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AN ADAPTABLE DISCONTINUOUS GALERKIN SCHEME FOR
THE WIGNER-FOKKER-PLANCK EQUATION*
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Abstract. Recent analytic progress has increased demand for numerical approaches to the
Wigner-Fokker-Planck (WFP) equation. We present a Discontinuous Galerkin scheme for the WFP
equation with a general potential. Estimates showing convergence and stability of the scheme are
provided. The scheme is adaptable, and may use both polynomial and non-polynomial basis func-
tions.
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1. Introduction

We propose a Discontinuous Galerkin (DG) method in order to numerically ap-
proximate the solution to the initial value problem for the time dependent Wigner-
Fokker-Planck (WFP) equation given a general smooth potential V' (x), posed for
(z,k) €R??, tcR*

wi+k-Vow+Op[V](w)=Q, 1p (w). (1.1)

The right hand side @, ., (w) models the averaged environmental interactions with
the system and is referred to as the Quantum Fokker-Planck operator. The operator
O[V] is a pseudo-differential operator and takes into account the nonlocal action of
the potential V.

In this paper we propose a Discontinuous Galerkin approximation for the above
problem. The computation applies to a wide range of approximation spaces and does
not rely on a basis of polynomials. We present also estimates showing convergence and
stability of the scheme. The Discontinuous Galerkin (DG) approach proposed here
provides several opportunities to optimize the approximation space. In particular, the
use of non-polynomial basis functions, as proposed by Yuan and Shu in [28], allows for
improvement over mesh refinement, increased polynomial order, and global or local
basis set adjustments. The method is suitable to be adjusted to unstructured grids
in space and time. The basis set may be a priori or adaptively optimized, depending
on the specific circumstances of the calculation. Taken to the extreme, this allows the
method to transition from a traditional DG solver to an essentially spectral solver. For
example, to study perturbations of the harmonic potential one could use the known
eigenfunctions of the harmonic case.

1.1. The model and related analytical results. Equation (1.1) is a
kinetic quantum model for charge transport, used, for example, in the description of
quantum Brownian motion, quantum optics, and plasma physics [12, 14, 13]. The
function w(x,k,t) is the Wigner transform of the density matrix p(z,y,t) [27]. It is
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636 A DG METHOD FOR WIGNER-FOKKER-PLANCK
a quasi-probability function, which may take on negative values, and its zeroth and

first moments with respect to k produce, respectively, the nonnegative charge and
flux densities associated with p(x,t),

p(a,t) =/ w(z,k,t)dk,
]Rd

jlx,t)= | kw(x,k,t)dk.
Rd

The Quantum Fokker-Planck term is a diffusion operator defined by
. Dypq .. Dyp
Q, pp (W) = DggApw +27ydivy, (kw) + 2Wd1vw (Viw)+ WAkw' (1.2)

The non-local pseudo-differential operator ©[V] is defined as

0[V] (w):—%/ ShV (@,m)w (k') e B qk! dn, (1.3)
h(2m)" Jr2a
with
h h
5hV(z,n):V(x+mg>—V(a:—mg). (1.4)

The coefficients Dy, v, Dpq, and D,, are constants that depend on several phys-
ical quantities. Specifically,

Ah? A AQR2

9Tk T | 2m P 2mmkgT PP BT

where h is Planck’s constant, m is particle mass, and kp is Boltzmann’s constant.
The operator is derived from a heat bath of harmonic oscillators, where T is its
temperature, A is the coupling constant, and €2 is the cut-off frequency. The constants
satisfy the Lindblad condition: DggDy,— D2, >h?y?/4, or equivalently Q <kyT/h.
These conditions guarantee the quantum mechanically correct evolution of the system
and convergence to the classical Fokker-Planck dynamics from stochastic calculus as
h—0. The reader is referred to [6, 12, 21, 25] for more details. In the following
sections we actually work with the dimensionless version of the problem, although
we use physical constants for the numerical simulations (specific values are noted in
Section 4).

One may interpret the WFP equation as a quantum Liouville equation equated
to an interaction operator @, ., of Fokker-Planck type. When @, ., :=0, (1.1) de-
termines the time evolution of an isolated quantum system under the influence of a
potential V(x). This is equivalent to solving Schrédinger’s equation, but the solution
is a function of the 2d-dimensional phase space of the original problem. Despite in-
creasing the dimensionality of the problem, the WFP equation offers the advantage
of coupling the quantum system to its environment through @, ... Specifically, (1.2)
models the environmental interaction as a heat bath of harmonic oscillators [6].

Tt is known that in the semi-classical limit, #— 0, the interaction operator formally
converges to Qo,rp =A,w+divy(kw), while the pseudo-differential operator simpli-
fies to Ox[V](w) — =V, V- -Viw. In particular, this limit yields the classical Vlasov-
Fokker-Planck equation with degenerate diffusion. Moreover, in the special case of the
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harmonic potential, V(z) = 3|z —a|? with a constant, the pseudo-differential operator
of (1.3) has the same form as the classical acceleration term and can be rewritten,

OV|(w)=—(r—a)-Virw for all A>0. (1.5)

This provides a basis for comparison between the full WFP dynamics and known
properties of the classical diffusion equation which was analyzed in [25]. This com-
parison results from balancing the classical transport operator for linear acceleration
with the quantum corrected diffusion operator @, .., defined in (1.2).

Numerous analytical results concerning the existence of local or global in time
solutions to (1.1) are available, in the linear and nonlinear cases [2, 3, 4, 6, 8, 10].
In the mean field approximation, when (1.1) is coupled to Poisson’s equation for the
electrostatic potential

ALV (x,t) :7/ w(x, k,t)dk,
Rd
the nonlinear initial value problem has a classical solution for all time ¢ >0, [1, 3, 4].

Existence of global in time solutions associated to initial and boundary value
problem in one space dimension for the Wigner-Poisson system (Q, ., =0) has been
shown in [22], where the authors prove well-posedness in C([0,00),L?(€, x Ry;(1+
k?)dwxdk)), with inflow boundary conditions for the bounded spatial domain €2,,.
In addition to the local or global existence of solutions, there is the outstanding
question of the existence of stationary states. For a harmonic potential V(x)= %|x —
al?, existence of a smooth stationary solution to (1.1) in any space dimension is
shown in [25]. The authors ezplicitly computed the unique stationary state u(x,k) of
(1.1) for V(z)=|z|>/2. Moreover it was shown in [25] that the corresponding time
dependent solution, w(z,k,t), to (1.1) with V(z)=|z|?/2 and general initial data w;
exponentially decays in time toward the steady-state p.

Existence of stationary solutions to (1.1) for perturbations of harmonic potentials

jz/?
V(x) S 7 +V0(£E),

is a subject of current investigation. A very recent result shows the existence, unique-
ness, and convergence to a unique steady state, when the Lindblad condition holds,
for sub-quadratic perturbations to the potential [5]. Current investigation also focuses
on the case when V; (z) is a smooth regular function with control in its spectral norm.
There it is supposed that there exists a unique steady-state, and the solution of the
corresponding time-dependent problem converges exponentially to this steady-state,
with the decay rate depending on the perturbation V(z).

