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GAUSSIAN BEAM APPROACH FOR THE BOUNDARY VALUE

PROBLEM OF HIGH FREQUENCY HELMHOLTZ EQUATION ∗

CHUNXIONG ZHENG†

Abstract. We propose an asymptotic numerical method called the Gaussian beam approach
for the boundary value problem of high frequency Helmholtz equation. The basic idea is to ap-
proximate the traveling waves with a summation of Gaussian beams by the least squares algorithm.
Gaussian beams are asymptotic solutions of linear wave equations in the high frequency regime. We
deduce the ODE systems satisfied by the Gaussian beams up to third order. The key ingredient
of the proposed method is the construction of a finite-dimensional beam space which has a good
approximating property. If the exact solutions of boundary value problems contain some strongly
evanescent wave modes, the Gaussian beam approach might fail. To remedy this problem, we re-
sort to the domain decomposition technique to separate the domain of definition into a boundary
layer region and its complementary interior region. The former is handled by a domain-based dis-
cretization method, and the latter by the Gaussian beam approach. Schwarz iterations should then
be performed based on suitable transmission boundary conditions at the interface of two regions.
Numerical tests demonstrate that the proposed method is very promising.

Key words. Gaussian beam, high frequency, Helmholtz equation, domain decomposition,
least squares algorithm.
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1. Introduction

We are aiming at an efficient asymptotic solver for the Helmholtz equation

∆u+
ω2

c2(r)
u=0, r=(x,y)∈Ω, (1.1)

with some well-posed local linear boundary condition

Bu(r)=f(r), r∈∂Ω, (1.2)

where Ω is a 2-D bounded convex domain on the scale of O(1) and f(r) is a prescribed
boundary value function. The velocity field c(r) is assumed to be sufficiently smooth.
In general, the solution of the Helmholtz equation (1.1) becomes oscillatory with
characteristic wave length 1/ω when the frequency ω is large. To apply a domain-based
discretization method, the number of mesh points in each direction should be more
than O(ω) due to the pollution effect of high frequencies [1]. This strong constraint
of mesh size makes direct solution of (1.1) very expensive. Numerical methods based
on high frequency asymptotics are thus greatly motivated. The readers are referred
to [9] for a review.

The classical geometric optics (GO) approach presents a systematic way of finding
asymptotic solutions to high frequency linear wave equations. Based on the WKBJ
ansatz, the wave function is computed through a phase eikonal equation and a se-
quence of amplitude transport equations. The eikonal equation can be solved effi-
ciently by the ray tracing method, and the amplitudes are then derived by carrying
out some integrals along each specific ray; see [15] for more details.
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Despite the great success in handling various wave propagation problems, the
classical GO approach has its shortcomings. A significant drawback is that the solu-
tion based on the ray tracing does not exist globally. The asymptotic solution ceases
to be valid at caustics where the rays intersect and the amplitudes blow up. Many
remedies have been proposed to overcome this difficulty, among which is the Gaussian
beam (summation) approach; see [5, 3, 21] for examples. In a way similar to the GO
approach, the Gaussian beam approach also resorts to the concept of ray tracing: the
central curve of each Gaussian beam is exactly a specific ray. The difference lies in
the value space of phase function. While always real in the classical GO method, the
phase function of Gaussian beam is generally complex in its valid region. Since the
imaginary part of the phase Hessian projected to the transverse direction is positive
definite and bounded from below, the Gaussian beam is always well-defined and bell-
shaped. This property ensures the validity of the Gaussian beam approach even at
caustics. In [20] the approximating accuracy of the Gaussian beam solution has been
studied theoretically.

In this paper we propose an asymptotic solver based on the Gaussian beam theory
for the boundary value problem (1.1)–(1.2) in the high frequency regime. The basic
idea is to approximate the traveling waves with a summation of Gaussian beams. We
determine the approximate solution by solving a least squares problem in a finite-
dimensional beam space, which is spanned by a set of Gaussian beams. In two
dimensions, our solver involves only O(ω) unknowns, much less than O(ω2) for any
domain-based discretization method. When the exact solution contains some strongly
evanescent wave modes, we employ the domain decomposition technique to divide the
domain of definition into a boundary layer evanescent wave region and its comple-
mentary traveling wave region. The evanescent wave region is discretized by finite
elements, and the traveling wave region is handled by the proposed Gaussian beam
approach. Schwarz iterations are performed based on suitable transmission boundary
conditions at the interface of two regions. Since the width of evanescent wave region
is at most O(ω−1/2), the number of overall unknowns is O(ω3/2), which is still a gain
compared with any direct spatial discretization method.

The organization of the rest is as follows. In section 2, we apply the Gaussian
beam theory to the specific Helmholtz equation (1.1), and explicitly deduce the ODE
systems satisfied by the beam solutions up to third order. In section 3, we make an
error analysis on the Gaussian beam approximations for the plane waves. Section 4
presents the Gaussian beam approach for the boundary value problems. In section
5, we demonstrate the effectiveness of the proposed method with some test problems
whose solutions mainly consist of traveling waves. The Gaussian beam approach com-
bined with the domain decomposition technique is considered in section 6 for general
boundary value problems whose solutions might contain some strongly evanescent
wave modes. Section 7 concludes this paper and briefly discusses the advantages and
disadvantages of the proposed method.

2. Gaussian beams

In the high frequency regime, it is a common practice to seek asymptotic solutions
to (1.1) by using the WKBJ ansatz

u= eiωφ(r)
∞
∑

k=0

Ak(r)(iω)
−k.

Here the phase function φ and the amplitude functions Ak are assumed to be smooth
and independent of the frequency ω. Substituting the above ansatz into the Helmholtz
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equation (1.1) and equating the coefficients of different powers with respect to ω, we
derive a series of PDEs

∇φ ·∇φ=1/c2(r), (2.1)

2∇φ ·∇A0+∆φA0=0, (2.2)

2∇φ ·∇Ak+1+∆φAk+1+∆Ak=0, k=0,1, . . . . (2.3)

In the classical GO approach, the phase function φ is real. Given suitable boundary
condition, the phase function φ can be determined by the following ray-tracing system

dx

dt
= c(r)cosθ,

dy

dt
= c(r)sinθ,

dθ

dt
= cx(r)sinθ−cy(r)cosθ, (2.4)

where t is the optical length parameter and θ is the angle of ray direction. After that,
the amplitudes Ak can be computed through the transport equation (2.2)–(2.3). The
readers are referred to [15] for details.

The main drawback of the classical GO approach is that the asymptotic solution
ceases to be valid at caustics where the rays intersect and the amplitudes blow up.
Considering this point, many authors proposed the Gaussian beam approach; see
[5, 3, 21] for examples. The Gaussian beam approach also resorts to the ray tracing
system: the beam center is exactly a single ray. The difference between the classical
GO approach and the Gaussian beam approach is that while the phase function is
real-valued in the former, it is generally complex-valued for each specific Gaussian
beam in the latter. Projected to the transverse directions, the imaginary part of the
phase Hessian is positive definite, which ensures that the transverse profile of wave
function is always bell-shaped.

The Gaussian beam construction dates back to many years ago and has been
considered by many authors. Here we do not intend for even any rough review. The
readers are referred to [4] for more information. As to the specific Helmholtz equation
(1.1), a detailed construction and mathematical analysis can be found in principle in
the Appendix part of [23]. However, for the sake of completeness of this paper, we
reconsider this issue in the rest of this section.

