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Abstract

The authors of [1] stated the following conjecture: Let µ be a symmetric α-stable measure on a
separable Banach space and B a centered ball such that µ(B) ≤ b. Then there exists a constant
R(b), depending only on b, such that µ(tB) ≤ R(b)tµ(B) for all 0 < t < 1. We prove that the
above inequality holds but the constant R must depend also on α.

Recently, the authors of [1] proved the following (Theorem 6.4 in [1]):

Let µ be a symmetric α-stable measure, 0 < α ≤ 2, on a separable Banach space, fix b < 1, and
let B denote a centered ball such that µ(B) ≤ b. Then there exists a constant R(b) = 3

b
√

1−b ,

depending only on b, such that for all 0 ≤ t ≤ 1

µ(tB) ≤ R(b)tα/2µ(B). (1)

Of course, for small values of t, the quantity tα/2 is much larger than t. The authors of [1]
stated in their Conjecture 7.4 that (1) is true for all symmetric α-stable measures with t instead
of tα/2 and some R(b) depending only on b.

In our earlier paper [3], we also gave an estimate of a stable measure of a small ball. Namely,
we proved the following.
Let µ be a symmetric α-stable measure, 0 < α ≤ 2, on a separable Banach space, put
B = {x : ‖x‖ ≤ 1}, let 0 < r < α and suppose that µ is so normalized that

∫
‖x‖rµ (dx) = 1.

Then there exists a constant K = K(α, r) such that for all 0 ≤ t ≤ 1

µ(tB) ≤ K(α, r) t. (2)
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Some estimates of K(α, r) were also given in [3], we recall one of them in the final Remark.
Some normalization of µ is needed, as we will show in the sequel (see Example), in the paper
[3] we chose the normalizing condition

∫
‖x‖rµ (dx) = 1. But proving the inequality (2), we

also obtained the inequality

µ(tB) ≤ K(α, r)[1− µ(B)]−1/r t. (3)

In this note we will show that using (3) we can prove an estimate that is very close to the
above-mentioned conjecture, however, the constant R(b) must depend also on α.

The following is a generalization of (1).

Theorem 1 Let µ be a symmetric α-stable measure, 0 < α ≤ 2, on a separable Banach space
F . Then for every closed, symmetric, convex set B ⊂ F and for each b < 1 there exists R(α, b)
such that for all 0 ≤ t ≤ 1

µ(tB) ≤ R(α, b) t µ(B), if µ(B) ≤ b. (4)

First we show that the constant R must depend on α.

Example. Suppose that there exists positive function R(b) that fulfills (4), does not depend
on α and is bounded on every closed subinterval of (0, 1) Let Xα be an α-stable random
variable with the characteristic function e−|t|

α

. It is known (see e.g. [4]) that

|Xα|α
d−→ 1

W
, as α→ 0+, (5)

where W is a random variable having the exponential distribution with mean 1. Consider
one-dimensional ball B = [−1, 1]. From (5) we infer that

bα = P (Xα ∈ B) = P (−1 ≤ Xα ≤ 1) = P (|Xα|α ≤ 1)→α→0 P (
1

W
≤ 1) =

1

e
.

Denote by µ the distribution of Xα. It is easy to compute the value of the density of µ at zero:

pα(0) =
1

π

∫ ∞
0

e−t
α

dt =
1

π
Γ(

1

α
).

Now

lim
α→0

lim
t→0+

1

t
µ(tB) = lim

α→0
lim
t→0+

1

t

∫ t

0

p(x) dx = lim
α→0

pα(0) = lim
α→0

1

π
Γ(

1

α
) =∞,

and

lim
α→0

R(bα) bα = R

(
1

e

)
1

e
,

contradicting the inequality (4).
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This implies that R(b) must also depend on α.

The proof of the theorem is almost the same as the proof of (1) in the paper [1], the difference
is that instead of Kanter inequality we use our estimate (3). For the sake of completeness we
repeat this proof.
We start with two lemmas.