Although there has been recent theoretical progress on the WFP equation as
contained in the previous references, few numerical simulations are available in cases
where the interaction operator (1.2) is not included. Some of these approaches in-
clude splitting methods for the Wigner-Poisson problem [7, 26] and a finite difference
approach to Wigner’s equation [20]. Also, [19] developed convergence and spectral
accuracy analysis of a semidiscrete version of the Wigner equation by means of a
spectral method of a periodic approximation to the solution of the problem.

One recent technique for the complete Wigner-Fokker-Planck model (1.1)-(1.2) has
been the use of continued-fraction methods by Garcia-Palacios and Zueco [17, 16].
The solution is approximated by expanding the Wigner function in a basis of Her-
mite polynomials of the momentum variable. Then a series of coupled equations for
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the evolution of the time and space dependent coefficients is derived. By design, the
system of equations is such that individual equations are only coupled to their “neigh-
bors,” and the system may be solved by straightforward iteration. A difficulty arises
in the treatment of arbitrary potentials which may complicate the structure of these
equations and increase the number which need to be solved. Sharp potentials, such
as a step potential, may be especially difficult to realize.

For comparison to the available analytical results, we work with the dimensionless

version of the problem. To this end we set the terms ’y:% and D,y =01in (1.2), and

the corresponding dimensionless initial value problem in R2¢ x R* becomes

Ow+k-Vyw+0O[V]w=Agw+divg (kw)+ Ayw
w|,_,=wr (z,k),

1

OV](w)=- < SV (w,m)w (2, k) e B q! dn, (1.6)
(2m)" Jr2d
SV (z,n) =V <x+g) —V(m—g) .

These include the explicit formulas and associated decay rates analytically calculated
in [25]. We briefly recall that the unique stationary state of (1.6) for V(z)=|z|?/2
reads as

1 —A( k) 1 2 1 3 2 2d
2\/5 (& s A(.’IJ, ) 5|.’IJ| +5.’IJ +10‘ | 5 (x, )E 5 ( )

and the exponential decay in time of the corresponding time dependent solution,
w(xw,k,t), to (1.6) with V(z)=|z|?/2 and general initial data w; is given in the fol-
lowing norm,

w(z, k)=

ra a
Vi NG
The value o is the largest positive constant such that Hess(A) —oI>0.

We have implemented the DG method using polynomial and non-polynomial ap-
proximation spaces in order to test its accuracy and efficiency. The method is based
on a standard Non-symmetric Interior Penalty Galerkin (NIPG) treatment, but the
pseudo-differential operator O[V](w) requires special attention. The form presented
in (1.3) is ill-suited for numerical implementation. Practical representations of the
operator are given, and the choice of which representation to use depends on the form
of the potential. The various representations allow the method to accommodate a
wide range of potential functions. Harmonic and sinusoidal potentials have compact
exact representations which may be efficiently implemented. Also, methods for a few
basic forms of the potential are quickly extended to linear combinations of the forms.

The pseudo-differential operator ©[V] has been the main obstacle to both ana-
lytic and numerical studies of Wigner’s equation. We implement three methods for
evaluating O[V](w) in simulations. One is a general method, and the other two are
efficient methods for specific forms of the potential V. It is difficult to work directly
with the representation (1.3) in the DG framework because it doubles the degree of
integration and although the overall integral is real valued, this is brought about by
oscillatory cancellations (of course one need not explicitly evaluate the imaginary part,

< efcrt

L2 (RQd)

(1.8)

L2 (RQd) .
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however, the real part is required and suffers the same oscillations). The efficiency and
accuracy of the method can be greatly improved by finding alternate representations
for O[V](w).

Of particular interest are perturbations of the harmonic potential,

B |z —al?

Vie)="2

To treat non-harmonic potentials (i.e., the perturbation Vj), we use alternate
representations of O[V]. The basic approach is to take advantage of the well known
properties of the Fourier transform to rewrite the pseudo-differential operator in con-
volution form,

ofV](w)=-—"
w)=—
@2m)* Jrn

:—(\\Y(f_l[(ﬂ/](x,-))*w(x,-,t), (1.9)

(5V(x,77).7:[w] (%Uaﬂ eXp [“7 ' k] d77

where we denote the Fourier transform in the variables k&’ and 7 by

Flalmi= [ olk)e ¥ 1ar

Rd

and the imaginary part of a value z with &(z). The function §V is a real valued
odd function in 7, thus the real part of F~1[§V] is zero. The expression is linear
in w, real valued, and the degree of integration has been reduced. Given F~1[§V],
numerical evaluation of the convolution formula is practical. This is a method used
for evaluating non-harmonic potentials. The final method is for the special case that
the potential consists of a linear combination of sinusoidal functions. The inverse
Fourier transform produces delta functions which simplify the convolution formula.
This method is quite useful not just for potentials which are in Fourier series form,
but also for potentials which can be locally approximated with sinusoidal functions
(this includes polynomials). These methods allow us to treat many forms of potential
functions, and several examples appear in Section 4.

The paper is organized as follows. Section 2 introduces the DG method for a
general approximation space and our implementation for the WFP equation. Section 3
then presents estimates related to the convergence and stability of the method. These
provide a basis to evaluate the resulting numerical method. Section 4 contains several
numerical results which demonstrate agreement with known results from analysis, and
additional results which go beyond the class of problems found in current analytic
work. Section 5 contains concluding remarks, including an indication of how the
availability of numerical simulations can and is being used to assist analytic progress.

2. Implementation of the DG method

The analytic results to which we would compare our numerical simulations are
derived in all of R??, but we must compute on a finite domain. Numerically we will
compute the solution of the WFP equation in a bounded domain with zero Dirichlet
boundary conditions for both the z and k variables.

In this section we would like to justify the choice of the boundary conditions,
showing that if the computational domain is large enough, the difference (in a certain
norm specified later) between the solution of the boundary value problem and the
one in the whole space does not increase with time, but stays small for all times.
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We proceed following the same approach presented in [15] for the analysis of the DG
method for the linear Boltzmann equation.

First note that if the WFP in the whole space admits a stationary solution, u(x,k)
(e.g. (1.7) for the harmonic potential), which is integrable in R?? and normalized to
unity, then

il g = llial 4 (2.1)

L)’

2
112, ::/f—dx.
Lu o p

For arbitrary € >0, let . C R?? be a set such that

/ lul <e. (2.2)
R24\Q,

Essentially, the set ). is not “very big,” because w € Li means that w? decays quickly
and is still integrable when multiplied by pu=*(z,k).

We remark that, in addition to the harmonic case where (1.8) holds, the estimates
in this section can be carried over for other potentials V' (z) under the assumption that
there exists a unique stationary state u € L'(R??) and the following inequality holds

for any arbitrary set €2, where

||w(x,k:,t) _IU/HL%L(RZd) < g(t) le _MHLE(RM)’ (23)

for any initial state wy, where g(¢) is a positive and bounded function such that
lim; oo g(t)=0.