For the N -th order (N ≥1) Gaussian beam, equations (2.1)–(2.3) do not hold
rigorously but only asymptotically, i.e.,

∇φ ·∇φ−1/c2(r)=O(ω−1−N/2), (2.5)

2∇φ ·∇A0+∆φA0=O(ω−N/2), (2.6)

2∇φ ·∇Ak+1+∆φAk+1+∆Ak=O(ωk+1−N/2), k=0,1, . . . . (2.7)

The governing Helmholtz equation thus holds to O(ω1−N/2), and the beam solution
has an accuracy of O(ω−N/2) . Note that for k≥N/2−1, equation (2.7) holds trivially.

In the ray-centered right-hand coordinates system (n,t), where n is the transverse
distance from the beam center, we have

∇=
et

h
∂t+en∂n, ∆=

1

h

(

1

h

)

t

∂t+
1

h2
∂2t +

cn
h
∂n+∂

2
n.

Here et=(cosθ,sinθ)⊤, en=(sinθ,−cosθ)⊤, h= c+ncn, c≡ c(r(t)), cn≡en ·∇c(r(t))
and r(t) denotes the central ray. The left hand sides of (2.5)–(2.7) are reformulated
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as

∇φ ·∇φ−1/c2(r)=
1

h2
φ2t +φ

2
n−1/c2(r), (2.8)

2∇φ ·∇A0+∆φA0=
2

h2
φtA0,t+2φnA0,n

+
1

h

(

1

h

)

t

φtA0+
1

h2
φttA0+

cn
h
φnA0+φnnA0, (2.9)

2∇φ ·∇Ak+1+∆φAk+1+∆Ak=
2

h2
φtAk+1,t+2φnAk+1,n

+
1

h

(

1

h

)

t

φtAk+1+
1

h2
φttAk+1+

cn
h
φnAk+1+φnnAk+1

+
1

h

(

1

h

)

t

Ak,t+
1

h2
Ak,tt+

cn
h
Ak,n+Ak,nn. (2.10)

Performing Taylor expansion with respect to n for those variable coefficient functions
in (2.8)–(2.10) yields

1

h2
= b0+b1n+b2n

2+b3n
3+b4n

4+ . . . , (2.11)

1

c2(r)
=p0+p1n+p2n

2+p3n
3+p4n

4+ . . . , (2.12)

1

h

(

1

h

)

t

= q0+q1n+q2n
2+ . . . , (2.13)

cn
h

= r0+r1n+ . . . , (2.14)

where

b0=
1

c2
, b1=−2cn

c3
, b2=

3c2n
c4
, b3=−4c3n

c5
, b4=

5c4n
c6
,

and

p0=
1

c2
, p1=−2cn

c3
, p2=

3c2n
c4

− cnn
c3
, p3=−4c3n

c5
+

3cncnn
c4

− cnnn
3c3

,

p4=
5c4n
c6

− 6c2ncnn
c5

+
3c2nn
4c4

+
cncnnn
c4

− cnnnn
12c3

,

and

q0=− cs
c2
, q1=−cns

c2
+

3cncs
c3

, q2=
3cncns
c3

− 6c2ncs
c4

,

and

r0=
cn
c
, r1=−c

2
n

c2
.

Here cnn, cnnn, cnnnn, cs, and cns denote different order (mixed) derivatives of the
velocity field valued at the central ray curve r(t).

Suppose the Taylor expansion of the phase function with respect to n is given by

φ= t+
φ2
2
n2+

φ3
6
n3+

φ4
24
n4+ . . . , (2.15)
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where φ2, φ3 and φ4 are functions only of t. Substituting (2.15), (2.11)–(2.12) into
(2.8) and equating the different powers of n (notice that n=O(ω−1/2) for the Gaussian
beams), we realize that the eikonal equation (2.5) holds trivially within O(1) andO(n).
For higher orders we have

O(n2) : b0φ2,t+φ
2
2+b2−p2=0, (2.16)

O(n3) :
b0φ3,t
3

+φ2,tb1+b3+φ2φ3−p3=0, (2.17)

O(n4) :
b0φ4,t
12

+
b0φ

2
2,t

4
+
φ3,t
3
b1+φ2,tb2+b4+

φ23
4

+
φ2φ4
3

−p4=0. (2.18)

Equation (2.16) is a simple Ricatti equation. It may be reduced by standard tech-
niques to a pair of first-order linear equations. But from the computational point of
view, this is unnecessary. Note that if φ2 has a positive imaginary part at the starting
point, it also does at any advancing point.

Next we come to the amplitude functions Ak. Suppose

A0=A00+A01n+
A02

2
n2+ . . . . (2.19)

Substituting (2.19), (2.11), (2.13)-(2.14) into (2.9) and equating the different powers
of n gives

O(n0) : 2b0A00,t+q0A00+φ2A00=0, (2.20)

O(n1) : 2b0A01,t+2b1A00,t+3φ2A01+q0A01+q1A00+r0φ2A00+φ3A00=0, (2.21)

O(n2) : b0A02,t+b0φ2,tA00,t+2b2A00,t+2b1A01,t+2φ3A01+5φ2A02/2

+q0φ2,tA00/2+q2A00/2+q1A01+q0A02/2+b0φ2,ttA00/2

+r0φ3A00/2+φ2(r0A01+r1A00)+φ4A00/2=0. (2.22)

Analogously, for the equation (2.7) with k=0, within O(1) the amplitude function
A1 satisfies

2b0A1,t+q0A1+φ2A1+q0A00,t+b0A00,tt+r0A01+A02=0. (2.23)

Higher order Taylor expansion terms can be also considered in principle, but the
formulations would be much more complicated.

The first three Gaussian beams are

uGB1=A00 exp

{

iω

(

t+
φ2
2
n2
)}

, (2.24)

uGB2=(A00+A01n)exp

{

iω

(

t+
φ2
2
n2+

φ3
6
n3
)}

, (2.25)

uGB3=

(

A00+A01n+
A02

2
n2+

1

iω
A1

)

exp

{

iω

(

t+
φ2
2
n2+

φ3
6
n3+

φ4
24
n4
)}

. (2.26)

Given the initial data

φ2(0)=a2, φ3(0)=a3, φ4(0)=a4,A00(0)=a00, A01(0)=a01, A02(0)=a02, A1(0)=a1,
(2.27)

the first order Gaussian beam can be computed by solving the ray-tracing system (2.4)
together with the equations (2.16) and (2.20), and the second order with equations
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(2.17), (2.21), and the third order with equations (2.18), (2.22), and (2.23). In the
case of constant velocity c(r)≡1, the ray is simply a straight line, and other ODEs
can be integrated out analytically. See the results given in Appendix A. In the general
case, if the ray curve is expressed in an analytical or semi-analytical way, all phase
functions and amplitude functions can be integrated out analytically, as performed
in [17, 18]. In this paper we simply employ the fourth-order Runge-Kutta scheme to
simultaneously compute the ray curve and the related phase and amplitude functions.

