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ANDRÁS TELCS
International Business School Budapest,
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Abstract:

This paper provides transition probability estimates of transient reversible Markov chains. The
key condition of the result is the spatial symmetry and polynomial decay of the Green’s function
of the chain.

1 Introduction

Significant developments have taken place in the study of transition probability estimates of
reversible Markov chains since the first major step by Varopoulos [V]. These results can be
separated into two groups. One deals with random walks on groups, the other with random
walks on fractals. The analysis of random walks on groups utilizes the group structure in several
ways. Earlier results were based on the generalization of the Fourier techniques on Abelian
groups, and later works extended the harmonic analysis and its consequences to several types
of groups. A good reference in this area is [VSC], and further generalization to transitive and
almost transitive Markov chains is given in [S]. The common consequence of this approach
is that the walk travels with speed of n1/2 similarly to the Simple Symmetric Random Walk
on the integer lattice Zd. The fundamental result of Gromov and Bass [VSC, c.f. Theorem
VI.2.1. and 2.2] has the consequence in this context that the volume growth of the geometric
balls is restricted to integer powers. Both limitations vanish in the context of random walks
on fractals. The speed of the walk is n

1
dR , where dR ≥ 2 is the walk exponent and other

characteristic exponents related to the underlying structure and the random walk are not
necessarily integers (Other works (c.f. [B]) denote the walk exponent by dw, here we use dR

following [T1] and [XYZ]) . Several early results in this direction are rooted in the self similar
structure of the fractals, which makes possible some renormalization (c.f. bibliography of
[B]). The difficulties start if either the fractal cannot be renormalized with a simple operation
and/or if the fractal is infinitely ramified. Barlow and Hambly [BH] have obtained a new result
in this direction, but they still need strong local symmetry. Varopoulos’ works and the book
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by Doyle and Snell [DS] raise the question of finding a setting in which the limitations of the
group and fractal approach can be weakened or even neglected. This is one of the aims of this
paper. Let us recall Varopoulos’ celebrated result [V].

Consider a Markov chain on state space V , which is reversible with respect to measure
µ(x) > 0 and has transition probabilities px,y, x, y ∈ V . Thus

µ(x)px,y = µ(x)py,x =: µx,y

for all x, y ∈ V .
Theorem (Varopoulos) For the reversible Markov chain, if the Dirichlet inequality holds, i.e.

‖f‖r ≤ c1 ‖f‖D (1)

for r = 2ν
ν−2 , where ν ≥ 2 and for all f ∈ C0(V ) then

sup
x,y∈V

µ(y)−1Pn(x, y) = O(n− ν
2 ). (2)

and conversely (2) implies (1) if ν > 2.

Here, ‖f‖D =
(

1
2

∑
µx,y (f(x) − f(y))2

) 1
2

denotes the Dirichlet norm of the function f ∈
C0(V )(=the space of functions of compact support on V ) and ‖f‖r =

(∑
x∈V µ(x) |f(x)|r) 1

r .
The n step transition probabilities are denoted by Pn(x, y).

In this result the transition probability estimate is controlled by one parameter ν. From
the earlier studies of random walks on fractals it is known that the walk is ruled by two
parameters, by the fractal dimension and an exponent describing the conductivity of the
structure (in the physics literature [RT] or for rigorous results ([T1]-[T4]) ). The second aim
of this paper is to present an estimate of the transition probability of type (2) involving both
parameters.

It is also worthwhile to remark here that in the same work [V, Proposition 1] Varopoulos
has shown that (1) is equivalent to

‖Gf‖r ≤ c2 ‖f‖s (3)

where s and r are Hölder conjugates and G stands for Green’s function of the Markov chain
(see definition below). This shows that the Green’s function plays a central role in the char-
acterization of the chain. As it will be shown in this paper, the power of the decay to zero
of the Green’s function, i.e. the Greenian index and the fractal dimension together provide a
good description of the Markov chain (provided they exist).
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2 Introductory definitions and results

Let Xn be a discrete time reversible Markov chain of state space V and transition matrix
P = (px,y). Assume that the measure is bounded i.e. for all x ∈ V : 0 < c ≤ µ(x) ≤ C < ∞
for a fixed c and C.

