MODERATE DEVIATIONS FOR MARTINGALES WITH BOUNDED JUMPS ${ }^{1}$

A. DEMBO^{2}

Department of Electrical Engineering, Technion Israel Institute of Technology, Haifa 32000, ISRAEL.
e-mail: amir@playfair.stanford.edu
Submitted: 3 September 1995; Revised: 25 February 1996.
AMS 1991 Subject classification: 60F10,60G44,60G42
Keywords and phrases: Moderate deviations, martingales, bounded martingale differences.

Abstract

We prove that the Moderate Deviation Principle (MDP) holds for the trajectory of a locally square integrable martingale with bounded jumps as soon as its quadratic covariation, properly scaled, converges in probability at an exponential rate. A consequence of this MDP is the tightness of the method of bounded martingale differences in the regime of moderate deviations.

1 Introduction

Suppose $\left\{X_{m}, \mathcal{F}_{m}\right\}_{m=0}^{\infty}$ is a discrete-parameter real valued martingale with bounded jumps $\left|X_{m}-X_{m-1}\right| \leq a, m \in \mathbb{N}$, filtration \mathcal{F}_{m} and such that $X_{0}=0$. The basic inequality for the method of bounded martingale differences is Azuma-Hoeffding inequality (c.f. [1]):

$$
\begin{equation*}
\mathbb{P}\left\{X_{k} \geq x\right\} \leq e^{-x^{2} / 2 k a^{2}} \quad \forall x>0 \tag{1}
\end{equation*}
$$

In the special case of i.i.d. differences $\mathbb{P}\left\{X_{m}-X_{m-1}=a\right\}=1-\mathbb{P}\left\{X_{m}-X_{m-1}=-\epsilon a /(1-\right.$ $\epsilon)\}=\epsilon \in(0,1)$, it is easy to see that $\mathbb{P}\left\{X_{k} \geq x\right\} \leq \exp [-k H(\epsilon+(1-\epsilon) x /(a k) \mid \epsilon)]$, where $H(q \mid p)=q \log (q / p)+(1-q) \log ((1-q) /(1-p))$. For $\epsilon \rightarrow 0$, the latter upper bound approaches 0 , thus demonstrating that (1) may in general be a non-tight upper bound. Let $B(u)=$ $2 u^{-2}((1+u) \log (1+u)-u)$ and

$$
\langle X\rangle_{m}=\sum_{k=1}^{m} E\left[\left(X_{k}-X_{k-1}\right)^{2} \mid \mathcal{F}_{k-1}\right]
$$

denote the quadratic variation of $\left\{X_{m}, \mathcal{F}_{m}\right\}_{m=0}^{\infty}$. Then,

$$
\begin{equation*}
\mathbb{P}\left\{X_{k} \geq x\right\} \leq \mathbb{P}\left\{\langle X\rangle_{k} \geq y\right\}+e^{-x^{2} B(a x / y) / 2 y} \quad \forall x, y>0 \tag{2}
\end{equation*}
$$

