)

d

dx

where b : R∗
+ → R is related to

ϕ (t, x) =
∫ +∞

0

e−uuµ−1

Γ (µ)
ξ

(
t +

x2

2u

)
du

by the Hopf-Cole transformation

b =
∂

∂x
lnϕ (3.4)

From (3.4) the homogeneity of b implies that there exist two functions f and g such that

ϕ (t, x) = f (x) g (t) , t, x > 0

but ϕ is a solution of the following partial differential equation

∂ϕ

∂t
+

1
2

∂2ϕ

∂x2
+

−µ + 1
2

x

∂ϕ

∂x
= 0

it immediately implies that there exists a constant C such that

g (t) = eCt

We note now that the constant C is negative, because ξ is bounded and we have the limit
condition

lim
x→0+

ϕ (t, x) = ξ (t) (3.5)

Denote the constant C by − δ2

2 with δ ∈ R+ and conclude that

P (Y ∈ dx) =
xµ

0

2δµKµ (δx0)
e−

δ2
2 x−x2

0
2x

x1+µ
dx , x > 0

It proves the first part of our theorem.
On the other hand, if (2.1) is satisfied the following equivalence relation takes place (it suffices
to use the equivalence relation (3.3))

dQ/Ξt
= e−

δ2
2

∫ t
0 χ2

sds

(
χt

x0

)µ
Kµ (δχt)
Kµ (δx0)

dP−µ
/Ξt

, t ≥ 0 (3.6)

which implies, by Girsanov theorem

dXt = Xt

[(
µ +

1
2
− δXt

K1+µ (δXt)
Kµ (δXt)

)
dt + dβt

]
, t ≥ 0

where (βt)t≥0 is a P standard Brownian motion adapted to the natural filtration of (Xt)t≥0.

Proof of corollary 5
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Let δ > 0.
Let us consider a sequence (Zn)n>0 of random variables independent of (Bt)t≥0 and such that

P (Zn ∈ dx) =
nµ

2δµKµ (δn)
xµ−1e−

δ2
2x−n2

2 xdx , x > 0

We associate with this sequence (Zn)n>0 the sequence of processes
(
X

(n)
t

)
t≥0

defined by

X
(n)
t =

n exp (Bt + µt)

1 + Znn2
∫ t

0
exp (2Bs + 2µs)ds

, t ≥ 0

We have
1

X
(n)
t

=
1
n

exp (−Bt − µt) + Znn

∫ t

0
exp (2Bs + 2µs) ds

exp (Bt + µt)

But, one can show that

nZn
law→n→+∞ δ

hence (
1

X
(n)
t

, t ≥ 0

)
→law

n→+∞

(
δ

∫ t

0
exp (2Bs + 2µs) ds

exp (Bt + µt)
, t ≥ 0

)

On the other hand, from theorem 3,
(

1

X
(n)
t

, t ≥ 0
)

is a diffusion with infinitesimal generator

Gδ =
1
2
x2 d2

dx2
+
[(

−µ +
1
2

)
x + δ

K1+µ

Kµ

(
δ

x

)]
d

dx

Now, to conclude the proof of the first part of the corollary, we use proposition 2 which asserts
that ∫ t

0 X2
s ds

Xt
=

∫ t

0

(
e
(µ)
s

)2

ds

e
(µ)
t

, t ≥ 0

The computation of the conditional probabilities is easily deduced from (3.6) and proposition
6 of [9], by a change of probability, namely the absolute continuity (3.6).

Proof of proposition 6
A simple computation shows that for t ≥ 0

Dt

∫ +∞

0

e2χs−2µsds = 2
∫ +∞

t

e2χs−2µsds

where D is the Malliavin’s differential and (χt)t≥0 the coordinate process on the Wiener space.

Clark-Ocone’s formula (see [4]) applied to exp{− δ2

2

∫ +∞
0

e2χs−2µsds} implies then that for all
t ≥ 0

E

(∫ +∞

t

X2
sds | Xt

)
=

Xt

δ

K1+µ (δXt)
Kµ (δXt)

− 2µ

δ2
(3.7)
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As noticed in the remarks of section 2, in the enlarged filtration
(
Xt ∨ σ

(∫ +∞
0 X2

s ds
))

t≥0
,

our process (Xt)t≥0 is a semimartingale whose decomposition is

dXt = Xt

[(
µ +

1
2
− X2

t∫ +∞
t X2

s ds

)
dt + dBt

]
, t ≥ 0

By projecting this decomposition on (Xt)t≥0, using the classical filtering formulas, we get

E
( 1∫ +∞

t X2
s ds

∣∣∣Xt

)
=

δ

Xt

K1+µ(δXt)
Kµ(δXt)

(3.8)

And finally, (3.7) and (3.8) imply (2.3)

4 Opening

To conclude the paper, let us relate our result to another simple transformation of the Brownian
motion (first considered by T. Jeulin and M. Yor and then generalized by P.A. Meyer, see [14]).
It is easily seen that for a standard Brownian motion (Bt)0≤t<1 , the process(

Bt −
∫ t

0

Bs

s
ds, 0 ≤ t < 1

)
is well defined and is a Brownian motion in its own filtration. Now, let us consider a random
variable Z independent of (Bs)0≤s<1. Consider the process

Xt = Bt + tZ , 0 ≤ t < 1

We have the following proposition (for further details on it, we refer to [2]).

Proposition 8 The process (
Xt −

∫ t

0

Xs

s
ds, 0 ≤ t < 1

)
is well defined and is a Brownian motion in its own filtration which is independent of X1.
Moreover, (Xt)0≤t<1 is a (homogeneous) diffusion in its own filtration if and only if, there
exist α, β ∈ R such that

P (Y ∈ dx) = C cosh (αx + β) e−
x2
2 dx

where C > 0 is a normalization constant. In this case

dXt = α tanh (αXt + β) dt + dWt , 0 ≤ t < 1

where (Wt)0≤t<1 is a standard Brownian motion adapted to the natural filtration of (Xt)0≤t<1 .

Hence, a somewhat vague question arise: Are there other natural transformations of the
Brownian motion for which the same phenonemon of loss of information takes place ?

Acknowledgments. I would like to thank Marc Yor for his encouragements.
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