Any Gaussian beam has its valid region. This is typically because the ray-centered
coordinates system can only be set up locally unless the central ray is a straight line.
The valid region of Gaussian beam is determined by the curvature of its central
ray. Thus to justify the Gaussian beam approximation, the beam solution should
be sufficiently small at the boundary of valid region. This is always possible if the
frequency ω is large enough. In this paper, we set the valid region of Gaussian beam
as {(n,t)∈R

2|ωn2 Imφ2(t)/2<36}.
3. Error analysis for the beam approximation to plane waves

In this section, under the assumption of constant velocity field c(r)≡1, we give
analysis for a special type of beam summation approximation to the plane wave so-
lution of the form

u(λ,r)=exp
(

iλ
√
ωx
)

·exp
(

i
√

ω2−λ2ωy
)

, (3.1)

where λ∈C is a free parameter on the scale of O(1), and the square root
√· is taken

with a positive real part. Two interesting cases are included:

I if λ is real, the solution (3.1) represents a propagating wave. The propagating
direction is almost parallel to the positive y-direction for large ω. When λ
runs through a symmetric interval with a length ofO(1), the wave propagating
angles will cover an interval centered at π

2 with a length of O(ω−1/2). For
example, if λ is valued in [−1,1], the covered range of angle is

[π/2−arctan(1/
√
ω−1),π/2+arctan(1/

√
ω−1)].

Asymptotically, the length of this interval is 2ω−1/2.

II if λ is not real, the solution (3.1) is evanescent in a direction almost parallel
to the x-axis. The evanescent direction angle covers an interval with a length
of O(ω−1/2), if the real part of λ runs through an interval of length O(1).

Denote φNω (r) to be the N -th order Gaussian beam propagating in the positive
y-direction with the initial data φω(x)=exp(−ωx2/2) at y=0. Set xj = jh with h
being the spatial stepsize, and the Gaussian beam approximation uNGB as

uNGB(λ,r)=
∑

k∈Z

ak(λ)φ
N
ω,k(r), (3.2)

where

ak(λ)=
exp(iλ

√
ωxk)

∑

k∈Z
exp(iλ

√
ωxk)φω(xk)

, φNω,k(r)=φ
N
ω (x−xk,y).

We would like to study under what conditions the relative error (uNGB−u)/u can be
made small. Note that uNGB satisfies the interpolating condition

uNGB(λ,xk,0)=exp
(

iλ
√
ωxk

)

=u(λ,xk,0), ∀k∈Z. (3.3)
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Theorem 3.1. Given ymax>0, λrm>0, λim≥0, set λm=
√

λ2rm+λ2im, and let a0 be

the constant satisfying (3.17). Then for any ω≥max
(

1,λ4mymax/2
)

, any h≤ω−1/2/a∗

with

a∗=max

(

a0,
2(λrm+ymaxλim)

π

)

,

any λ satisfying |Reλ|≤λrm, and |Imλ|≤λim, the following holds:

∣

∣

∣

∣

u1GB(λ,r)−u(λ,r)
u(λ,r)

∣

∣

∣

∣

≤0.33 exp

(

− π2

ωh2

)

+λ4mymax exp
(

λ2rm/2
)

/ω,

∀r=(x,y) with |y|≤ymax. (3.4)

The following proof is essentially based on the analysis in [16].

Proof. Since

u1GB(λ,r)

u(λ,r)
=

∑

k∈Z
exp(iλ

√
ω (xk−x))φ1ω(x−xk,y)exp

(

−i
√
ω2−λ2wy

)

∑

k∈Z
exp(iλ

√
ωxk)φω(xk)

,

by setting

ψ(λ,r)=
∑

k∈Z

exp(iλ
√
ω (xk−x))φ1ω(x−xk,y)exp

(

−i
√

ω2−λ2wy
)

, (3.5)

we have

ψ(λ,x,0)=
∑

k∈Z

exp(iλ
√
ω (xk−x))φω(x−xk),

and

u1GB(λ,r)/u(λ,r)=ψ(λ,r)/ψ(λ,0,0). (3.6)

It is straightforward to verify (using the results in Appendix A) that the first order
beam solution φ1ω satisfies the Schrödinger equation

φ1ω,y = iω

(

1+
∂2x
2ω2

)

φ1ω.

Thus ψ (see (3.5)) satisfies

ψy = i

(

ω−
√

ω2−λ2ω+ ∂2x+2iλ
√
ω∂x−λ2ω

2ω

)

ψ.

Since ψ is h-periodic with respect to the variable x, we expand it into a Fourier series

ψ(λ,r)=
∑

k∈Z

bk(λ,y)exp(2πikx/h), (3.7)

where the k-th Fourier coefficient bk satisfies the relation

bk(λ,y)= bk(λ,0)exp

(

iy

[

ω−
√

ω2−λ2ω− 4π2k2/h2+4πλ
√
ωk/h+λ2ω

2ω

])

= bk(λ,0)exp

(

iy

[

ω−
√

ω2−λ2ω− λ2

2
−2π2k2a2−2πλka

])

. (3.8)
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Here we have set a=ω−1/2/h. The initial value

bk(λ,0)=
1

h

∫ h

0

ψ(λ,x,0)exp(−2πikx/h)dx

may be evaluated analytically as

bk(λ,0)=
1

h

∑

j∈Z

∫ h

0

exp(iλ
√
ω (xj−x))φω(x−xj)exp(−2πikx/h)dx

=
1

h

∑

j∈Z

∫ x1−j

x
−j

exp(−iλ
√
ωx)φω(x)exp(−2πik(x+xj)/h)dx

=
1

h

∑

j∈Z

∫ x1−j

x
−j

exp(−iλ
√
ωx)φω(x)exp(−2πikx/h)dx

=
1

h

∫ ∞

−∞
exp(−iλ

√
ωx)φω(x)exp(−2πikx/h)dx

=

√
2π

h
√
ω
exp

(

− (λ
√
ω+ 2πk

h )2

2ω

)

=
√
2πa exp

(

− (λ+2πka)2

2

)

. (3.9)

Since

|1+
√
z |≥1, ∀z∈C,

we have

∣

∣

∣

∣

ω−
√

ω2−λ2ω− λ2

2

∣

∣

∣

∣

=

∣

∣

∣

∣

λ2ω

ω+
√
ω2−λ2ω

− λ2

2

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

λ2(ω−
√
ω2−λ2ω)

2(ω+
√
ω2−λ2ω)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

λ4ω

2(ω+
√
ω2−λ2ω)2

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

λ4

2ω
(

1+
√

1−λ2/ω
)2

∣

∣

∣

∣

∣

∣

∣

≤ λ4m
2ω

. (3.10)

Thus (see (3.8), (3.9)),

|bk(λ,y)|

=

∣

∣

∣

∣

√
2πa exp

(

− (λ+2πka)2

2

)

exp

(

iy

[

ω−
√

ω2−λ2ω− λ2

2
−2π2k2a2−2πλka

])∣

∣

∣

∣

≤
√
2πa exp

(

(Imλ)2−(Reλ+2πka)2

2

)

exp

((

λ4m
2ω

+2πkaImλ

)

|y|
)

. (3.11)

According to the result in Appendix C, if λ4mymax/(2ω)≤1, i.e., ω≥λ4mymax/2, we
have

|b0(λ,y)−b0(λ,0)|= |b0(λ,0)|
∣

∣

∣

∣

exp

(

iy

[

ω−
√

ω2−λ2ω− λ2

2

])

−1

∣

∣

∣

∣

≤ 0.86λ4maxymax

ω

√
2πa exp

(

(Imλ)2

2

)

. (3.12)



CHUNXIONG ZHENG 1049

Consulting (3.7) and (3.11) we have

|ψ(λ,r)−b0(λ,y)|=

∣

∣

∣

∣

∣

∣

∑

k∈Z,k 6=0

bk(λ,y)exp(2πikx/h)

∣

∣

∣

∣

∣

∣

≤
∑

k∈Z,k 6=0

|bk(λ,y)|

≤
√
2πa

∑

k∈Z,k 6=0

exp

(

(Imλ)2−(Reλ+2πka)2

2

)

exp

((

λ4m
2ω

+2πkaImλ

)

|y|
)

=
√
2πa exp

(

(Imλ)2

2
+
λ4m|y|
2ω

)

∑

k∈Z,k 6=0

exp

(

− (Reλ+2πka)2

2

)

exp(2πka|y|Imλ)

=
√
2πa exp

(

(Imλ)2

2
+
λ4m|y|
2ω

− |y|Imλ(2Reλ−|y|Imλ)

2

)

∑

k∈Z,k 6=0

exp

(

− (Reλ−|y|Imλ+2πka)2

2

)

.