[^0](c.f. [4, Theorem (1.6)]). In particular, $B\left(0_{+}\right)=1$, recovering (1) for the choice $y=k a^{2}$ and $x / y \rightarrow 0$. The inequality (2) holds also for the more general setting of locally square integrable (continuous-parameter) martingales with bounded jumps (c.f. [7, Theorem II.4.5]).
In this note we adopt the latter setting and demonstrate the tightness of (2) in the range of moderate deviations, corresponding to $x / y \rightarrow 0$ while $x^{2} / y \rightarrow \infty$ (c.f. Remark 5 below). We note in passing that for continuous martingales [6] studies the tightness of the inequality:
$$
\mathbb{P}\left\{X_{k} \geq \frac{1}{2} x\left(1+\langle X\rangle_{k} / y\right)\right\} \leq e^{-x^{2} / 2 y}
$$
using Girsanov transformations, whereas we apply large deviation theory and concentrate on martingales with (bounded) jumps, encompassing the case of discrete-parameter martingales. Recall that a family of random variables $\left\{Z_{k} ; k>0\right\}$ with values in a topological vector space \mathcal{X} equipped with σ-field \mathcal{B} satisfies the Large Deviation Principle (LDP) with speed $a_{k} \downarrow 0$ and good rate function $I(\cdot)$ if the level sets $\{x ; I(x) \leq \alpha\}$ are compact for all $\alpha<\infty$ and for all $\Gamma \in \mathcal{B}$
$$
-\inf _{x \in \Gamma^{o}} I(x) \leq \liminf _{k \rightarrow \infty} a_{k} \log \mathbb{P}\left\{Z_{k} \in \Gamma\right\} \leq \limsup _{k \rightarrow \infty} a_{k} \log \mathbb{P}\left\{Z_{k} \in \Gamma\right\} \leq-\inf _{x \in \bar{\Gamma}} I(x)
$$
(where Γ^{o} and $\bar{\Gamma}$ denote the interior and closure of Γ, respectively). The family of random variables $\left\{Z_{k} ; k>0\right\}$ satisfies the Moderate Deviation Principle with good rate function $I(\cdot)$ and critical speed $1 / h_{k}$ if for every speed $a_{k} \downarrow 0$ such that $h_{k} a_{k} \rightarrow \infty$, the random variables $\sqrt{a_{k}} Z_{k}$ satisfy the LDP with the good rate function $I(\cdot)$.
Let $D\left(\mathbb{R}^{d}\right)\left(=D\left(\mathbb{R}_{+}, \mathbb{R}^{d}\right)\right)$ denote the space of all \mathbb{R}^{d}-valued càdlàg (i.e. right-continuous with left-hand limits) functions on \mathbb{R}_{+}equipped with the locally uniform topology. Also, $C\left(\mathbb{R}^{d}\right)$ is the subspace of $D\left(\mathbb{R}^{d}\right)$ consisting of continuous functions.
The process $X \in D\left(\mathbb{R}^{d}\right)$ is defined on a complete stochastic basis $\left(\Omega, \mathcal{F}, \mathbf{F}=\mathcal{F}_{t}, \mathbb{P}\right)$ (c.f. [5, Chapters I and II] or [7, Chapters 1-4] for this and the related definitions that follow). We equip $D\left(\mathbb{R}^{d}\right)$ hereafter with a σ-field \mathcal{B} such that $X: \Omega \rightarrow D\left(\mathbb{R}^{d}\right)$ is measurable (\mathcal{B} may well be strictly smaller than the Borel σ-field of $D\left(\mathbb{R}^{d}\right)$).
Suppose that $X \in \mathcal{M}_{\text {loc }, 0}^{2}$ is a locally square integrable martingale with bounded jumps $|\Delta X| \leq$ a (and $X_{0}=0$). We denote by (A, C, ν) the triplet predictable characteristics of X, where here $A=0, C=\left(C_{t}\right)_{t \geq 0}$ is the \mathbf{F}-predictable quadratic variation process of the continuous part of X and $\nu=\nu(d s, d x)$ is the \mathbf{F}-compensator of the measure of jumps of X. Without loss of generality we may assume that
\[

$$
\begin{equation*}
\nu\left(\{t\}, \mathbb{R}^{d}\right)=\int_{|x| \leq a} \nu(\{t\}, d x) \leq 1, \quad \int_{|x| \leq a} x \nu(\{t\}, d x)=0, \quad t>0 \tag{3}
\end{equation*}
$$

\]

and for all $s<t,\left(C_{t}-C_{s}\right)$ is a symmetric positive-semi-definite $d \times d$ matrix. The predictable quadratic characteristic (covariation) of X is the process

$$
\begin{equation*}
\langle X\rangle_{t}=C_{t}+\int_{0}^{t} \int_{|x| \leq a} x x^{\prime} d \nu \tag{4}
\end{equation*}
$$

where x^{\prime} denotes the transpose of $x \in \mathbb{R}^{d}$, and $\|A\|=\sup _{|\lambda|=1}\left|\lambda^{\prime} A \lambda\right|$ for any $d \times d$ symmetric matrix A.
Our main result is as follows.