This introduction of the Markov chain fully coincides with the definition of random walk
on a graph G = (V, E), where E = {(x, y) where µx,y := µ(x)px,y > 0} is the edge set, µx,y the
conductivity assigned to the edges (c.f. [KSK, 9.10.]). In earlier works the RW terminology
was used ([T1]-[T4]), here the Markov chain language is preferred.

On V the shortest path metric will be used and denoted by d(x, y). The geometric balls
are defined by

Bx,N = {y ∈ V : d(x, y) ≤ N}
and the µ-volume by

bx,N =
∑

z∈Bx,N

µ(z)

also the surface of the ball by Sx,N = Bx,N\Bx,N−1 for N > 0. If the center of the ball is
not important it will be omitted and the shorter notation bN = bx,N will be used. The same
convention will be used for other quantities without any comment if there is no danger of
confusion. The transition probability matrix restricted to Bx,N (for x ∈ V, N > 0) will be
denoted by

QN (y, z) = Qx,N(y, z) =
{

P (y, z) for y, z ∈ Bx,N

0 otherwise

and its iterates by Qn(y, z) = Qn
N (y, z) = Qn

x,N(y, z) for n ≥ 1. It is clear that Qn
N are

substochastic matrices.
For a given label set Γ, two sequences aγ , bγ we use the notation aγ � bγ , if there is a

c > 1 such that for all γ ∈ Γ, c−1 ≤ aγ/bγ ≤ c.

Definition 1 A Markov chain has Greenian index β > 0 if the Green’s function

G(x, y) =
∑

n

Pn(x, y)

satisfies uniform convergence to zero, i.e.,

G(x, y) � d(x, y)−β (4)

for x 6= y ∈ V .

Remark 1 This is a strong restriction and for instance scale irregular fractals ([BH]) do not
necessarily have Greenian index, but on the other hand polynomially growing graphs which
are either vertex transitive or which have Martin boundary containing only one point have
Greenian index.

Theorem 1 If a reversible Markov chain has regular growth rate d > 0, i.e.,

bN � Nd (5)
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and has Greenian index β > 0, i.e., G(x, y) � d(x, y)−β, then, there is a c3 > 0 such that for
all N > 0 and n ≥ NdR ,

Qn
N(x, y) ≤ c3n

− d
dR , (6)

for all x, y ∈ V , where dR = d − β.

Remark 2 The conditions are stronger than those assumed in Varopoulos’ Theorem. On the
other hand as it is pointed out at the end of the introduction (3) shows that Varopoulos’ result
is also based on a condition on the Green’s functions. As a return a relatively simple proof can
be given and the role of d and β is clear. A large class of Markov chains has this property, such
random walks defined on vertex transitive graphs (e.g. polynomially growing Cayley graphs)
with µ ≡ 1. The next theorem provides an on-diagonal lower bound and ”non-Gaussian”
upper bound for small times (relative to d(x, y)dR).

Theorem 2 Under the conditions of Theorem 1 there are ci > 0, i = 4, 5, 6 constants such
that

P2n(x, x) ≥ c4n
− d

dR

for all x ∈ V , n ≥ 0 where dR = d − β, and

Pn(x, y) ≤ c5 exp

(
−c6

(
d(x, y)dR

n

) 1
dR−1

)
(7)

for all x, y ∈ V, n ≥ 0.

Remark 3 The restriction β > 0 ensures transience but the results are also true for strongly
recurrent reversible Markov chains.( c.f. [T3]). The case of β = 0 i.e. the weak recurrence
would not need any new concepts but involves technical difficulties and hence is not studied
here.

3 Further definitions and remarks

The stopping time Tx,N = min{k : Xk ∈ Sx,N} is an important object in the analysis of
random walks. The expected escape time is denoted by

eN = ex,N = E(Tx,N ).

where the starting point x ∈ V is suppressed if this does not lead to confusion.
The killed random walk (at time Tx,N) has the substochastic transition matrix Qx,N =

P |Bx,N which is the restriction of P to Bx,N . The study of the Markov chain needs the
eigenvalue properties of the Laplacian I − QN (where I = IN is also restricted to the same
ball as P ). The smallest eigenvalue of the Laplacian can be defined as

µN = inf
(Φ,Φ)≤1

(Φ, (I − QN )Φ)
(Φ, Φ)

. (8)

where (f, h) is the inner product of the space l2(BN )
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Proposition 1 Under the condition of Theorem 1.

eN � Nd−β (9)

Proof The proof is easy, based on summation of the local times of states in Bx,N using the
property of G, (The statement also follows from the combination of [T1] and [T4, Theorem
2.].) �

The relation (9) shows that the Einstein relation

dR = d − β,

holds, whereas in earlier works [T1-T4] β = dΩ − 2 was used.