If ω≥1 and (λrm+ymaxλim)/(2πa)≤1/4, applying the result in Appendix B yields

|ψ(λ,r)−b0(λ,y)|

≤
√
2πa exp

(

(Imλ)2

2
+
λ4m|y|
2ω

− |y|Imλ(2Reλ−|y|Imλ)

2

)

2exp(−9π2a2/8))

1−exp(−5π2a2)

≤
√
2πa exp

(

(Imλ)2

2
+
λ4mymax

2
+
ymaxλim(2λrm+ymaxλim)

2

)

2exp(−9π2a2/8))

1−exp(−5π2a2)

=
√
2πa exp

(

(Imλ)2

2

)

ǫ(a,λrm,λim,ymax), (3.13)

where we have set

ǫ(a,λrm,λim,ymax)

=exp

(

λ4mymax

2
+
ymaxλim(2λrm+ymaxλim)

2

)

2exp(−9π2a2/8))

1−exp(−5π2a2)
. (3.14)

In terms of (3.9) and (3.13), we have

|ψ(λ,0,0)|≥ |b0(λ,0)|−|ψ(λ,0,0)−b0(λ,0)|

≥
√
2πa exp

(

(Imλ)2−(Reλ)2

2

)

−
√
2πa exp

(

(Imλ)2

2

)

ǫ(a,λrm,λim,ymax)

≥
√
2πa exp

(

(Imλ)2

2

)(

exp

(

−λ
2
rm

2

)

−ǫ(a,λrm,λim,ymax)

)

. (3.15)

Moreover (see (3.13) and (3.12)),

|ψ(λ,r)−ψ(λ,0,0)|
≤ |ψ(λ,r)−b0(λ,y)|+ |ψ(λ,0,0)−b0(λ,0)|+ |b0(λ,y)−b0(λ,0)|

≤2
√
2πa exp

(

(Imλ)2

2

)

ǫ(a,λrm,λim,ymax)+
0.86λ4mymax

ω

√
2πa exp

(

(Imλ)2

2

)

.

(3.16)
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Recalling (3.6) and applying (3.15) and (3.16) we derive

|u1GB(λ,r)−u(λ,r)|
|u(λ,r)| =

|ψ(λ,r)−ψ(λ,0,0)|
|ψ(λ,0,0)| ≤ 2ǫ(a,λrm,λim,ymax)+0.86λ4mymax/ω

exp
(

−λ2
rm

2

)

−ǫ(a,λrm,λim,ymax)
.

Let a0 be the constant satisfying

exp

(

λ2rm
2

)

exp

(

λ4mymax

2
+
ymaxλim(2λrm+ymaxλim)

2

)

2exp(−π2a2/8))

1−exp(−5π2a2)
=0.14,

(3.17)
then for any a≥a0, i.e., h≤ω−1/2/a0, we have

|u1GB(λ,r)−u(λ,r)|
|u(λ,r)| ≤

2exp
(

λ2

rm

2

)

ǫ(a,λrm,λim,ymax)+0.86 exp
(

λ2

rm

2

)

λ4mymax/ω

1−exp
(

λ2
rm

2

)

ǫ(a,λrm,λim,ymax)

≤
0.28 exp(−π2a2)+0.86 exp

(

λ2

rm

2

)

λ4mymax/ω

0.86

≤0.33 exp

(

− π2

ωh2

)

+exp

(

λ2rm
2

)

λ4mymax/ω.

This ends the proof.

Two remarks would be made about Theorem 3.1.

Remark 3.2. The parameter a=ω−1/2/h reflects the spatial resolution of Gaussian
beam summation. As revealed in Theorem 3.1, the spatial stepsize h should suffi-
ciently resolve the characteristic width ω−1/2 of each beam. Note that the first term
on the right hand side of (3.4) decays extremely fast with respect to a. For example,
by setting

λrm=1, λim=1, ymax=1, a=1.4,

we then have

0.33 exp

(

− π2

ωh2

)

<1.32×10−9.

This implies that in a large enough frequency range, the relative error is first order
with respect to the frequency ω for the first Gaussian beam approximation.

Remark 3.3. The upper bound of the error estimate in Theorem 3.1 is optimal
with respect to ω, but the constant multiplied with ω−1 can be made smaller. The
optimal value should be close to

λ4mymax exp
(

λ2rm/2
)

/8ω,

for sufficiently large ω. See (3.10) and (3.12).

It is tempting to extend the result in Theorem 3.1 to higher order beam approxi-
mations. The second order is the same as the first order in the constant velocity case,
thus there is no need to consider it. For the third order approximation, there exists
one essential difficulty which prevents us from making an analogous analysis. Since
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φ4(y)=−3y/(1+ iy)4 (see Appendix A) and the quartic term dominates in the phase
function for large x, the beam solution is not valid in the whole x-axis. It should be
either confined into a finite domain around the beam center, as we do in this paper,
or modified by multiplying a smooth cut-off function which remains 1 near the center
and decays to 0 sufficiently fast away from the center. This makes the Fourier analysis
(like (3.9)) much more complicated.

At the end of this section, we make some numerical tests on the approximating
error of Gaussian beam approximation (3.2). We set a=1.4, and the test region of λ as
a 2-by-2 square centered at the origin. Figure 3.1 shows the maximum relative errors
of Gaussian beam approximation in the domain R× [−1,1] for four typical choices of
λ. One could see that the error for the third order approximation is second order with
respect to ω, and the error for the first order is first order. An interesting point is that
at λ=0, the error for the first order approximation saturates for any frequency in the
considered range. This is also consistent with our error analysis given in Theorem 3.1:
since the second term with respect to ω in (3.4) in fact vanishes, the error is roughly
the interpolating error (see (3.3)), which does not change with respect to ω if we fix
a=ω−1/2/h.
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Fig. 3.1. Maximum relative error. h=ω−1/2/a with a=1.4. Left: first order. Right: third order.

Theorem 3.1 together with the above numerical tests shows that when a=ω−1/2/h
is sufficiently large, the error mainly depends on the frequency ω. For the sake of
simplicity in the following, we always assume

Hypothesis 3.4. The spatial stepsize h is small enough and the following error

estimate holds

∣

∣

∣

∣

uNGB(λ,r)−u(λ,r)
u(λ,r)

∣

∣

∣

∣

≤ cω−γN , ∀r∈Ω, ∀λ∈C with |λ|≤λm, (3.18)

with γN =1 for N =1 and γN =2 for N =3. Here and hereafter, we use the notation

c to denote a constant depending on λm and the size of definition domain Ω, but not
on ω. It may have different values at different places.