Proposition 1 Suppose the symmetric positive-semi-definite $d \times d$ matrix Q and the regularly varying function h_{t} of index $\alpha>0$ are such that for all $\delta>0$:

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} h_{t}^{-1} \log \mathbb{P}\left\{\left\|h_{t}^{-1}\langle X\rangle_{t}-Q\right\|>\delta\right\}<0 \tag{5}
\end{equation*}
$$

Then $\left\{h_{k}^{-1 / 2} X_{k}.\right\}$ satisfies the $M D P$ in $\left(D\left[\mathbb{R}^{d}\right], \mathcal{B}\right)$ (equipped with the locally uniform topology) with critical speed $1 / h_{k}$ and the good rate function

$$
I(\phi)=\left\{\begin{array}{cc}
\int_{0}^{\infty} \Lambda^{*}(\dot{\phi}(t)) \alpha^{-1} t^{(1-\alpha)} d t & \phi \in \mathcal{A C}_{0} \tag{6}\\
\infty & \text { otherwise }
\end{array}\right.
$$

where $\Lambda^{*}(v)=\sup _{\lambda \in \mathbb{R}^{d}}\left(\lambda^{\prime} v-\frac{1}{2} \lambda^{\prime} Q \lambda\right)$, and $\mathcal{A} \mathcal{C}_{0}=\left\{\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}^{d}\right.$ with $\phi(0)=0$ and absolutely continuous coordinates $\}$.

Remark 1 Note that both (5) and the MDP are invariant to replacing h_{t} by g_{t} such that $h_{t} / g_{t} \rightarrow c \in(0, \infty)$ and taking $c Q$ instead of Q. Thus, if $Q \neq 0$ we may take $h_{t}=$ median $\left\|\langle X\rangle_{t}\right\|$, and in general we may assume with no loss of generality that $h_{t} \in D\left(\mathbb{R}_{+}\right)$is strictly increasing of bounded jumps.
Remark 2 If X is a locally square integrable martingale with independent increments, then $\langle X\rangle$ is a deterministic process, hence suffices that $h_{t}^{-1}\langle X\rangle_{t} \rightarrow Q$ for (5) to hold.
As stated in the next corollary, less is needed if only $X_{k}\left(\operatorname{or~}_{\sup }^{s \leq k} X_{s}\right)$ is of interest.

Corollary 1

(a) Suppose that (5) holds for some unbounded h_{t} (possibly not regularly varying). Then, $\left\{h_{k}^{-1 / 2} X_{k}\right\}$ satisfies the MDP in \mathbb{R}^{d} with critical speed $1 / h_{k}$ and good rate function $\Lambda^{*}(\cdot)$.
(b) If also $d=1$, then $\left\{h_{k}^{-1 / 2} \sup _{s \leq k} X_{s}\right\}$ satisfies the MDP with the good rate function $I(z)=z^{2} /(2 Q)$ for $z \geq 0$ and $I(z)=\infty$ otherwise.