Now we estimate the solution w in the cut-off domain §2.. Since the solution
w(x,k,t) of (1.2) is uniformly controlled in time and stable with respect to wy (see
(2.3)), we can estimate the L? (€)-norm of the solution as follows:

1wl 5 0., S9ONwr=pll 5 a0, Hlplz2 00 <K,
where the constant K is uniform in time. Similarly,
[wlzz @2aven) < g@)llwr = pll 5 o) +l1llez @2av0,) =Cy(t)+e'/?,

uniformly in time, where C =||w; _M“L%(RZd)’ and ||u||L%(R2d\Q€) <el/2,

Since lim; o g(t) =0, there exists a time T* such that Cg(T*)=0O(e'/?). The value
T* depends on the distance, in the Li—norm, between the initial and stationary states,
and on the decay rate g(t). Consequently, for all ¢ >T"* it holds that

[w]l 2 g2a\0,) < O('?).

Thus by choosing the domain 2. big enough, which means 2. contains almost
all of the total mass of the initial datum w; and of the stationary states u, then
(at least computationally, well beyond machine accuracy) the solution of the Cauchy
problem w at the boundary of €2, will be zero, with zero derivatives, and the associated
evolution problem will essentially be confined to the domain (..
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To the best of our knowledge, there is no available analytical result at the present
time to rigorously justify this last statement, which is an assumption for the initial
boundary value problem under consideration and the corresponding one in all space.

We remind the reader that the above estimates do not provide a pointwise control

of the solution to (1.2) outside the domain €2, but give a nice estimate in the L?-
norm.
It is important to note that this approach is intended to heuristically justify the
selection of the computational domain. However, the calculation of error estimates in
the following sections are with respect to the solution of the initial value problem in
the bounded domain.

Our aim is to produce a discrete approximation to the solution of the initial
value problem (1.6) in Q x RT, for a bounded domain Q with homogeneous Dirichlet
boundary conditions. The numerical simulations presented in section 4 use d=1,
but neither the construction of the method nor its analysis depend on this particular
choice. The computational domain Q C R? is the following: consider Q= Q% x QF C R2,
where Q% :=[0,L] CR and Q*:=[~K, K] CR. The boundaries of 2 are defined by

O :={(z,—K)|Ve e Q*} U{(z,K) |Vz € Q" },
00F =00 U0t == {(0,k)|Vke Q* }U{(L,k)|Vke QF },

and are depicted in figure 2.1. The homogeneous Dirichlet boundary conditions on
0% and 9QF for the associated boundary value problem to (1.6) are defined by

w(z,K,t)=w(x,—K,t)=0 on 0Q°
w(0,k,t) =w(L,k,t)=0 on ONF.

2.1. Notation. The domain 2 is partitioned into mutually disjoint open
subsets (or cells) Q; =07 x QF, where the point (z,k) €€, 2€Qf and k€Q}. Let
h; be the diameter of €2;, and let h be the maximum diameter over the cells in
this nondegenerate subdivision of the domain QY :{Qj};v:l. Moreover, let E;=

{e(j@}fil be the set of faces belonging to 9€2;, the boundary of Q;. If E;NOQ#0,
then any face e(; ) € E;NJS is an exterior face, which will be indicated by writing
dej.¢)- Moreover, let £°=U;E;\ 052 be the set of all internal faces, thus partitioning
the set of all faces, E"= EE 09, E°NoQ=0. To each face e(; ) we associate an
outward facing unit normal vector v(; ¢ such that v(; ) coincides with v on 0.
Note that any internal face corresponds to two cells ©; and €2/, so for some pairs
(4',¢"), e,y =e(¢ry- Summation of faces over the double index would count each
face twice, so sometimes it is more convenient to use a single index to identify a
particular face, e; € E/, without reference to a specific cell. The normal vectors are
indexed similarly, however, face ¢ of cell j has a unique outward pointing normal, v; ¢,
which is antiparallel to the corresponding v ¢y. Thus, e ¢) and e(;/ ¢y may not be
simply interchangeable in expressions which depend on the normal vectors. This is the
case (implicitly) in the following definitions for jump and average operators: for any
interior face e ¢y € 91 NSy we define the jump, [-], and average, {-}, of a function
f across the edge,

[ ].7f|91_f|923

|Q1 +f|92
(=Lt
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A o”

' 0%
Ficure 2.1. A schematic of the domain for d=1.

The following identity is used frequently,

[f9l=1H{g}+{S}g]- (2.4)

Another notation used at cell boundaries denotes the upwind value of a function f,

F1=Floy Xjawve>0) + Flos Xja-ve <0

where xj is the characteristic function and sign(a-v) determines the upwind direc-
tion.

The discrete approximation wy, is an element of some approximation space V.
The approximation spaces used in this work are produced by basis functions ¢(z,k),
which are themselves products of primitive basis functions ¢(x) and (k). Each basis
function is compactly supported on a single cell, and all primitive basis functions
(and therefore their products) are mutually orthogonal. The orthogonality of the
basis functions is a purely practical consideration, and not a requirement of the DG
approach. The approximation spaces used in the simulations presented in Section 4
(where d=1) are,

V%::span{qS(j,m)(w,k) 80($)¢(k)|80a1/)€7)€j}’
Vi = span { 9 m (k) = () ()| .15 € {1sin(uo (s~ 8)).cos(or(s — 8))}}.
Vi i=span{ 9 (2.9 =) 0 HE, )

The double index (j,m) identifies the cell which supports the basis function, €,
and the m'™ basis function on that cell. As with cell faces, sometimes it will be
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more appropriate to identify basis functions with a single index, ¢,,, that does not
specifically identify a particular cell. The functions 73Q are Legendre polynomials,
up to degree p, which have been shifted and scaled so that their typical orthogonality
relation holds on each cell, i.e., s ©(j,m) (2)P(j,m) (€)dT = 81y 1y, and similarly for

(k) over Qg“ In Vr the frequencies w and o are chosen so that the width of the
cell is an integer multiple of the wavelength of the function. Finally, the functions in
Hg are Hermite functions, up to degree p, which have been restricted (not rescaled)
to cell ; and then locally orthogonalized usmg the Gram-Schmidt procedure. With
respect to any approximation space, we write w¥ to denote the continuous interpolant
of w in V4NC(Q).

2.2. Implementation. The function w; approximates w and is a linear
combination of the elements of V4. The computational task is to calculate the time
evolution of the expansion coefficients, ¢, (t),

w(z, k,t) mwpy(x,k,t) ch Vo (2, k).

We rewrite (1.1) as
wy = F(w).

The problem of finding the semi-discrete discontinuous Galerkin approximation to
(2.6) in a bounded domain € is: seek wy,(z,k,t) € R} x V4 such that,

wi(-,t) =0, ondQ, wy(x,k,0)=Py,wi(x,k), (2.5)
and, for all ¢ >0, it holds that
(W, Yn) o= (F(wn),¥n)q, Y¢n€Va, (2.6)

where (,+)q denotes the standard scalar product in L?(€2) and Py,, the projection on
the approximated space Vj4.
The weak formulation becomes,

Zdt m,whﬂ—( (ch > )Q

Choosing ¥}, = ¢,, a decoupled system of ODEs for the time dependent coeflicients
¢p(t) is produced (revealing the practical reason for using mutually orthogonal basis
functions),

oy EECacadn) do)o _ 5
7 p(t) = Omon)e —Fy(c(t)), Vk.