4. Gaussian beam approach for boundary value problems

Now we come to the boundary value problem (1.1)-(1.2) with c(r)≡1. We intro-
duce

Wω(Ω)
def
= {uω ∈H2(Ω) : (∆+ω2)uω =0}
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as the solution space to the Helmholtz equation. For any gω ∈L1
per([0,2π]) we define

the Herglotz wave function as

u(gω,r)=

∫ 2π

0

exp(iω(cosθx+sinθy))gω(θ)dθ. (4.1)

Here gω is called the density function. It has been proved (see Theorem 2 in [25])
that within any given error tolerance, any sufficiently smooth solution to the con-
stant frequency Helmholtz equation on a finite domain of smooth boundary can be
approximated by a Herglotz function. Considering our problem, if the exact solution
uω (here we explicitly show the dependence on ω) can be extended within the same
scale from Ω to a larger smooth domain Ω̃, it is reasonable to assume that uω can be
approximated in Ω by a Herglotz function u(gω,r) uniformly with respect to ω. More
precisely, we assume that:

Hypothesis 4.1. There exist two constants α and β such that for any sufficiently

small ǫ0>0 and any large enough ω, there is a function gω ∈L1
per[0,2π] satisfying

||uω(r)−u(gω,r)||L2(Ω)≤ ǫ0, ||gω||L1 =O(ωα), ||uω(r)||L2(Ω)=O(ωβ). (4.2)

We give several examples here:

1. Plane wave solution uω(r)=exp(iω(cosθ0x+sinθ0y)) with a propagating an-
gle θ0. The solution itself is a Herglotz function with the density function
gω(θ)= δ(θ−θ0). We have α=β=0.

2. Cylindrical wave solution uω(r)=J0(ωr). It is a Herglotz function with the
plane wave expansion

J0(ωr)=
J0(0)

2π

∫ 2π

0

exp(iω(cosθx+sinθy))dθ.

We have α=0. The asymptotic behavior of J0(ωr) for large ω gives β=−1/2.

3. Point wave solution uω(r)=H
(1)
0 (ωr) where r= |r| and H

(1)
0 is the zero-th

order Hankel function of the first kind. Without loss of generality, we suppose
the convex domain Ω is in the upper half plane. According to [6, Equ. 7], we
have

H
(1)
0 (ωr)

=
1

π

(

−2i

∫ ∞

0

exp(iωxcoshv−ωy sinhv)dv+
∫ π

0

exp(iωxcosθ+ iωy sinθ)dθ

)

,

∀y>0.

For large ω, the first term in the bracket decays exponentially. Thus we have
α=0. The asymptotic behavior of H(1)(ωr) for large ω gives β=−1/2.

The Herglotz wave function (4.1) is an integral summation of plane waves. If the
support of gω is contained in an interval I of length O(ω−1/2) centered at π/2, we
have (see Hypothesis 3.4)
∣

∣

∣

∣

u(gω,r)−
∫

I

uNGB(
√
ωcosθ,r)gω(θ)dθ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

I

exp(iω(cosθx+sinθy))gω(θ)dθ−
∫

I

uNGB(
√
ωcosθ,r)gω(θ)dθ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

I

(

exp(iω(cosθx+sinθy))−uNGB(
√
ωcosθ,r)

)

gω(θ)dθ

∣

∣

∣

∣

≤ cω−γN

∫

I

|gω(θ)|dθ, ∀r∈Ω,

(4.3)
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because

|
√
ωcosθ|= |

√
ω sin(π/2−θ)|=O(1), ∀θ∈ [θs,θe].

Note that (see (3.2))

∫

I

uNGB(
√
ωcosθ,r)gω(θ)dθ=

∑

k∈Z

φNω,k(r)

∫

I

ak(
√
ωcosθ)gω(θ)dθ.

The error estimate (4.3) thus implies that one can find an element u(r)∈
Span{φNω,k(r)}k∈Z which satisfies

||u(gω,r)−u(r)||L2(Ω)≤ cω−γN

∫

I

|gω(θ)|dθ. (4.4)

In the general case, we could divide the interval [0,2π] (in fact the unit circle)
intoM sub-intervals Ij with same length of O(ω−1/2). This meansM =O(ω1/2). The
center of Ij is set as π/2+2πj/M , j=0,1, . . . ,M−1. The Herglotz function u(gω,r)
could then be expressed as

u(gω,r)=

M−1
∑

j=0

u(χIjgω,r),

where χ is the indicator function. Since each u(χIjgω,r) is a Herglotz function with a
density function supported in Ij , analogous to (4.4), one could find an element uj(r)
in the space Span{φNω,k(Rjr)}k∈Z (Rj denotes the rotation transformation with an
angle of 2πj/M), such that

||u(χIjgω,r)−uj(r)||L2(Ω)≤ cω−γN

∫

Ij

|gω(θ)|dθ.

Thus (see (4.2)),

∥

∥

∥

∥

∥

∥

u(gω,r)−
M−1
∑

j=0

uj(r)

∥

∥

∥

∥

∥

∥

L2(Ω)

≤
M−1
∑

j=0

‖u(χIjgω,r)−uj(r)‖L2(Ω)

≤ cω−γN

∫ 2π

0

|gω(θ)|dθ≤ cωα−γN ,

and
∥

∥

∥

∥

∥

∥

uω(r)−
M−1
∑

j=0

uj(r)

∥

∥

∥

∥

∥

∥

L2(Ω)

≤‖uω(r)−u(gω,r)‖L2(Ω)+

∥

∥

∥

∥

∥

∥

u(gω,r)−
M−1
∑

j=0

uj(r)

∥

∥

∥

∥

∥

∥

L2(Ω)

≤ ǫ0+cωα−γN .

Setting ǫ0 small enough, we thus know that there exists an element ũω(r)=
∑M−1

j=0 uj(r) in the beam space

Φ
def
= Span{φNω,k(Rjr)}j=0,...,M−1,k∈Z, (4.5)
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such that for any large enough ω,

‖uω(r)− ũω(r)‖L2(Ω)≤ cωα−γN , (4.6)

and (see (4.2))

‖uω(r)− ũω(r)‖L2(Ω)

‖uω(r)‖L2(Ω)

≤ cωα−β−γN . (4.7)

Theorem 4.2. Under Hypothesis 4.1, there exists a constant γ≤α−β such that for

any large enough ω, there is an element ũω(r)∈Φ satisfying

‖uω(r)− ũω(r)‖L2(Ω)

‖uω(r)‖L2(Ω)

≤ cωγ−γN . (4.8)

Remark 4.3. Our numerical tests in the next section suggest that the lower
bound of γ may be smaller than α−β. This implies that the analysis (4.7) on the
approximating potential of Φ may not be optimal.

Remark 4.4. The beam space Φ (4.5) is infinite-dimensional. Since Ω is a bounded
domain on the scale of O(1), and φNω,k(r) indeed vanishes on Ω for large |k| (nu-
merically the transverse support of φNω,k(r) is on the scale of O(ω−1/2)), the func-
tion ũω satisfying (4.6) is in fact in a finite-dimensional subspace of Φ. Only those
beams whose support intersects with Ω have real approximating effect. See figure
4.1. Practically, we determine a priori a circle of radius R which encloses Ω, and
draw M =O(ω1/2) straight lines with equidistant direction angles. On each line, we
put [2Raω1/2] equidistant points including two ending points. Associated with each
point, we compute an N -th order Gaussian beam solution which propagates in a di-
rection perpendicular to the located line. The total number of beam solutions is thus
M× [2Raω1/2]=O(ω). Notice that figure 4.1 actually shows 10 lines, not 5.