Remark 3 For $d=1$, discrete-time martingales, and assuming that $h_{k}=\langle X\rangle_{k}$ is non-random, strong Normal approximation for the law of $h_{k}^{-1 / 2} X_{k}$ is proved in [9] for the range of values corresponding to $a_{k}^{3} h_{k} \rightarrow \infty$.
Remark 4 The difference between Proposition 1 and Corollary 1 is best demonstrated when considering $X_{t}=B_{h_{t}}$, with B_{s} the standard Brownian motion. The MDP for $h_{t}^{-1 / 2} B_{h_{t}}$ in \mathbb{R} then trivially holds, whereas the MDP for $h_{k}^{-1 / 2} B_{h_{t k}}$ is equivalent to Schilder's theorem (c.f. [3, Theorem 5.2.3]), and thus holds only when h_{t} is regularly varying of index $\alpha>0$.
Remark 5 When $d=1$ and $Q \neq 0$, the rate function for the MDP of part (a) of Corollary 1 is $x^{2} /(2 Q)$. For $y=h_{k} Q(1+\delta), \delta>0$ and $x=x_{k}=o(y)$ such that $x^{2} / y \rightarrow \infty$, this MDP then implies that $\mathbb{P}\left\{X_{k} \geq x\right\}=\exp \left(-(1+\delta+o(1)) x^{2} / 2 y\right)$ while $P\left(\langle X\rangle_{k} \geq y\right)=o\left(\exp \left(-x^{2} / 2 y\right)\right)$ by (5). Consequently, for such values of x, y the inequality (2) is tight for $k \rightarrow \infty$ (see also Remark 9 below for non-asymptotic results).
Remark 6 In contrast with Corollary 1 we note that the LDP with speed m^{-1} may fail for $m^{-1} X_{m}$ even when X is a real valued discrete-parameter martingale with bounded independent increments such that $\langle X\rangle_{m}=m$. Specifically, let $b: \mathbb{N} \rightarrow\{1,2\}$ be a deterministic sequence such that $p_{m}=m^{-1} \sum_{k=1}^{m} 1_{\{b(k)=1\}}$ fails to converge for $m \rightarrow \infty$ and let $\mu_{i}, i=1,2$ be two probability measures on $[-a, a]$ such that $\int x d \mu_{i}=0, \int x^{2} d \mu_{i}=1, i=1,2$ while $c_{1} \neq c_{2}$ for
$c_{i}=\log \int e^{x} d \mu_{i}$. Then, ΔX_{k} independent random variables of law $\mu_{b(k)}, k \in \mathbb{N}$, result with X_{m} as above. Indeed, $m^{-1} \log \mathbb{E}\left\{\exp \left(X_{m}\right)\right\}=p_{m} c_{1}+\left(1-p_{m}\right) c_{2}$ fails to converge for $m \rightarrow \infty$, hence by Varadhan's lemma (c.f. [3, Theorem 4.3.1]), necessarily the LDP with speed m^{-1} fails for $m^{-1} X_{m}$.
Remark 7 Corollary 1 may fail when X is a real valued discrete-parameter martingale with unbounded independent increments such that $\langle X\rangle_{m}=m$. Specifically, for $m_{j}=2^{2 j^{2}}, j \in \mathbb{N}$ let $M\left(m_{j}\right)=2\left(m_{j} \log m_{j}\right)^{1 / 2}$ and $M(k)=1$ for all other $k \in \mathbb{N}$. Let Z_{k} be independent Bernoulli $\left(1 /\left(M(k)^{2}+1\right)\right)$ random variables. Then, $\Delta X_{k}=M(k) Z_{k}-M(k)^{-1}\left(1-Z_{k}\right)$ result with X_{m} as above, with the LDP of speed $1 / \log m$ not holding for $(m \log m)^{-1 / 2} X_{m}$. Indeed, let Y_{m} be the martingale with $\Delta Y_{m_{j}}$ i.i.d. and independent of X such that $\mathbb{P}\left\{\Delta Y_{m_{j}}=1\right\}=$ $\mathbb{P}\left\{\Delta Y_{m_{j}}=-1\right\}=0.5$ and $\Delta Y_{k}=\Delta X_{k}$ for all other $k \in \mathbb{N}$. Then, $(m \log m)^{-1 / 2}\left|X_{m}-Y_{m}\right| \rightarrow$ 0 for $m=\left(m_{j}-1\right), j \rightarrow \infty$, while $(m \log m)^{-1 / 2}\left(X_{m}-Y_{m}\right) \geq 2 Z_{m}+o(1)$ for $m=m_{j}, j \rightarrow \infty$. The LDP with speed $1 / \log m$ and good rate function $x^{2} / 2$ holds for $(m \log m)^{-1 / 2} Y_{m}$ (c.f. Corollary 1), while $\log \mathbb{P}\left\{Z_{m_{j}}=1\right\} / \log m_{j} \rightarrow-1$ as $j \rightarrow \infty$. Consequently, the LDP bounds fail for $\left\{(m \log m)^{-1 / 2} X_{m} \geq 2\right\}$.

Proposition 1 is proved in the next section with the proof of Corollary 1 provided in Section 3. Both results build upon Lemma 1. Indeed, Proposition 1 is a direct consequence of Lemma 1 and [8]. Also, with Lemma 1 holding, it is not hard to prove part (a) of Corollary 1 as a consequence of the Gärtner-Ellis theorem (c.f. [3, Theorem 2.3.6]), without relying on [8].