A standard third-order total variation diminishing Runge-Kutta method is used to
solve this system [11, 18, 24],

M =ct + AtF(ch),

3 1 1, -
@) =2t ZcM L ZALF (M
¢ 1€ +4c +4 tF(c\Y),

1 2 2 -
Ct+At = gct + gC(Q) + gAtF(C(m)
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The right hand side, F/(c(t)), is discretized as follows: let V (z) = 2]@|? + Vo (), where
Vo(z) € WL (RY). Equation (2.6) can be rewritten as

/Qatwh?/)h dz+(O[Vo](wn),¥n) L2 () = (Lwn,¥n) L2 (), (2.7)

where L is the linear operator
Lw:=—k-V,w+z- Viw+2divg (kw) + Apw+ Apw.

The alert reader will recognize (1.6), but with a factor of two in front of the divergence
term. In the analysis we use the factor of 2 to be consistent with previous works, but
in the numerical simulations we change this value to 1. The analytic stationary state
reported in section 1 coincides with the value 1, and is the stationary state which will
be used for comparison in the numerical section. In this and the next section we will
use the value 2. The bilinear expression for Lw and the test function is

(Lwaqzb)LZ(Q): Z ('W,Oé'vﬂj)ﬂj* Z <1UT[T/J],CV'V1‘>@7:

QjEQ{y e;€Ee
—(w,a Voo — Z (Vy,Vw)q,
Qeqy
+ Y A AVw vide, = D (Wl {VE v},
e;€E° e;€E¢
Ve vhon— 3 ool W)

with a:=(k,—z—2k), V:= (g:), and |e;| denotes the length of the face e;. The
pseudo-differential term is

(O[Vol(w),¥) 2 ()
:_L ’lp(l’,k,t) (

/ in-(k—k') 31/
(2m)d /g Vo(z,mw(z, k' t)e dk dn) dzdk.

R2d

In order for the nonlocal operator ©[Vp] to be well defined, the function wy, is meant
to be extended to the whole space in the variable k£ by the value zero.

The notation (-,-)., represents the integration of boundary terms over a cell face
following integration by parts in x or k. The Dirichlet boundary conditions (2.5)
of the problem are enforced for the boundary terms (wi,a-v)gq and (¥, Vw-v)sq
through the identities

1
<w1/1,oz~1/>39 = §<’U}1[J,OZ'V>3Q,
and

<¢7vw'V>8Q :<¢avw'y>8ﬂ - <'LU,V7/J'V>BQ-
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The weak formulation of the problem is:

(Own¥n)a— > (wna-Vin)a, + Y (w;EWh],Ol'VOei+}<wh¢h,a'l/>an

Q_,EQhN e, eb° 2
+(O[Vol(wn),¥n)a
== Y (Ve Vuna,+ Y (Wl AVwn-vid)e, — Y ([wnl {VEn-vi})e,

Qe e;€E® e;€E*
1
+(Wn, Vo - v)oa — (wh, Vibn - VYoo — Y @qwh]a[?phber (2.8)
e, €Ee v

The basic integrals, those actually computed numerically, are determined by selecting
the elements of {¢,} as test functions. Let {¢,} be a test function with support in
the cell €2, then

(UJh,O['V(bp)Qj = Z Cn (¢n7a'v¢P)Qj7

neQ;
<w£[¢p]aa'yi>ei:5eieaﬂj Z Cn<(a'V)¢Iu¢p>eia
neo;
O, )
([wn] AVSp-viYe, = 572 > cnldn, Yy v)ess
neo;
O, )
([6p AV un v, = =5 3 ealVon-v,bple
neo;
(v¢pvvwh)§2j = Z Cn(v¢nvv¢p)ﬂj-
neQ;

The notation n € §); indicates that the sum is only over the basis functions ¢,, which
have support on cell ;. While mutual orthogonality is no longer expected (o depends
on k and we have differentiated), a pair of basis functions still must share the same
supporting cell to produce a nonzero integral. Similarly, in the second expression, the
functions ¢, and ¢, must be supported on cells which share a face, n € 9§2;. The face
in question, e; must also be one of the faces of 0€);, indicated by the term de,caq;,
which is 1 if this is true and 0 otherwise. In the next section, there is also reference
to n €€y, meaning the set of all n such that supp ¢, Nsuppp, #0 given ¢,,.
The WFP equation (1.1) is mass-conserving, in the sense that

/ w(z,k,t) dedk=const. Vt>0.
R2d

This conservation property does not hold if the problem is considered in a bounded
domain with zero-Dirichlet boundary conditions. The scheme presented here, for (1.1)
with homogeneous Dirichlet boundary condition, is not mass conserving. However if
the basis functions are piecewise constants, one may easily check that the above
scheme is mass conserving.

This property will be shown in the numerical simulations in Section 4.
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2.3. The pseudo-differential operator. The pseudo-differential operator
is evaluated in one of three ways depending on the specific form of the potential. The
simplest is the approach used for the harmonic potential. As noted in the introduction,
the form of the pseudo-differential operator in this case is —(zr —a)-Viw. In the DG
scheme this term is treated analogously to the transport term, k-V w.

The second approach is to work directly with the convolution form of the operator,

OV](w)==S(F ' [6V](z,)) xw(z,-,t). (2.9)

In bilinear form, using ¢, as the test function, all of the required integrals are restricted
to finite intervals

(OV](wn), dp (k)

- > cn/ / / OV (2, k—5)) dn (2,8) Pp (2, k) dsdadk.

nEQI J(p) J(P) J(n)

The sum is now carried out over all nEQz( ) which indicates all functions ¢, with

support in Q;”(p) (UZQ ) that is, over all n such that the spatial component of the
support of ¢,, overlaps the spatial component of the support of ¢,. Thus, the integral
in s is restricted by the support of ¢, and the integrals in = and k are restricted
by the support of ¢,. Although the integrals may be oscillatory due to the inverse
transform of the potential, these oscillations are independent of the mesh and so could
be eliminated by mesh refinement.

This approach is practical when the inverse Fourier transform of the potential
is available and easily integrated by numerical methods. Gaussian potentials provide
one useful and obvious example. Step potentials (Heaviside functions) are also treated
in this manner. For the potential,

0
1

Va(x): 5 r=a g,
1

the inverse Fourier transform of 6V is,

cos(2(z—a)k)
7k ’

Linear combinations of step potentials are used in section 4 to produce numerical
examples in which w is confined to a bin constructed of square walls with finite height
and width.