Lemma 1 Under the condition of Theorem 1. there is a constant c7 > 0 such that

µx,N ≥ c7

Ex(Tx,N)
. (10)

Proof Consider the normed left eigenvector α (
∑

y∈Bx,N
αy = 1) of I −QN belonging to µN .

Starting the process from α it follows that

µ−1
x,N =

∑
y∈Bx,N

αyEy(Tx,N) ≤ max
y∈Bx,N

Ey(Tx,N) (11)

≤ max
y∈Bx,N

Ey(Ty,2N) ≤ c8Ex (Tx,N) (12)

where the last inequality uses (9) the uniform upper and lower estimates of the mean escape
time i.e. the whole set of the conditions of Theorem 1. �

The Markov chains with transition probability matrixes P 2 and Q2
w,N are also reversible.

It is also worth mentioning that the Laplacian I − Q2
w,N has smallest eigenvalue ρw,N

ρ = ρw,N = 1 − (1 − µw,N)2 = µ(2 − µ) > µ (13)

if 1 − µ = 1 − µw,N is the largest eigenvalue of the substochastic matrix Qw,N .

Proposition 2 For the transition probabilities, there is a c9 > 0, such that for all k, l > 0,

x, y ∈ V ,
Qk+l

N (x, y) ≤ c9

[
Q2k

N (x, x)
]1/2 [

Q2l
N(y, y)

]1/2
. (14)

Proof The statement follows from the Schwarz inequality, from the reversibility of the chain
and from µ(z) ≤ C for all z ∈ V .

Qk+l
N (x, y) =

∑
z∈BN

Qk
N (x, z)Ql

N(z, y)

≤
( ∑

z∈BN

Qk
N(x, z)2

) 1
2
( ∑

z∈BN

Ql
N (z, y)2

) 1
2

≤ c9Q
2k
N (x, x)1/2Q2l

N (y, y)1/2
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�

Lemma 2 For all x ∈ V , n > 0, N ≥ 0

Q2n+1
N (x, x) ≤ Q2n

N (x, x) (15)

Proof This is immediate consequence of the eigenvector decomposition. �

4 Proof of the results

Proof of Theorem 1 Let us fix w ∈ V and N > 0 and x ∈ Bw,N . Let uk(y) = Qk(x, y) =
Qk

w,N(x, y) for all y ∈ Bw,N . Define

g(k) = gN(k) = Q2k
N (x, x)

and

uN = uw,N(y) =
{

b−1
w,N

∑
z∈Bw,N

uk(z) : y ∈ Bw,N

0 : elsewhere

From the eigenvalue decomposition it follows that g(k) is decreasing in k.

g(2k) − g(2k + 1) =
∑

y∈Bw,N

(
Q2k(x, y) − Q2k+2(x, y)

)
Q2k(y, x)

≥
∑

y∈Bw,N

(u2k(y) − u2k+2(y)) (1 + c9)
cx

cy
u2k(y)

= c10(u2k(I − Q2), u2k)

In order to use the definition of the eigenvalue (8) of the Laplacian one has to observe
that ‖u2k‖1 ≤ 1 and consequently

(u2k, u2k) ≤ 1.

The estimation can then proceed as follows using (13)

g(2k) − g(2k + 1) ≥ c10(u2k(I − Q2), u2k)
≥ c10µN (u2k, u2k) ≥ c10µN (u2k − uN , u2k − uN )

≥ c10µN

(
(u2k, u2k) − b−1

w,N

)
≥ c10µN

(
c11g(2k) − b−1

w,N

)
,

where the last inequality uses the reversal of the transition probabilities. Introducing sJ =
inf{k : c11gN(2k) ≤ b−1

w,J} and
h(k) = c11gN(k) − b−1

w,N ,

it can be written as
h(2k) − h(2k + 1) ≥ c11µNh(2k).
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For h(2k) > 0, the following holds:

h(2k) − h(2k + 1)
h(2k)