The approximating potential analysis (4.8) ensures us an element ũω(r)∈Φ which
is a good asymptotic approximation to the exact solution if γ <γN . However, we
could not determine such an element by the above-explained constructive method.
Moreover, we aim to develop a general solver for the Helmholtz equation even with
a variable velocity field. In this case the analysis based on the plane wave expansion
does not work any more. Instead, we determine a function u∗ω(r)∈Φ which solves the
following optimization problem:

||Bu∗ω(r)−f(r)||L2(∂Ω)=min
v∈Φ

||Bv(r)−f(r)||L2(∂Ω). (4.9)

Since

||Bu∗ω(r)−f(r)||L2(∂Ω)≤||Bũω(r)−f(r)||L2(∂Ω),

we have

||Bu∗ω(r)−Bũω(r)||L2(∂Ω)≤||Bu∗ω(r)−f(r)||L2(∂Ω)+ ||Bũω(r)−f(r)||L2(∂Ω)

≤2||Bũω(r)−f(r)||L2(∂Ω)=2‖Bũω(r)−Buω(r)‖L2(∂Ω)

≤2‖B‖·‖uω(r)− ũω(r)‖L2(Ω).
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Fig. 4.1. Schematic view of beam waist centers and propagating directions. The closed blue
curve stands for the boundary of convex domain of definition.

Thus,

||u∗ω(r)− ũω(r)||L2(Ω)≤||B−1|| · ||Bu∗ω(r)−Bũω(r)||L2(∂Ω)

≤2||B−1|| · ||B|| · ||uω(r)− ũω(r)||L2(Ω),

and

||uω(r)−u∗ω(r)||L2(Ω)≤||u∗ω(r)− ũω(r)||L2(Ω)+ ||ũω(r)−uω(r)||L2(Ω)

≤ (1+2||B−1|| · ||B||) ||uω(r)− ũω(r)||L2(Ω).

If ||B−1|| · ||B||=O(1), we derive (see (4.8))

‖uω(r)−u∗ω(r)‖L2(Ω)

‖uω(r)‖L2(Ω)

≤ c
‖uω(r)− ũω(r)‖L2(Ω)

‖uω(r)‖L2(Ω)

≤ cωγ−γN . (4.10)

We conclude the above analysis as a theorem.

Theorem 4.5. Assume that Hypothesis 4.1 holds and

1. B is a bounded operator from Wω+Φ⊂L2(Ω) to L2(∂Ω);

2. Confined to Φ, B is injective. Moreover, the associated inverse operator B−1

is bounded from BΦ⊂L2(∂Ω) to Φ⊂L2(Ω);
3. ||B|| · ||B−1||=O(1).

Then the error estimate (4.10) holds.
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Several remarks would be made here.

Remark 4.6. The first two assumptions made in Theorem 4.5 are not hard to
verify if B is a well-posed local linear boundary operator at most of first order. The
point is the third assumption. Take the Dirichlet boundary operator as an example.
We could expect ||B||=O(1). ||B−1|| typically reflects the stability of the Gaussian
beam formulation. For simple geometries, it is possible to derive ||B−1||=O(1) by the
Fourier analysis conducted in the proof of Theorem 3.1. For a more general geometry,
the analysis is much more complicated.

Remark 4.7. The error estimate (4.10) implies that if γ−γN <0, the solution
u∗ω(r) to the least squares problem (4.9) is a valid asymptotic solution. The case of
γ >0 generally implies that the solution uω(r) contains some strongly evanescent wave
modes. If uω(r) mainly consists of traveling waves, we could expect γ=0. In this
case, our method might be asymptotically optimal.

Now let us consider the numerical issues related to the least squares problem (4.9).
Let {ϕj(r)}Lj=1 be the effective part of Gaussian beams spanning Φ (see Remark 4.4).

We express the solution of (4.9) as u∗ω(r)=
∑L

j=1a
∗
jϕj(r). The problem (4.9) is then

changed into:
∥

∥

∥

∥

∥

∥

L
∑

j=1

a∗jBϕj(r)−f(r)

∥

∥

∥

∥

∥

∥

L2(∂Ω)

= min
{aj}L

j=1
∈CL

∥

∥

∥

∥

∥

∥

L
∑

j=1

ajBϕj(r)−f(r)

∥

∥

∥

∥

∥

∥

L2(∂Ω)

. (4.11)

This problem involves the L2 norm at the boundary ∂Ω. In the numerical implemen-

tation, it has to be approximated by a suitable quadrature rule. Suppose {rj}Np

j=1

(Np=O(ω)) is a set of points uniformly distributed at the boundary ∂Ω (if possible).
Using the trapezoidal rule yields a discrete counterpart of (4.11):

||A~a∗−b||2= min
~a∈CL

||A~a−b||2, (4.12)

where A=(aij) is an Np×L matrix with aij =Bϕj(ri), b=(bi) is an Np-dimensional
vector with bi=f(ri), and || · ||2 is the standard vector l2 norm. Other quadrature
rules could be used alternatively, which result in a weighted discrete l2 norm, but the
solution strategy would be essentially the same.

As explained in Remark 4.4, the column number of A is O(ω). Since the beam
width is O(ω−1/2), a typical column of A has only O(ω1/2) nonzero elements (see the
numerical study on the size of Np in the next section). If ω is large, iterative solvers
based on Krylov subspace projection are thus preferable. Since A is generally ill-
conditioned, some regularization technique should be applied to regularize the least
squares problem (4.12). The regularization technique for ill-posed linear problems
has been a hot research area for several decades [10, 12, 14]. However, we did not
find a method in the existing literature which solves our problem very efficiently.
Fortunately, our numerical tests reveal that the following algorithm based on the
projection regularization works fairly well:

• Solve the normal equation

A∗A~a=A∗b, (4.13)

with CGLS [13, 2, 22] to derive ~a∗={a∗j}Lj=1;
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• The iteration process is terminated if the relative residual norm is less than a
prescribed tolerance ǫ0, or the maximum iteration number kmax is reached;

• The least squares solution is set as u∗ω(r)=
∑L

j=1a
∗
jϕj(r).

In the numerical tests considered in this paper, we set ǫ0=10−12 and kmax=2000.

5. Numerical tests

In this section, we present some numerical tests to demonstrate the performance
of the proposed Gaussian beam approach. The domain of definition Ω is set as a unit
square [−0.5,0.5]2, and the boundary operator is B=∂ν− iω, where ν denotes the
outer normal direction of Ω. In all numerical tests, the radius R of the circle which
encloses Ω is 1 (see 4.1), and the spatial stepsize is set as h=2R/⌈2Rω1/2a⌉ with
a=1.4. Here ⌈·⌉ denotes the smallest integer which is not less than the argument.

(a) (b)

(c) (d)

Fig. 5.1. Real part of the exact wave field. ω=100. (a): point wave. (b): plane wave with
θ0=

π
2
+ π

4⌈√ω⌉ . (c): cylindrical wave. (d): variable velocity solution with a=5.