Finally, the convolution approach can be further streamlined if there is a closed
form for the convolution. This is possible for the important case of sinusoidal poten-
tials. The inverse Fourier transform then produces delta functions, and the convo-
lution may be evaluated immediately. Suppose V(z)=73"_ vqexp[iza27/P]; then the
function 0V (z,n) is

F oV (z,k) =i

oV (x,m)= Zva exp [iax2m [ P] (exp [inaw/P] — exp[—inaw/P])

_ ZQvaexp { (27;”” + g)} sin (ran/P).
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Applying the inverse Fourier transform, one arrives at the expression

—%(]:*1 [6V](z,k)) :Zfba(x) (6(k—am/P)—0(k+am/P)),

where the real valued coefficients () are
0o () =27 (S (vg) cos (2max/ P) 4+ R (vg)sin (2mazx/ P)).
Applying convolution,
O[V](w(z, 1)) ( 2,)) (. 1)
Vg () ((6(k— aﬂ'/P) d(k+arm/P))xw(x,,t))

Z
Z (x,k—an/Pt)—w(x,k+ar/P,t)). (2.10)

Replacing w with wy, and selecting basis function ¢,(x,k) as the test function, the
basic integrals to be computed are

(O[V](wh),Pp) = Z Cn (ZU“ )¢ (x,ktarm/P),¢,(x, k))

nGQj(p) Q;

Note that the nonlocal nature of the operator means that the support of ¢,, does not
need to be the same as the support of ¢, to produce a nonzero result. No boundary
terms arise, but integration is nonlocal, and one must calculate the coefficients 7, (x).
The accuracy of the representation depends on the finite number of terms that one
is able to afford to compute. Fortunately, many useful potentials may be accurately,
even exactly represented with just a few terms. Primus inter pares:

V(z)=asin(z+6)+7,

where «, 6, and v, are constants. For this family of potentials, ©[V](w) has exact,
two term Fourier representations. However, even for functions which require more
Fourier terms, there is only a linearly growing computational cost. No additional
theoretical development is needed (as would have been the case for the differential
representation).

A wide range of potentials in the form of (1.5) may be treated by combining
the two representations of ©[V]. Even polynomials such as 2 may be approximated
locally using a combination of sinusoidal terms. This example provides a useful test
for verifying the numerical implementation, and is included in the results in section 4.
Between the special method for harmonic potentials, the convolution method, and the
sinusoidal method, a wide range of potential functions, and any linear combination
thereof, is available.

3. Analysis of the numerical scheme

3.1. Interpolation and approximation results. We briefly recall some
approximation results that will be useful:
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LEMMA 3.1. Let Q, be a simply connected subset of Q@ CRY with h= diam (Q4) and e
be a face of Qp, with normal vector v. If py is a finite polynomial on 2y, there exists
a constant ¢, not depending on Qp, such that

Cc

th IQ,GS \/E||ph||279h’ (31)
C

[Von-v]2,.e < ﬁHVph BRI (3.2)
C

prllE () < E”ph| 2,9, - (3.3)

Proof. See [23].
Furthermore, for each f(z,t)€ H?(Q2) and its continuous interpolant f5(z,t)€
VpNCP(Q), the following approximation properties hold for all t >0 for ¢=0, 1, 2:

1FC8) = T ot o) SRS () s ),
100 f (1) = 0e fp (5 0) 2,00 < PO f (8 | v )

We define the element space

Vp:={¢]| cp‘ijolynomial of total degree less than or equal to p}, (3.6)

and denote with w% the continuous interpolant of w in VpNC?(2) (note that Vp is
distinct from the orthogonalized version VJ, mentioned in Section 2).

3.2. Stability, consistency and L?-error estimates.  Let V(z)=1|z|>+
Vo(z), where Vy(z) € WL (R?). Again, the weak formulation of the problem is

(Orwn,Yn)a — Z(wh;a Vin)a, + Z <w£[7/fh]704'1/i>e7¢ + %<wh¢h,a'1/>an

Qpn e, €E°

+(O[Vol(wn),¥n)o
== (Vo Vun)a, + Y Unl AVwn - vid)e, = Y ([wal AV -vi})e,

Qp e;,eEe e, €cE°

o Van-v)on = . Vi v)on— 3 o (unl [onle. (37)
e, €Ee v

with Q CR?? and where summation over Q; thN is now summation over €2 for
consistency with Lemma 3.1, and reflecting the significance of h. In this section we
will make use of the following identities: for all functions f € Vp, we have

1 1
§<[f2]aa'y>€ - <fT[f]7a'Vi>€ = _§<[.ﬂ2a |O“V|>ev (38)
where e denotes a general face, and the integration by parts formula is
d 2 1 2 L o
D (faVha, =5 30, +5 X ((Fhav)e+ 5 av)a.  (39)
Qp

Qpn e;,€E°

For the estimates below, we need the following Lemma:
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LEMMA 3.2. Let wp, ¥ € Vp be such that wyp =1 =0 outside the bounded domain 2,
and Vo(x) € L (RY). We have

(OVol(wn),¥)a < cllwnl3.0+ %1130,
where ¢ depends on V.

Proof. Since the potential V} is bounded, we have (see [22] and references therein)

/QG[Vo](wh)w dzdk < || O[Vo](w)ll72(0) + [¥172q)

<l |Vol| oo (rayllwn| L2 eay + 11911 72(q)
<dlwnlz0+11¢l3 0
0

The consistency and stability of the scheme are proved in the following theorem:

THEOREM 3.1. Let wy(t) be the semi-discrete solution on Vp to (3.7). For all T >0
we have

@By [ 19w, vz 3 L [ il a

Qy, e;€E°

1 S A A P e

e, ebBe

Proof. Use 1)y, =wy, as the test function in (3.7). Using (3.9) we obtain

1 d
s lenlza— lewllz o~ Z ([wil,av)e, + Y (whlwnl,a-vi)e,

e,eE" e,EEF
OVl (wn)wn)a+ 3 [Vunl3a, + 3 — PRl
Q e, €E° €i

The operator ©[Vp] is skew-symmetric, which implies (©[Vy](wp),wr)q=0.
Identity (3.8) applied to the boundary terms on the interior edges leads to

5 3 wila)e+ Y wllwd =5 3 (ualla-ve.

e; ek« e, eke e, €eEBe

The identity above implies that

dt2

+ Z ||| wh]ll3.c,

e; eEe

=P ||[wh1|a~u|1/2n§,eisgnwhnag.
e;eEe°

The thesis follows from Gronwall’s lemma. O
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THEOREM 3.2. Let wy,(t) be the semi-discrete solution in Vp to (8.7) for t>0, and
assume that wy € HPTH(Q), w(t) € C>(Q) for t>0. Then,

1 T
() (T30 + 5 Z/ IVGw—wlEa, di+ 3 g [ o=l d
e, ke el J0
P Y [ w3, a

e;cEe°

T
= (ll(wwh><o>||§,g+h2“ [ e+ atwnifp(m)dt) |

Proof. We consider the difference in the weak formulation for the functions w and
wp,, after decomposing the error w—wy, into w—wp=n—¢§ with n:=w, —w}) and
§=w—wp, where w} is the interpolant of w in Vp. We have that