2 Proof of Proposition 1

The cumulant $G(\lambda)=\left(G_{t}(\lambda)\right)_{t \geq 0}$ associated with X is

$$
\begin{equation*}
G_{t}(\lambda)=\frac{1}{2} \lambda^{\prime} C_{t} \lambda+\int_{0}^{t} \int_{|x| \leq a}\left(e^{\lambda^{\prime} x}-1-\lambda^{\prime} x\right) \nu(d s, d x), t>0, \lambda \in \mathbb{R}^{d} \tag{7}
\end{equation*}
$$

The stochastic (or the Doléans-Dade) exponential of $G(\lambda)$, denoted $\mathcal{E}(G(\lambda))$ is given by

$$
\begin{equation*}
\varphi_{t}(\lambda)=\log \mathcal{E}(G(\lambda))_{t}=G_{t}(\lambda)+\sum_{s \leq t}\left[\log \left(1+\Delta G_{s}(\lambda)\right)-\Delta G_{s}(\lambda)\right] \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta G_{s}(\lambda)=\int_{|x| \leq a}\left(e^{\lambda^{\prime} x}-1\right) \nu(\{s\}, d x)=\int_{|x| \leq a}\left(e^{\lambda^{\prime} x}-1-\lambda^{\prime} x\right) \nu(\{s\}, d x) \tag{9}
\end{equation*}
$$

The next lemma which is of independent interest, is key to the proof of Proposition 1.
Lemma 1 For $\epsilon>0$, let $v(\epsilon)=2\left(e^{\epsilon}-1-\epsilon\right) / \epsilon^{2} \geq 1 \geq v(-\epsilon)-\epsilon^{2} v(\epsilon)^{2} / 4=w(\epsilon)$. Then, for any $0 \leq u \leq t<\infty, \quad \lambda \in \mathbb{R}^{d}$

$$
\begin{equation*}
\frac{1}{2} w(|\lambda| a) \lambda^{\prime}\left(\langle X\rangle_{t}-\langle X\rangle_{u}\right) \lambda \leq \varphi_{t}(\lambda)-\varphi_{u}(\lambda) \leq \frac{1}{2} v(|\lambda| a) \lambda^{\prime}\left(\langle X\rangle_{t}-\langle X\rangle_{u}\right) \lambda \tag{10}
\end{equation*}
$$

Remark 8 Since $\exp \left[\lambda^{\prime} X_{t}-\varphi_{t}(\lambda)\right]$ is a local martingale (c.f. [7, Section 4.13]), Lemma 1 implies that $\exp \left[\lambda^{\prime} X_{t}-\frac{1}{2} v(|\lambda| a) \lambda^{\prime}\langle X\rangle_{t} \lambda\right]$ is a non-negative super-martingale while $\exp \left[\lambda^{\prime} X_{t}-\right.$ $\left.\frac{1}{2} w(|\lambda| a) \lambda^{\prime}\langle X\rangle_{t} \lambda\right]$ is a non-negative local sub-martingale. Noting that $w(|\lambda| a), v(|\lambda| a) \rightarrow 1$ for $|\lambda| \rightarrow 0$, these are to be compared with the local martingale property of $\exp \left[\lambda^{\prime} X_{t}-\frac{1}{2} \lambda^{\prime}\langle X\rangle_{t} \lambda\right]$ when $X \in \mathcal{M}_{\mathrm{loc}, 0}^{c}$ is a continuous local martingale (c.f. [7, Section 4.13]).

Remark 9 For $d=1$ it follows that for every $\lambda \in \mathbb{R}$,

$$
\begin{equation*}
\mathbb{E}\left\{\exp \left[\lambda X_{m}-\frac{1}{2} v(|\lambda| a) \lambda^{2}\langle X\rangle_{m}\right]\right\} \leq 1 \tag{11}
\end{equation*}
$$

(c.f. Remark 8). The inequality (2) then follows by Chebycheff's inequality and optimization over $\lambda \geq 0$. For the special case of a real-valued discrete-parameter martingale X_{m} also

$$
\begin{equation*}
\mathbb{E}\left\{\exp \left[\lambda X_{m}-\frac{1}{2} w(|\lambda| a) \lambda^{2}\langle X\rangle_{m}\right]\right\} \geq 1 \tag{12}
\end{equation*}
$$