We consider four different problems:

Point wave: The exact solution is u(r)=H
(1)
0

(

ω
√

(x+2)2+(y+2)2
)

,

where H
(1)
0 is the zeroth order Hankel function of the first kind. The point

source is located at (−2,−2).

Plane wave: The exact solution is u(r)=exp(iω(cosθ0x+sinθ0y)). The
parameter θ0 is the propagating directional angle.

Cylindrical wave: The exact solution is u(r)=J0(ωr). From the GO point
of view, the origin is a caustics point. The classical GO method could not
solve this solution in the whole domain of definition.
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Fig. 5.2. Dependence of the approximating error on the number of boundary points. Third order
Gaussian beam approach is used. M =4⌈√ω⌉. Left: Error plot for several ω. Right: Contour of
errors for (Np,ω)∈ [200,1600]× [100,300]. The three lines (from left to right) are Np=2ω, Np=3ω
and Np=4ω, respectively.
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and M =5ω1/2, respectively.

Variable velocity problem: The exact solution is

u(r)=exp
{

iaω ln
(

√

(x+a)2+y2
)}

, c(r)=
1

a

√

(x+a)2+y2.

The parameter a>0.5 controls the fluctuation of the velocity field.
For ease of reference, we plot the real part of these wave fields in figure 5.1 for

ω=100.
We first make a numerical study on the size of Np, the number of collocated

boundary points. Since the solution is oscillatory of characteristic length ω−1, it
is natural to conjecture that the number of boundary points Np should at least be
proportional to ω. In figure 5.2 we show the numerical errors of the point wave
solution on the line x=0 for different ω and different Np by fixing the number of
straight lines as M =4⌈ω1/2⌉. From the left error plot in figure 5.2, one can see that
the error decreases significantly at the initial stage and then remains stable for large
enough Np. A good estimate of the breakpoints is Np=2ω, see the right contour plot
in figure 5.2. This means that on average 2π points are necessary and sufficient to



CHUNXIONG ZHENG 1059

(a)
100 140 180 220 260 300

10
−7

10
−6

10
−5

10
−4

10
−3

ω

R
el

at
iv

e 
L2  e

rr
or

 

 

First order method
Third order method

(b)
100 140 180 220 260 300

10
−7

10
−6

10
−5

10
−4

10
−3

ω

R
el

at
iv

e 
L2  e

rr
or

 

 

First order method
Third order method

(c)
100 140 180 220 260 300

10
−7

10
−6

10
−5

10
−4

10
−3

ω

R
el

at
iv

e 
L2  e

rr
or

 

 

First order method
Third order method

(d)
100 140 180 220 260 300

10
−7

10
−6

10
−5

10
−4

10
−3

ω

R
el

at
iv

e 
L2  e

rr
or

 

 

First order method
Third order method

Fig. 5.4. Relative L2 error. (a): point wave. (b): plane wave with θ0=
π
2
+ π

4⌈√ω⌉ . (c):

cylindrical wave. (d): variable velocity problem with a=40.
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Fig. 5.5. Convergence rate for smaller a. Left: a=20. Right: a=5.

resolve one wave length.

The theoretical investigation in the last section reveals that settingM =O(ω1/2) is
sufficient to ensure the asymptotic validity of the proposed Gaussian beam approach.
This assertion is also supported by the numerical evidences shown in figure 5.3, where
we plot the numerical errors by fixing Np=4⌈ω⌉. The error saturates for large enough
M . The location of the breakpoints is not as clear as that shown in figure 5.2 (notice
the difference of scales), but one can still observe that the errors for M ≥4⌈ω1/2⌉
always remain stable.
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Next, we make a numerical investigation of the asymptotic convergence rate of
the first and third Gaussian beam approaches. Here and hereafter, we set Np=
4⌈ω⌉ and M =4⌈√ω⌉. In figure 5.4 we show the relative L2 errors on the whole
domain of definition for four different problems. In the frequency range [100,300], the
convergence rates of the first and third order approaches are 0.973 and 1.998 for the
point wave, 0.999 and 1.993 for the plane wave with θ0=

π
2 +

π
4⌈√ω⌉ , 0.996 and 2.000

for the cylindrical wave, 0.998 and 1.801 for the variable velocity problem with a=40.
Except for the variable velocity problem, the convergence rates are almost optimal;
see Theorem 4.5 and Remark 4.7. The rate reduction in the case of variable velocity
is probably because the frequency ω does not fall into the asymptotic regime yet. In
fact, if we enlarge the velocity fluctuation by decreasing the parameter a to 20 and
5, the convergence rate of the third order approach deteriorates further to 1.465 and
1.015, see figure 5.5. In all cases, however, the error of the third order approach is
much smaller than the first order.

6. Domain decomposition technique

The theoretical analysis conducted in section 4 and the numerical tests performed
in the last section demonstrate that if the wave field mainly consists of the propagating
plane waves, our Gaussian beam approach could present asymptotically convergent
numerical solutions; see Remark 4.7. However, for a general boundary value problem,
this condition cannot be taken for granted. For example, let us consider the constant
velocity problem with c(r)≡1. In this case, the Helmholtz equation admits the wave
solution

u=exp{−α(x+0.5)+ iβy} , (6.1)

where α>0 and β=
√
ω2+α2. This solution propagates in the positive y-direction,

but decays in the positive x-direction with a factor α. If α=O(ω1/2), Theorem
3.1 and Hypothesis 3.4 ensure an element of the beam space Φ (see (4.5)) which
approximates (6.1) within an error of O(ω−γN ). Thus one could expect that in this
case the Gaussian beam approach would still work. This is indeed true and verified
by the numerical evidence shown in figure 6.1, where the relative L2 error on the
whole domain of definition for α=ω1/2 is plotted. However, if the decay of the wave
solution becomes more severe, say α=O(ω), things change dramatically. In figure
6.2 we plot the computed solutions for α=ω/2 with ω=100 and ω=200. We see
that the computed solutions are obviously wrong since the maximum modulus should
be 1. The reason for this is simple: since the evanescent wave solution produces a
boundary layer of thickness O(ω−1), it could not be approximated by any summation
of Gaussian beams with characteristic width ω−1/2.

The above numerical tests naturally suggest application of the domain decompo-
sition technique for handling the Helmholtz equation (1.1) with a general boundary
data. The whole convex domain Ω is decomposed into two parts: a boundary layer
region Ωb and its complementary interior convex region Ωi. The interface of Ωb and
Ωi is denoted by Γi. The thickness of Ωb is set as O(ω−1/2), so that the bound-
ary evanescent waves (stronger than O(ω1/2)) decays to zero sufficiently at Γi. The
solution in Ωb is then computed by a domain-based discretization method such as
eighth-order FEM used in the following numerical tests, and the solution in Ωi is
computed by the Gaussian beam approach. Schwarz iterations are then performed by
applying suitable transmission boundary conditions. In this paper, we simply employ
the zeroth order absorbing transmission boundary condition together with the under-
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Fig. 6.1. Relative L2 errors for the weakly damping plane waves. α=ω1/2. Third order method
is used.

Fig. 6.2. Modulus of computed wave function. The third order Gaussian beam approach is
used. Left: ω=100. Right: ω=200.

relaxation technique [8]. More sophisticated transmission boundary conditions could
also be considered, see [24, 19], but they will not be pursued here.