@m)a— Y (ma-Vi)a, + > ' [Y]a-vi)e,

Qp e, €E°

+ % (mp,a-v)aq +(O[Val(n),¥)a

:(8t€aw)9 _Z(gaa'vw)ﬂh + Z <§TWL04'Vi>ei +%<§¢704'V>aﬂ

Qp e, €E*
+(O[Vo](€),¥)a %j(vw Vn)a, + ;5 VLAV viY)e,
- ;E ). {V- w};el <¢,Vn~v>a;—<n,w.y>aﬂ
-2 o D 2V Y00~ 3 (U (V6w
+ ; €AV vi})e, - <¢,V§-V>3Q+<£,V1/)-V>ag
+ Z = A1+ .+ Ay,
€ eEe Z

We choose the test function v =7, and employ the same calculations as in the previous
lemma. Also, due to the continuity of £, [£] =0, simplifying several terms,

*Z IVnl3q,, Ar+As=0, Ag+Aio=0,
Qn

1
Ap=— — 3., Ais, A1r=0.
€

e, €E° Z|

The combined result is,
d 1
—lnl3a+5 Iile-v]725 e, —
dt 2
e;,€EBe

+Z|V77||29h+z 3., =A1+...+ A5+ Arp + A1z + Ags + Asg.

Qpn e; EEC Z
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In the following estimates, we draw the reader’s attention to the dependence on mesh
size h by using a bold faced h.
Cauchy-Schwarz and the inverse inequality (3.3) produce the following estimates:

A1 < b (|9w 3 ) + 11130,

1
Az < ﬁ”f”%ﬂ”a\\go,sﬁ‘z||77||§,Qh SC\Q|h2pr||pr+1(Q)+H77||%,Q~
Qp

Inequality (3.1) leads to:

As < Z el oo,e:

1
5t D Nllawl 215,

e,€E° e,€E°
1
el Mol @+ D Nmlla-wl 3.,
e;,€E°

Au <5l o0+ g7 Iz 00 < 5 Il + B lelr s )

A5 <3 0+ ch®P T2 w3 g

1
Ara SZZ 1Vnl3.0, +Z V13,0,
Qh Qh

< S2Ivn)

5.0n TPlw]| 311 )

Qp
1
A<y (Mll[n]”%,ei+h||{vg.yi}||g’el_>
e, €E°
1
< S IR, + el Fns
e, €Ee°

Finally, using (3.2) gives,

1
Ass ShH’?H;aQ+E||V§'VH§,09
<clnl3,0+ch®P " 2|lw[Fp 0,
| h )
A =(,Vn-v)oa < €% ||2.00+ 1V vl 00
1
§h2p||w|\12qp+1(m+ZHV77||§’Q.

Altogether, we have,

d 1 1 1
Lo+t 3 Nalla- v, + 2012 g, + 5 X IVl g,
e;€EE® Qp

1 _
+ ) 2|e‘|H[UHg,e,vSC||77||§,Q+C|mh2p 2 (ol @) +10ewlFe (@)
e, €E° v

The thesis then follows from Gronwall’s lemma. O
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3.3. On the spectrum of the WFP operator in the harmonic case.
Some knowledge of the spectrum of the WFP operator provides a way to test the
convergence rate of the DG method. When V(z)=2%/2 and d=1 equation (1.6)
reads,

Wy =T Wk — k Wy + Wy + kwg, +w+wip, = Lw, (z,k) € R2.

The first eigenfunction of £, with eigenvalue 0, is u,
= (1 / (NSW)) exp|— (2/5 + zk /54 3Kk2/10)]. (3.10)

Additional eigenfunctions can be produced by applying £ to Ps(x,k)p(xz,k), where
P, is an undetermined polynomial of degree s in « and k. The result is Q4 (x, k) u(x, k),
where ) is a new polynomial. By solving the eigenvalue problem P (z,k) = \Q4(z,k)
for the unknown coefficients of Ps, one determines new eigenvalues and eigenfunctions
of L. Setting s=1 produces a conjugate pair of eigenvalues and eigenfunctions,

1 \/g
Air=—- £ Y7
+1 2 9 2

Ht1= ((134:F51\fz> x+k‘> w(x, k).

We are only interested in real valued solutions of the WFP problem and consider the
initial condition given by the sum

3
p1=pa1+p 1= <7x+2k> w(x, k). (3.11)

Note that pq has zero mass. If wr =y, the solution to the WFP equation will converge
to the trivial steady state, 0, at the rate exp[—t/2].
When s=2, three new eigenvalues are produced. One of the eigenvalues is real,

Ap=—1, u2<x2+xk+;k22;> L. (3.12)
The two remaining eigenvalues are a conjugate pair with real part also equal to -1.
Real combinations of all three eigenfunctions decay at rate exp[—t].

Another expected rate of convergence was described in equation (1.8). The
weighted difference, ||w—u||Lﬁ(Q), will always decay at least as fast as e~°%, where o
is the largest value such that Hess(A)—ol>0. Numerical results exhibiting these
convergence rates can be found in Section 4.1.

4. Numerical Results

The DG method described here has been implemented for d=1. The domain
was partitioned into a regular rectangular mesh. The structure of the domain,
Q=07 x QF makes this the natural choice, though in higher dimensions a more elab-
orate structure may be appropriate. To verify the numerical implementation, several
tests were conducted using various potentials and different approximation spaces. In
addition to confirming several known properties of the WFP equation, numerical tests
were also performed which go beyond the scope of contemporary analysis.

For our numerical simulations we use the equation with the physical parameters,
like in (1.2)—(1.4). We choose A=m=1 and Q=0.
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N Lt abs deviation L? Li abs deviation Li
slope = -1.781 slope = -1.698

50 | 1.600e-02 3.284e-03 3.404e-02 3.894e-03

72 | 8.480e-03 3.079e-03 1.865e-02 3.616e-03

94 | 5.276e-03 3.247e-03 1.187e-02 3.867e-03

116 | 3.605e-03 0.499¢-03 8.242e-03 0.663e-03

138 | 2.621e-03 3.535e-03 6.068e-03 4.255e-03

TaBLE 4.1. Convergence to the analytic steady state of the harmonic potential with respect
to mesh refinement. A regular N x N grid was used in each case. The log of |[up—pllp1(q) and
len — pll L2 () are reported in columns two and four. These values decrease linearly with the log of

m

N. The deviation between each datum and a best fit linear relationship is reported in columns three
and five under "abs deviation." The slope of the best fit trend is reported in the respective column
header.

4.1. Verification. The first and most basic tests showed that a number of
subproblems contained within the WFP equation are correctly solved. Two of the
tests check for convergence of the numerical solution to the time dependent solutions
of the transport and heat equations with respect to mesh and basis set order. These
tests were successful, achieving the expected convergence and rates.