and we can even replace $w(|\lambda| a)$ in (12) by $v(-|\lambda| a)$ (c.f. [4, (1.4)] where the sub-martingale property of $\exp \left(\lambda X_{m}-\frac{1}{2} v(-|\lambda| a) \lambda^{2}\langle X\rangle_{m}\right)$ is proved).
Proof: To prove the upper bound on $\varphi_{t}(\lambda)-\varphi_{u}(\lambda)$ note that $\log (1+x)-x \leq 0$ implying by (8) that $\varphi_{t}(\lambda)-\varphi_{u}(\lambda) \leq G_{t}(\lambda)-G_{u}(\lambda)$. The required bound then follows from (7) since $\left(e^{\lambda^{\prime} x}-1-\lambda^{\prime} x\right) \leq \frac{1}{2} v(|\lambda| a) \lambda^{\prime}\left(x x^{\prime}\right) \lambda$ for $|x| \leq a$, and $\lambda^{\prime}\left(C_{t}-C_{u}\right) \lambda \geq 0$ for $u \leq t$.
To establish the corresponding lower bound, note that since $\Delta G_{s}(\lambda) \geq 0$ (see (9)) and $\log (1+$ $x)-x \geq-x^{2} / 2$ for all $x \geq 0$, we have that

$$
\varphi_{t}(\lambda)-\varphi_{u}(\lambda) \geq G_{t}(\lambda)-G_{u}(\lambda)-\frac{1}{2} \sum_{u<s \leq t} \Delta G_{s}(\lambda)^{2}
$$

Moreover, again by (9) we see that

$$
0 \leq \Delta G_{s}(\lambda) \leq \frac{1}{2} v(|\lambda| a) \lambda^{\prime}\left[\int_{|x| \leq a} x x^{\prime} \nu(\{s\}, d x)\right] \lambda \leq \frac{1}{2} v(|\lambda| a)^{2}(|\lambda| a)^{2}
$$

Hence,

$$
\begin{aligned}
\frac{1}{2} \sum_{u<s \leq t} \Delta G_{s}(\lambda)^{2} & \leq \frac{1}{8} v(|\lambda| a)^{2}(|\lambda| a)^{2} \lambda^{\prime}\left[\sum_{u<s \leq t} \int_{|x| \leq a} x x^{\prime} \nu(\{s\}, d x)\right] \lambda \\
& \leq \frac{1}{8} v(|\lambda| a)^{2}(\mid \lambda a)^{2} \lambda^{\prime}\left[\langle X\rangle_{t}-\langle X\rangle_{u}\right] \lambda
\end{aligned}
$$

and the required lower bound follows by noting that

$$
G_{t}(\lambda)-G_{u}(\lambda) \geq \frac{1}{2} v(-|\lambda| a) \lambda^{\prime}\left[\langle X\rangle_{t}-\langle X\rangle_{u}\right] \lambda
$$

To prove Proposition 1 we need the following immediate consequence of Lemma 1.
Lemma 2 Suppose there exists $q \in C[0, \infty$), a positive-semi-definite matrix Q and an unbounded function $h: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that for all $\delta>0, T<\infty$

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \frac{1}{h_{k}} \log \mathbb{P}\left\{\sup _{u \in[0, T]}\left\|\frac{\langle X\rangle_{u k}}{h_{k}}-q(u) Q\right\|>\delta\right\}<0 \tag{13}
\end{equation*}
$$

Then, for every $\lambda \in \mathbb{R}^{d}$ and $a_{k} \rightarrow 0$ such that $h_{k} a_{k} \rightarrow \infty$,

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} a_{k} \log \mathbb{P}\left\{\sup _{u \in[0, T]}\left|a_{k} \varphi_{u k}\left(\lambda / \sqrt{h_{k} a_{k}}\right)-\frac{1}{2} q(u) \lambda^{\prime} Q \lambda\right|>\delta\right\}=-\infty \tag{14}
\end{equation*}
$$

Proof: Use (10), noting that $a_{k}=\frac{1}{h_{k}}\left(a_{k} h_{k}\right)$ with $a_{k} h_{k} \rightarrow \infty$, and that $\lim _{k \rightarrow \infty} v\left(|\lambda| a / \sqrt{a_{k} h_{k}}\right)=$ $\lim _{k \rightarrow \infty} w\left(|\lambda| a / \sqrt{a_{k} h_{k}}\right)=1$, while $\sup _{u \in[0, T]}|q(u)|<\infty$.