≥ c11µN (16)

Denote cb = maxw∈V,N>0{ bw,N

Nd , Nd

bw,N
}. Now an exponential sequence is introduced. For

a fixed q ≥ c2
b > 1, let Ni = qi which provides easy handling of bi = bNi , si = sNi, ei = eNi

and gn = gNn . From the monotonicity of g and h we have that si−1 ≤ si for all i ≥ 1 and (16)
is true for all 0 < k < sn,with N = Nn. Summing (16) from sn−2 to sn−1, one has

µn(sn−1 − sn−2) ≤ c12

sn−1∑
i=sn−2

h(2i) − h(2i + 1)
h(i)

≤ c12

sn−1∑
i=sn−2

g(2i) − g(2i + 2)
c13g(2i)− b−1

n

Using the trivial lower estimate of the denominator and collapsing the sum it follows that

µn(sn−1 − sn−2) ≤ c12
g(2sn−2)

c13g(2sn−1 − 2) − b−1
n

≤ c13

b−1
n−2

c13b
−1
n−1 − b−1

n

≤ c14

Hence, by Lemma 1, sn−1 ≤ c15µ
−1
n ≤ c16en, which means that for all k : c16en ≤ k ≤

c16en+1,g(2k) ≤ c17b
−1
n . I.e., for all c21en ≤ k ≤ c21en+1,

gn(2k) ≤ c18k
− d

dR

Using the definition of g(k) = gNn(k),

gn(2k) ≥ c19Q
4k
w,Nn

(x, x).

Rescaling this with eNn � NdR
n and b−1

n � N−d
n and adjusting the constants it follows that for

k > eN

Q2k
w,N(x, x) ≤ c20k

− d
dR .

Using the observations (14),(15) the proof is complete. �

Proposition 3 Under the conditions of Theorem 1,

Px(Tx,N > n) > c21 (17)

if n ≤ 1
2Ex(Tx,N) where c21 > 0 is independent of N and x.

Proof From the easy estimate,

TN ≤ n + I(TN ≥ n)(TN − n),
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we have
E(TN ) ≤ n + E (I(TN > n)EXn(TN )) ;

we have used the strong Markov property for TN > n for Xn ∈ Bx,N . Finally, by the uniform
upper estimate of the mean exit time, one has

P (T > n) ≥ 1
c22

− n

c22E(T )
=: c22. (18)

This concludes our proof. �

Proof of Theorem 2 The lower diagonal estimate for the Markov chain follows simply from
(17) as in [T3]. Let N be chosen to ensure c23N

dR ≥ 1
2Ex(TxN) ≥ n ≥ c24N

dR , then

P2n(x, x) ≥ Q2n
N (x, x)

≥ c25

∑
y∈Bx,N

Qn
N (x, y)2

≥ b−1
N (

∑
y∈Bx,N

Qn
N (x, y))2 = b−1

N P (TN > n)2

≥ c2
22b

−1
N ≥ c26n

− d
dR

The proof of (7) the tail estimate for the stopping time Tx,N contained in [T4] but included
here for sake of completeness. Denote N = d(x, y). Clearly Pn(x, y) ≤ P (Tx,N ≤ n).
Using the triangle inequality for the graph distance metric TN the hitting time of S0,N can
be decomposed. Let r > 0 and l = {N/r} integers and define r hitting times in the following
way. Let

τ1 = s1 = min{k : Xk ∈ S0,l},
Y1 = Xτ1

τi = min{k > τi−1 : Xk ∈ Syi−1,N/r},
Yi = Xτi ,

si = τi − τi−1

for r ≥ i > 1. It is clear that

TN >
r∑
1

si.

from (17) and ([B]) we have

Px(Tx,l ≤ s) < 1 − c27(1 − 1
c28el

)s < 1 − c7 + c8
s

el
=: p +

s

b

with 0 ≤ p < 1, b > 0. From this using [BB, Lemma 1.1] it follows that

P (TN < t) < exp
(

2(
brt

p
)2 − n log

1
p

)

if t = εeN , r = c28ε
− 1

dR−1 . With the proper choice of c28 it results that in the above exponent
the second term is the dominant. �
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