Those initial tests were trivial in that they did not involve the pseudo-differential
operator. To test the implementation of ©[V], we verified that simulations converge at
the proper rate to the known stationary state of the WFP problem using a harmonic
potential, V(r)=22/2. The tests in this Section (4.1) were carried out under the
following conditions: all constants were set equal to unity, as in equation (1.6); the
computational domain and time-step used were Q2 =[—10,10] x [-10,10] and dt =0.001
respectively; in order to measure the rate of convergence to the steady state, the initial
state is a Gaussian function, normalized and centered at the origin,

wr = (2/m)exp[-2 (2® +&?)]. (4.1)

The amount of mass not contained in  is approximately 7.8 x 1079 for u, and less
than 10719 for w;. These values are much smaller than other sources of numerical
error (see the introduction for a discussion of the consequences of working in a cut-off
domain).

The numerical implementation uses one of three different approaches to evaluate
the pseudo-differential operator depending on the form of the potential. The first
method examined was the “classical” approach, that replaces the pseudo-differential
with (1.5) because the potential is harmonic.

Table 4.1 shows convergence to (3.10) with respect to mesh refinement. The
simulations were carried out using V};, piecewise linear functions. Each simulation was
evolved until a numerical steady state, uj, was (approximately) reached. The table
lists LY(Q), Li(Q), and corresponding “abs deviation” values. The “abs deviation”
columns indicate the absolute value of the difference between the data in columns two
and four and a best fit linear relationship between the functions log(/N) and log(err).
The slope of these linear relationships is listed at the top of each column. The small
values in these columns indicate linear behavior, that is, exponential convergence to
the analytic steady state as the mesh is refined.

In the case of the harmonic potential, the steady state is unique, so we repeated
some of the calculations above with different initial data. One example is a combina-
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w

—-0.54

i» 0.36
N

-00
Max: 0.7252
Min: 0.000

Ficure 4.1. Density plot of the convergence of a three centered initial state to the unique
steady state of WFP equation with a harmonic potential. The numerical solution is essentially zero
in the white regions.

tion of three Gaussians centered about the origin,

wr= o (expl-2((0— 0+ (k=0))]+exp [-2 ((a+ 2+ (k- 2V5)?)]

Fexp [—2 ((m+2)2+(k‘+2\/§)2>]). (4.2)

Convergence is depicted in figure 4.1, a plot of charge density, p(x,t)= w(x,k,t)dk,
as a function of x and ¢. Since density is a projection of the solution onto z and ¢, wy
initially appears to have only two centers due to a symmetry, which is immediately
broken as the three centers spiral around the origin. The steady state achieved in
this calculation is g, which is shown in figure 4.2 (using a 64 x 64 grid), labelled
“three Gaussians”. The rate of convergence to p is controlled by the spectrum of
the WFP operator. Some of its eigenvalues were derived, for the harmonic case, in
section 3.3, and a bound on these values, is known: —o = —0.276. figure 4.2 is a plot
of log|lwp — |22 (@) asa function of time for several different initial conditions. The

grid used is 64 x 64, the approximation space is V%;, and the remaining parameters are
those stated at the beginning of this section. Both panels show the same data, but the
first is plotted on a shorter time-scale to highlight the initial convergence behavior.
The rate is calculated with respect to the numerical steady state, pp, as determined
by the calculation. If the analytic steady state is used instead, approximation error
obscures the long term behavior. Convergence rate is the primary object of interest,
so each curve in 4.2 has been translated to intersect the origin. Results are shown
for five different initial conditions: “asymmetric,” w; ==z u+ p, which initially decays
at the slowest possible rate, —o; “first eigenfunction,” p; +p, from equation (3.11),
which initially decays with rate -1/2; “second eigenfunction,” ps+ p, from equation
(3.12), which initially decays at rate -1; “one Gaussian,” equation (4.1); and “three
Gaussians,” equation (4.2). The steady state u was added to the first and second
eigenfunctions so that the solution would have unit mass and therefore converge to i
rather than the trivial steady state, 0, which cannot be used to produce the weighted
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L? norm. The traces in the figure oscillate, but reveal several distinct slopes, revealing
information about the spectrum of the WFP operator. To further test the “classical"

0.02 r T T R
asymmetric =—+—
first igenfunction ---x---
second elgenfunction ---%---
an one Gaussian -
three Gaussians - -m-—
guideline slopes: -0.276, -0.5, -1.0
o
= -0.02
=l
= _ »
L -0 Vs e
= \ - e
L ot oy B 3
i (5] T,
Y \
L] b
i1 a0
i\
-0.08 ) "
‘1 "
3 :
L .
b o
a1 £ . . \
0 0.02 0.04 0.08 0.08 0.1

T T T T T T T T
asymmetns ——
lirst eiganfunction ==-x=-=
second edgenfunction ---a---
ong Gaussian B

three Gaussians -—s-- 7

guideline slopes: {0.276, 4.5, -1.0

n

In(llw-wll, 2)

Ficure 4.2. The L2  convergence of the solution to the unique steady state (equation 3.10)
of the harmonic potential. The two figures show the same data on different time scales. The figure
on the left highlights the initial decay rates using various initial conditions, as described in the text.
To simplify comparison between curves, they have all been shifted to intersect the origin. The rate
of convergence can be no slower than exp(—ot) where o =(1—1/+/5)/220.276. Lines with slopes
-1/2, -1, and —o are drawn, corresponding to two eigenvalues of the WFP operator and the bound
on the decay rate.

implementation of the pseudo-differential operator, several runs were performed using
each of the different approximation spaces. The same parameters were used, but
the mesh size and approximation space were varied. The results are listed in Table
4.2. The variable m is the number of primitive basis functions used to construct
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the approximation space on each cell in the mesh, consequently, there are m? basis
functions on each cell. For the polynomial and Hermite bases, m is equal to p+1.
For the trigonometric case, the sets of primitive basis functions for m = 1, 2, and 3
are {1}, {1,cos}, and {1,cos,sin} respectively (no m =4 trigonometric approximation
space was implemented). The period of each primitive trigonometric basis function
was equal to the width of its cell, in the respective coordinate, = or k. The restricted
Hermite approximation spaces have more structure, and they are described in detail
below.

The purpose of these tests was to show the advantages and disadvantages of
various approximation spaces, so the meshes are relatively coarse in order to magnify
differences. The polynomial basis is in fact optimal as N becomes large, but sub-grid
resolution can be exploited on coarse meshes to boost efficiency. As a consequence of
equation (3.7), mass is conserved when the approximation space is piecewise constant.
This was observed, up to machine precision, and furthermore, in all polynomial and
trigonometric cases, the total mass was preserved to at least 0.1%. However, the
Hermite approximation space does not include piecewise constant solutions. Hermite
functions are products of Hermite polynomials and a Gaussian function. In these
cases conservation of mass was obtained through the following procedure: a parameter
controlling the width of the Gaussian part of the Hermite functions was adjusted until
mass was conserved to better than 0.1% after 10,000 timesteps. This parameter is
very similar to the a;, which appear in equation (3.1) of [28]. Shu has indicated to
the authors that there is not a general approach for selecting this parameter in such
a way as to preserve mass. That is, the approximation space was optimized by hand
to give good subgrid resolution on very coarse meshes.