Lemma 1. Let µ be a symmetric α-stable measure, 0 < α ≤ 2, on a separable Banach space
F . Fix 0 < r < α. Then there exists a constant K(α, r) ≥ 2 such that for every convex,
symmetric, closed set B ⊂ F , every y ∈ F and all t ∈ [0, 1] there holds

µ(tB + y) ≤ K(α, r)Rt µ(2B + y),

where R = (µ(B))−1(1− µ(B))−1/r .
Proof. It is well-known that symmetric stable measures are conditionally Gaussian [2], hence
they satisfy the Anderson property.
Case 1. If y ∈ B then B ⊂ 2B+ y so that µ(B) ≤ µ(2B+ y), hence by the Anderson property
and (3)

µ(tB + y) ≤ K(α, r)

(1− µ(B))1/r
t ≤ K(α, r)µ(B)

µ(B)(1 − µ(B))1/r
t ≤ K(α, r)

µ(B)(1 − µ(B))1/r
t µ(2B + y).

Case 2. If y /∈ B then take r = [t−1 − 2−1]. Then for k = 0, 1, ..., r the balls {yk + tB} are
disjoint and contained in y + 2B, where yk = (1 − 2t‖y‖−1k)y. By the Anderson property
µ(yk + tB) ≥ µ(y + tB) for k = 0, 1, ..., r. Therefore

µ(tB + y) ≤ (r + 1)−1µ(2B + y) ≤ 2t

2− tµ(2B + y)

≤ K(α, r)

(1− µ(B))1/r
µ(2B + y) t,

because we assumed that K(α, r) > 2 and 2− t ≥ 1 > (1− µ(B))1/r .

Lemma 2. With the same assumptions as in Lemma 1, we have for all 0 ≤ κ, t ≤ 1

µ(κtB) ≤ R′tµ(κB),

where R′ = 2K(α,r)
µ(B/2)(1−µ(B/2))1/r .

Proof. For 0 ≤ t ≤ 1 define a measure µt by the formula µt(C) = µ(tC) = P (X/t ∈ C), where
X is a symmetric α-stable random variable with the distribution µ. Then µt is also α-stable
and we have the following equality:

µ ∗ µs(C) = P (X +X′/s ∈ C) = P ((1 + s−α)1/αX ∈ C) = µt(C),

where t = (1 + s−α)−1/α and X′ is an independent copy of X. Now by Lemma 1

µ(κ(tB)) = µ(t(κB)) = P (X/t ∈ κB) = µ ∗ µs(κB) =

∫
F

µ(
2κB

2
+ y)µs(dy)
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≤ K(α, r)2κ

µ(B/2)(1 − µ(B/2))1/r
µt(B) =

2K(α, r)

µ(B/2)(1 − µ(B/2))1/r
κµ(tB).

Proof of the Theorem. Fix B with µ(B) ≤ b and take s ≥ 1 such that µ(sB) = b. Now, in
Lemma 2, put κ = t and t = 1

2s
. Then

µ(tB) = µ(t · 1

2s
· (2sB)) ≤ t K(α, r)2

µ(sB)(1 − µ(sB))1/r
µ(

1

2s
· 2sB) ≤

K(α, r)2

µ(sB)(1 − µ(sB))1/r
t µ(B) = R(b)K(α, r)t µ(B),

where R(b) = 2b−1(1 − b)−1/r. Taking different values of r ∈ (0, α) we get different values of
K(α, r). If, for simplicity, we take r = α/2 we get R(α, b) = K(α, α/2) 2

b(1−b)1−α/2 . This ends

the proof of the theorem.

Remark. Let us recall some estimates of K(α, r) which were given in the paper [3]. If we
take r = α/2 then

K(α,
α

2
) =

1

21/α
√
π

Γ
2
α (
α

4
+

1

2
)Γ(1 +

2

α
) inf
x>0

1

x2/α(1−Φ(x))
,

where Φ is the distribution function of a standard normal variable. For different values of
r other estimates are possible, it could be interesting to find the least value of K(α, r). Of
course, if we consider α ≥ ε > 0 then we can find

R(b) = sup
ε≤α≤2

R(α, b) <∞

and then for all 0 ≤ t ≤ 1 and α ≥ ε

µ(tB) ≤ R(b) t µ(B), if µ(B) ≤ b.
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