The next lemma is a simple application of the results of [8], relating (14) with the LDP (with speed a_{k}) of $\left\{\sqrt{\frac{a_{k}}{h_{k}}} X_{k}.\right\}$.

Lemma 3 When (14) holds, the processes $\left\{\sqrt{\frac{a_{k}}{h_{k}}} X_{k}, k>0\right\}$ satisfy the LDP in $\left(D\left(\mathbb{R}^{d}\right), \mathcal{B}\right)$ with speed a_{k} and the good rate function

$$
I(\phi)=\left\{\begin{array}{cc}
\int_{0}^{\infty} \Lambda^{*}\left(\frac{d \phi}{d q}(t)\right) q(d t) & \phi \ll q, \quad \phi(0)=0 \tag{15}\\
\infty & \text { otherwise }
\end{array}\right.
$$

(where $q \in M_{+}\left(\mathbb{R}_{+}\right)$is the continuous locally finite measure on $\left(\mathbb{R}_{+}, \mathcal{B}_{\mathbb{R}_{+}}\right)$such that $q([0, t])=$ $q(t))$.

Proof: For each sequence $k_{n} \rightarrow \infty$ we shall apply [8, Theorem 2.2] for the local martingales $\sqrt{a_{k_{n}} / h_{k_{n}}} X_{k_{n} t}$ replacing $\frac{1}{n}$ throughout by $a_{k_{n}}$. Cramér's condition [8, (2.6)] is trivially holding in the current setting, while for $G_{t}(\lambda)=\frac{1}{2} q(t) \lambda^{\prime} Q \lambda$ the condition ($\sup \mathcal{E}$) of [8, Theorem 2.2] is merely (14). Moreover, for this $G_{t}(\lambda)$ the condition $[8,(\mathrm{G})]$ is easily shown to hold (as $H_{s, t}(\cdot)$ is then a positive-definite quadratic form on the linear subspace dom $H_{s, t}$ for all $s<t$). Thus, the LDP in Skorohod topology follows from [8, Theorem 2.2] and the explicit form (15) of the rate function follows from $[8,(2.4)]$ taking there $g_{t}(\lambda)=\frac{1}{2} \lambda^{\prime} Q \lambda$. Suppose $I(\phi)<\infty$. Then, $\phi \ll q$ and since $q \in C[0, \infty)$ it follows that $\phi \in C\left(\mathbb{R}^{d}\right)$. Hence, by [8, Theorem C] we may replace the Skorohod topology by the stronger locally uniform topology on $D\left(\mathbb{R}^{d}\right)$.

Proposition 1 follows by combining Lemmas 2 and 3 with the next lemma.
Lemma 4 If h_{t} is regularly varying of index $\alpha>0$ then (5) implies that (13) holds for $q(u)=u^{\alpha}$.
Proof: Fix $T<\infty$ and $\delta>0$. Since h_{t} is regularly varying of index $\alpha>0$, clearly $h_{u k} / h_{k} \rightarrow$ u^{α} for all $u \in(0, \infty)$ (c.f. [2, page 18]). Take $\epsilon>0$ small enough for $\sup _{0 \leq i \leq\lceil T / \epsilon\rceil}|q(i \epsilon+\epsilon)-q(i \epsilon)| \leq$ $\delta /(3\|Q\|)$, and $k_{0}<\infty$ such that $\sup _{0 \leq i \leq\lceil T / \epsilon\rceil}\left|h_{i \epsilon k} / h_{k}-q(i \epsilon)\right| \leq \delta /(3\|Q\|)$ whenever $k \geq k_{0}$ (note that $q(0)=0)$.
The monotonicity of $\langle X\rangle_{t k}$ in t (and $\langle X\rangle_{0}=0$) implies that for all $k \geq k_{0}$

$$
\left\{\sup _{u \in[0, T]}\left\|\frac{\langle X\rangle_{u k}}{h_{k}}-q(u) Q\right\|>\delta\right\} \subseteq\left\{\sup _{1 \leq i \leq\lceil T / \epsilon\rceil}\left\|\langle X\rangle_{i \epsilon k}-h_{i \epsilon k} Q\right\|>\frac{1}{3} \delta h_{k}\right\}
$$

Hence, suffices to show that for every $i \in \mathbb{N}, \epsilon>0$

$$
\limsup _{k \rightarrow \infty} \frac{1}{h_{k}} \log \mathbb{P}\left\{\left\|\langle X\rangle_{i \epsilon k}-h_{i \epsilon k} Q\right\|>\frac{1}{3} \delta h_{k}\right\}<0
$$

Since $h_{i \epsilon k} / h_{k} \rightarrow q(i \epsilon) \in(0, \infty)$ this inequality follows from (5).

