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Abstract
We provide a simple probabilistic proof of a result of J. Král and I. Netuka: If f is a measurable
real-valued function on Rd (d ≥ 2) then the set of points at which f has a strict fine local
maximum value is polar.

Let X = (Xt)t≥0 be standard Brownian motion in Rd (d ≥ 2), and recall that the fine
topology on Rd is the coarsest topology with respect to which all superharmonic functions
are continuous. Here is an alternative description of the fine topology: A set V ⊂ Rd is a
fine neighborhood of x ∈ V if and only if there is a Borel set U such that x ∈ U ⊂ V and
x /∈ (Rd \U)r. Here Br := {x ∈ Rd : Px[TB = 0] = 1} is the set of regular points for B, Px is
the law of X started at X0 = x, and TB := inf{t > 0 : Xt ∈ B} is the hitting time of B.
It is well known that the set of points in Rd at which a function f : Rd → R has a strict
local maximum value is at most countable. Of course, “local” here refers to the usual topology
on Rd. The situation changes if the fine topology is substituted for the usual topology. For
example, suppose d ≥ 3 and let M ⊂ Rd be a subspace of dimension d − 2. Then M is
uncountable, but the indicator function 1M admits a strict local maximum value (with respect
to the fine topology!) at each point of M . To see this simply notice that if x ∈ M then
{x} ∪ M c is a fine neighborhood of x, because M is polar.
Our purpose in this note is to give a new proof of a result of J. Král and I. Netuka [7], to the
effect that the preceding example is the worst case scenario. We say that a Borel measurable
function f : Rd → R has a strict fine local maximum value at x ∈ Rd provided there is a fine
neighborhood V of x such that f(y) < f(x) for all y ∈ V \ {x}. If we define

(1) Af (x) := {y ∈ Rd : f(y) ≥ f(x)}
then, because singletons are polar for X , f has a strict fine local maximum value at x if and
only if x /∈ Af (x)r.
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Theorem. The set M(f) := {x ∈ Rd : x /∈ Af (x)r}, of locations of strict fine local maxima
for f , is polar. That is, Px[TM(f) < ∞] = 0 for all x ∈ Rd.

Remarks.

(a) Our proof is quite different from the one given by Král and Netuka, and perhaps more
accessible to a probabilistic audience. The proof in [7] is based on a deep result of
A. Ancona [1], which states that every non-polar set contains a compact set K with
Kr = K. We use the strong Markov property and the invariance of Brownian motion
under time reversal.

(b) Our method is quite robust and applies to any (transient) symmetric strong Markov
process for which singletons are polar. The method can even be applied (with some-
what modified conclusions) to non-symmetric processes for which semipolar sets (and
singletons) are polar. We leave these extensions to the interested reader.

(c) Král and Netuka show that even if f is not Borel measurable the set M(f) is inner polar,
in that each of its Borel subsets is polar. �

Proof of the Theorem. We assume d ≥ 3; the recurrent case d = 2 can be handled similarly,
by killing X at the first exit time from a large enough ball. We refer the reader to [7] for a
proof that the function ϕ(x) := Px[TAf (x) > 0] and the set M(f) = {x : ϕ(x) = 1} are Borel
measurable.
Suppose, contrary to the assertion of the Theorem, that M(f) is non-polar. Then, by Cho-
quet’s capacitability theorem there exists a compact non-polar set K contained in M(f).
Because X is transient, the hitting probability x 7→ Px[TK < ∞] is the Green potential of a
measure π—the equilibrium measure of K. This measure is carried by K, charges no polar
set, and has total mass equal to the Newtonian capacity of K.
Let Y = (Yt)t∈R be the stationary Brownian motion in Rd. This is a strong Markov pro-
cess with the same transition probabilities as X , defined for all times t ∈ R, and with one-
dimensional distributions given by Lebesgue measure on Rd. Associated with the equilibrium
measure π is a homogeneous random measure κ of Y characterized by

(2) E
∫
R

g(Yt, t)κ(dt) =
∫
Rd

∫
R

g(x, t) dt π(dx)

for all Borel functions g : Rd × R → [0,∞). (Here E denotes expectation with respect to Y .)
In fact, κ is the dual predictable projection of the random measure placing a unit mass at the
last exit time from K. The random measure κ is diffuse: κ{t} = 0 for all t ∈ R, almost surely.
See [8], [2], [6], [5; §5.1], and [4; §5].
Let Zt(ω) be the indicator of the event that the function s 7→ f(Ys(ω)) has a strict local
maximum at time t ∈ R. Classically, the set {t ∈ R : Zt(ω) = 1} is countable for each sample
point ω. Thus if φ is a strictly positive Borel function on R with finite Lebesgue integral, then

(3) E
∫

R

φ(t)Zt κ(dt) = 0.

Let ΠZ denote the optional projection of Z with respect to the filtration Ft := σ{Ys : s ≤ t},
t ∈ R; that is, ΠZ is the unique (Ft) optional process such that E(ZT |FT ) = (ΠZ)T a.s. for
every (Ft) stopping time T . Observe that

(4) Zt(ω) = Z−
t (ω) · H(Yt(ω), ω+

t ),
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where ω+
t = (Yt+s(ω); s > 0), H(x, ω+

t ) is the indicator of the event that TAf (x)(ω+
t ) > 0, and

Z−
t (ω) is the indicator of the event that there is an ε(ω) > 0 such that f(Ys(ω)) < f(Yt(ω))

for all −ε(ω) < s < 0. If T is an (Ft) stopping time then Z−
T is FT measurable, so by the

strong Markov property of Y we have

(5) E[ZT |FT ] = Z−
T ·E[H(YT , ω+

T )|FT ] = Z−
T ·Px[TAf (x) > 0]

∣∣∣
x=YT

= Z−
T · ϕ(YT ).

It follows that

(6) (ΠZ)t = Z−
t ϕ(Yt), t ∈ R.

Because the random measure κ is (Ft) optional,

(7) E
∫
R

φ(t)Zt κ(dt) = E
∫
R

φ(t)(ΠZ)t κ(dt).

See, for example, Théorème VI.2.66 in [3].
The time reversed process Ŷ : t 7→ Y−t has the same law as Y . Therefore the optional
projection Π̂(ΠZ) of ΠZ with respect to the reverse filtration F̂t := σ{Ys : s ≥ t}, t ∈ R, is
given by

(8) (Π̂(ΠZ))t = (Π̂Z−)t · ϕ(Yt) = ϕ(Yt)ϕ(Yt) = ϕ(Yt),

because ϕ is {0, 1}-valued by Blumenthal’s 0–1 law. Now κ is also adapted to (F̂t), so

(9) E
∫
R

φ(t)(ΠZ)t κ(dt) = E
∫
R

φ(t)(Π̂(ΠZ))t κ(dt).

Taken together, (3), (7), (9), (8), and (2) yield

(10) 0 = E
∫
R

φ(t)ϕ(Yt)κ(dt) =
∫
R

φ(t) dt

∫
Rd

ϕ(x)π(dx),

which is absurd because {ϕ > 0} = M(f) and π(M(f)) ≥ π(K) > 0. �
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