We reconsider the numerical example for α=ω/2 by the Gaussian beam approach
together with the domain decomposition technique. The boundary layer region Ωb

is discretized with eighth-order quadrilateral finite elements. The thickness of Ωb

is set as 0.125>100−1/2, and the mesh size is set as 0.025. Figure 6.3 illustrates
the computed solution and the error function for ω=100, and figure 6.4 for ω=200.
The relative infinity norm is less than 0.09 percent for ω=100, and 0.02 percent for
ω=200. Moreover, in the case of ω=200, one could notice that the error mainly
comes from the finite element discretization of the boundary layer region Ωb. It is
thus promising to further reduce the overall error by using a more refined mesh in Ωb.

As a final numerical test, we compute the solution of the constant velocity
Helmholtz equation (1.1) for ω=100 equipped with the boundary condition

(∂ν− iω)u(r)=−iω.

The thickness of boundary layer region and the element size are as before. The
numerical solution by the third order Gaussian beam approach together with the
domain decomposition technique is plotted in the left of figure 6.5. To evaluate the
quality of numerical solution, we need a reference solution. Note that the function
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Fig. 6.3. ω=100. Third order Gaussian beam approach together with the domain decomposition
technique. Left: Modulus of the computed wave field. Right: Modulus of the error wave function.

Fig. 6.4. ω=200. Third order Gaussian beam approach together with the domain decomposition
technique. Left: Modulus of the computed wave field. Right: Modulus of the error wave function.

Fig. 6.5. ω=100. Third order Gaussian beam approach together with the domain decomposition
technique. Left: Modulus of the computed wave field. Right: Modulus of the error wave function.

ũ=u−1 satisfies

∆ũ+ω2ũ=−ω2, r∈Ω=[−0.5,0.5]2,

∂ν ũ− iωũ=0, r∈∂Ω.

We compute ũ on the whole domain of definition Ω by the same finite element method
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with the same mesh size. The resulting linear system is solved by the characteristic
decomposition method. This is possible since both the geometry Ω and the governing
equation are separable. In the right of figure 6.5, we plot the error between the solution
by the Gaussian beam method and the reference solution ũ+1. The maximum error
is less than 9×10−6.

7. Conclusion and discussion

We proposed an asymptotic solver called the Gaussian beam approach for the
high frequency Helmholtz boundary value problem. The basic idea is to seek the
approximate solution by the least squares algorithm in a linear space spanned by a
set of Gaussian beams. Gaussian beams are asymptotic solutions of the linear wave
equation. For the Helmholtz equation, we explicitly deduced the formulations for the
first three order Gaussian beams. In the case of constant velocity, these formula-
tions were integrated out analytically. The key ingredient of the proposed approach
is the construction of a beam space which has a good approximating potential for
traveling waves. We gave a theoretical analysis on the accuracy of Gaussian beam
approximations for plane waves. The accuracy of the numerical solution obtained by
our approach was also investigated based on some a priori asymptotic assumptions.
Numerical tests demonstrated the effectiveness of the proposed method, and showed
the superiority of the third order method to the first order method.

If the exact wave solution contains some strongly evanescent wave modes decay-
ing stronger than O(ω1/2), the direct implementation of the Gaussian beam approach
might fail. We proposed the domain decomposition technique to handle this situa-
tion. The domain of definition is decomposed into a boundary layer region of thickness
O(ω−1/2), and its complementary interior traveling wave region. The boundary layer
region could be discretized by any domain-based method, and the traveling wave
region is solved by the Gaussian beam approach. Schwarz iterations should then
be performed with any efficient transmission boundary condition developed by the
domain decomposition technique community. We remark that the convexity assump-
tion of the domain of definition is not essential to our approach. Combined with the
domain decomposition technique, the Gaussian beam approach could in fact handle
various high frequency linear wave problems in more complicated geometries.

A remarkable advantage of the Gaussian beam approach lies in the fact that
it imposes a weak restriction on the computer memory for large frequency ω. The
Gaussian beam approach involves only O(ω) unknowns, much less than any domain-
based discretization method. Even compared with the integral equation method which
is generally only applicable for the constant velocity problems, the Gaussian beam
approach would result in a much sparser linear algebraic problem. Since each beam
has a width of O(ω−1/2), the operator B involves only O(ω3/2) nonzero elements in the
discrete level. Thus each iteration needs only O(ω3/2) operations. However, we should
confess that the iterative solver CGLS for the normal equation (4.13), though working
quite well, is not very efficient to this moment. The numerical experiements showed
that the iteration number typically increases with the frequency ω. We anticipate that
a suitable preconditioning technique would greatly speed up the iteration process.
This is very important to make the Gaussian beam approach more attractive, since
for this moment the most sophisticated solver based on the domain discretization for
the two-dimensional Helmholtz equation needs only O(ω2) operations. This issue is
currently under investigation.
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Appendix A. In the constant velocity case c(r)≡1, the ODE system (2.16)–
(2.23) can be integrated out analytically. The parameters involved in the first three
Gaussian beam solutions under the initial conditions (2.27) are listed in the following

φ2=
a2

1+a2t
,

φ3=
a3

(1+a2t)
3 ,

φ4=
a4

(1+a2t)
4 −

3t
(

a52t+a
4
2+a

2
3

)

(1+a2t)
5 ,

A00=
a00√
1+a2t

,

A01=
a01

(1+a2t)
3

2

− a00a3t

2(1+a2t)
5

2

,

A02=−1

4
(1+a2t)

− 9

2

(

6a00a
4
2t

2+6a00a
3
2t−4a02a

2
2t

2+8a01a2a3t
2

+2a00a4a2t
2−8a02a2t−5a00a

2
3t

2+8a01a3t+2a00a4t−4a02

)

,

A1=
a1√

1+a2t
− t

24
(1+a2t)

− 7

2

(

9a00a
3
2t+12a02a

2
2t

2+9a00a
2
2

−12a01a2a3t
2−3a00a4a2t

2+24a02a2t+5a00a
2
3t

2−12a01a3t−3a00a4t+12a02

)

.

Appendix B. Given γ >0 and c<3/2, the following holds:

∞
∑

k=1

exp(−γ(k−c)2))≤ exp(−γ(1−c)2))
1−exp(−γ(3−2c))

.

Moreover, if |c|≤1/4, we have

∞
∑

k=1

exp(−γ(k−c)2))≤ exp(−9γ/16))

1−exp(−5γ/2)
.

Proof. Since

∞
∑

k=1

exp(−γ(k−c)2))=exp(−γ(1−c)2))+
∞
∑

k=1

exp(−γ(k+1−c)2))

=exp(−γ(1−c)2))+
∞
∑

k=1

exp(−γ(k−c)2))exp(−γ(2(k−c)+1))

≤ exp(−γ(1−c)2))+exp(−γ(3−2c))
∞
∑

k=1

exp(−γ(k−c)2)),
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thus

∞
∑

k=1

exp(−γ(k−c)2))≤ exp(−γ(1−c)2))
1−exp(−γ(3−2c))

.

In the interval [−1/4,1/4], the right hand side is an increasing function of c. Taking
c=1/4 we get the second assertion.

Appendix C. For any z∈C satisfying |z|≤1, we have

|exp(z)−1|≤1.7183|z|.

Proof. Since exp(z) is an entire function, we have

|exp(z)−1|=
∣

∣

∣

∣

∣

∞
∑

k=1

zk

k!

∣

∣

∣

∣

∣

≤
∞
∑

k=1

|z|k
k!

=exp(|z|)−1≤ (exp(1)−1)|z|<1.7183|z|.

This ends the proof.
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