3 Proof of Corollary 1

(a) Assume first that h_{t} is regularly varying of index 1. Given Proposition 1, this case is easily settled by applying the contraction principle for the continuous mapping $\phi \mapsto \phi(1): D\left[\mathbb{R}^{d}\right] \rightarrow$ \mathbb{R}^{d}. In the general case, we take without loss of generality $h_{t} \in D\left(\mathbb{R}_{+}\right)$strictly increasing of bounded jumps (see Remark 1). Let $\sigma_{s}=\inf \left\{t \geq 0: h_{t} \geq s\right\}$ and $g_{s}=h_{\sigma_{s}}$. Note that $g_{s}-s$ is bounded, while (5) holds for the locally square integrable martingale $Y_{s}=X_{\sigma_{s}}$ of bounded jumps and the regularly varying function g_{s} of index 1. Consequently, $\left\{g_{s}^{-1 / 2} Y_{s}\right\}$ satisfies the MDP with the critical speed $1 / g_{s}$ and the good rate function $\Lambda^{*}(\cdot)$. Since h_{t} is strictly increasing and unbounded it follows that $\sigma\left(\mathbb{R}_{+}\right)=\mathbb{R}_{+}$. Hence, this MDP is equivalent to the MDP for $\left\{h_{k}^{-1 / 2} X_{k}\right\}$.
(b) As in part (a) above suffices to prove the stated MDP for h_{t} regularly varying of index 1. Applying the contraction principle for the continuous mapping $\phi \mapsto \sup _{s \leq 1} \phi(s)$ we deduce the stated MDP from Proposition 1. Since $\Lambda^{*}(v)=v^{2} /(2 Q)$, the good rate function for this MDP is (c.f. (6))

$$
I(z)=\frac{1}{2 Q} \inf _{\left\{\phi \in \mathcal{A C}_{0}: \sup _{s \leq 1} \phi(s)=z\right\}} \quad \int_{0}^{\infty} \dot{\phi}(s)^{2} d s \geq \frac{z^{2}}{2 Q}
$$

Clearly, $\phi(0)=0$ implies that $I(z)=\infty$ for $z<0$, while taking $\phi(s)=(s \wedge 1) z$ we conclude that $I(z)=z^{2} /(2 Q)$ for $z \geq 0$.

References

[1] K. Azuma (1967): Weighted sums of certain dependent random variables, Tohoku Math. J. 3, 357-367.
[2] N.H. Bingham, C.M. Goldie and J.L. Teugels (1987): Regular Variation Cambridge Univ. Press.
[3] A. Dembo and O. Zeitouni (1993): Large Deviations Techniques and Applications Jones and Bartlett, Boston.
[4] D. Freedman (1975): On tail probabilities for martingales, Ann. Probab. 3, 100-118.
[5] J. Jacod and A.N. Shiryaev (1987): Limit theorems for stochastic processes SpringerVerlag, Berlin.
[6] D. Khoshnevisan (1995): Deviation inequalities for continuous martingales, (preprint)
[7] R. Sh.Liptser and A.N. Shiryaev (1989): Theory of Martingales Kluwer, Dorndrecht.
[8] A. Puhalskii (1994): The method of stochastic exponentials for large deviations, Stoch. Proc. Appl. 54, 45-70.
[9] A. Rackauskas (1990): On probabilities of large deviations for martingales, Liet. Matem. Rink. 30, 784-794.

[^0]: ${ }^{1}$ Partially supported by NSF DMS-9209712 and DMS-9403553 grants and by a US-ISRAEL BSF grant
 ${ }^{2}$ On leave from the Department of Mathematics and Department of Statistics, Stanford University, Stanford, CA 94305