Column one shows the error, || — pl/z1 (), and column two shows the log (base
10) of the weighted Li norm. Essentially, column one gives the absolute error, and
column two measures the quality of the solution in a relative sense. There is a clear
trend of improvement as the mesh and basis set are refined for the polynomial ap-
proximation spaces, with one exception. In the piecewise constant case, the N =16
grid is best. A piecewise constant basis is actually unsuitable for this problem, for
example, because the contribution from the second order terms in the Fokker-Planck
operator are eliminated, and the solution fails to converge to u, becoming tightly
peaked around the origin. The trigonometric approximation spaces also fare poorly.
Qualitatively, they produce a peak which is too flat and broad.

Hermite functions are the eigenfunctions of the quantized Hamiltonian with a
harmonic potential (see for example [9]), and are very similar to the eigenfunctions
of the WFP equation (see the discussion of figure 4.2). That is, the approximation
space is made of functions very similar to the desired solution. The result is a good
solution even on the N =2 mesh. As more Hermite functions are added and the mesh
becomes coarser, the method is nearly a spectral solver in a cut-off domain.

4.2. Calculations for perturbations of the harmonic potential. The
next challenge is to verify the implementation of the convolution based methods for
evaluating the pseudo-differential operator acting on the perturbation potential, where
the only (non-trivial) analytic solution is for the harmonic potential. There is already
a good approach for harmonic potentials, and because the inverse Fourier transform
of the harmonic potential is a distribution, it is not possible to simply insert it into
the convolution based numerical calculations used to evaluate ©[V](w). However, the
harmonic potential can be approximated locally, i.e., everywhere within the cut-off
domain, by a simple combination of sinusoidal functions. In all subsequent calcula-
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l1an— gl logyq (llun — 12 )
V2| m V2 m
N 1 2 3 4 N 1 2 3 4
2 2
4 | 1.485 | 0.484 | 0.278 | 0.198 4 | 11.866 | 10.357 | 9.002 | 8.547
8 10970 | 0.178 | 0.109 | 0.023 8 | 10.435 | 6.465 | 4.536 | 3.029
16 | 0.356 | 0.106 | 0.044 | 0.003 16 | 7.125 | 0.939 | -0.927 | -2.186
32 | 0.812 | 0.035 | 0.018 | 0.000 32 | 0.275 | -1.140 | -1.550 | -3.523
VT m VT m
N 1 2 3 4 N 1 2 3 4
2 2
4 1.486 | 1.920 | 1.318 4 11.866 | 11.344 | 11.609
8 |0.970 | 1.263 | 1.102 8 10.435 | 11.625 | 10.572
16 | 0.356 | 0.419 | 0.916 16 | 7.125 | 9.433 | 8.529
32 | 0.812 | 0.772 | 0.748 32 | 0.275 | 3.166 | 6.212
Vi ] m Vi m
N 1 2 3 4 N 1 2 3 4
2 10321 | 0.124 2 -0.301 | -0.470
4 1 0.320 4 | -0.303
8 8
16 16
32 32

TABLE 4.2. A calculation on relatively coarse grids shows the effect of various approximations
spaces. The left column reports the L' error between the numerical and analytic steady states
(absolute error), and right column gives the logarithm (base 10) of the weighted L2 error (roughly,
the relative error). The value m is the number of primitive basis functions used to construct each
approrimation space.

tions the basis used is V};, the piecewise linear polynomial basis. We stress that we
have found this is the most efficient one to use for finer meshes.

4.2.1. Small sinusoidal perturbations. The method for evaluating
O[V](w), where the potential consists of sinusoidal functions, (2.10), was therefore
tested by showing that a sequence of non-harmonic potentials converging locally to
V(z)=122/2 produces a sequence of stationary states which converge to the stationary
state of the related harmonic problem. The sequence of potentials, parameterized by

V(i) =a; (1(;08 (\/527))

1, xz*
=5 +0(3):

The parameters used were the same as those used to produce Table 4.1. A 94 x 94
mesh was used. The calculation was run to a steady state, and this steady state was
compared to the same numerical steady state which was used to produce the third
row of Table 4.1. The result demonstrating the desired convergence appears in Table
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ai | |lpa; —pnller@) | lta; —pnllcs (@)
10.0 6.019e-02 7.024e-01
20.0 2.776e-02 6.967e-02
30.0 1.824e-02 4.173e-02
50.0 1.094e-02 2.369e-02
100.0 5.588e-03 1.150e-02

TaBLE 4.3. Convergence to the harmonic potential steady state for the potential, V(z;a;)=
a;(1—cos(z/+/a;)). As the parameter a; increases, the potential converges locally to x2/2, and the
numerical steady state, jiq;, converges to the numerical steady state of the purely harmonic problem,
-

4.3.

4.2.2. Particle in a box. The final method for evaluating the pseudo-
differential operator which needs to be tested is the explicit convolution method,
(2.9). This test was qualitative, and similar to the well known "particle in a box"
problem. Again, it consisted of setting w; equal to a Gaussian centered at the origin
and evolving the solution. A combination of Heaviside functions was used to create a
set of four potential barriers with various heights and widths. The barriers were placed
on the intervals [—11,—10], [—4.1,—4], [4,4.1], and [10,11]. The height of the outer
barriers is ten times greater than the inner barriers. The outer barriers are essentially
impenetrable, and meant to confine the solution. The inner barriers restrict, but do
not completely contain wy, as it evolves. The diffusion constants were Dy, = D,,=0.1.
The domain was Q=[—15,15] x [-4,4] and was divided into a 128 x 64 mesh. The
time-step was dt=0.001. The solution, after some 50,000 timesteps, is pictured in
figure 4.3. It has not reached a steady state, but rather is slowly leaking from the
center box into the outer boxes. At this point, due to the relatively long time-step,
it becomes difficult to determine whether the solution is changing due to numerical
mass loss or a slow physical process. The solution has clearly been contained by the
barriers in a qualitatively appropriate manner.

4.2.3. Triple well.  Finally, the method was used to calculate the behavior of
an initial Gaussian in a perturbed confining potential. The potential used was,

2

V(m)z%+30(lfcos(x)). (4.3)
The potential is pictured in the inset in figure 4.4 and has three deep wells, at the
origin and near £27. In this case, the initial state was a Gaussian concentrated about
a large positive value of x and negative value of k to give it a rapid initial motion
toward the origin. A projection of the initial state onto the x axis is also provided in
the inset to figure 4.4 (its width has been exaggerated for the purpose of illustration).
During the course of the simulation, the center of mass (charge) flows down the
potential wall, and a short way up the other side before becoming concentrated in
two of the wells. The main panel in figure 4.4 shows a plot of charge density in the
x,t plane (it is analogous to figure 4.1). The total mass is preserved to within 1075
during the simulation. The time-step was dt =0.001, 2 =[—20,30] x [—35,15], and the
mesh measured 200 x 200. At any given time, the total mass contained outside the
0.005 contour level (the white area) is essentially zero. The vertical lines at t =33,
37, 41, and 45 correspond the snapshots of the solution shown in figure 4.5. The
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(b) z=2

Ficure 4.3. The numerical solution to the (quasi) "particle in a boz" problem after 50,000
timesteps. The potential consists of low barriers placed at ©==4 and high barriers at x==+10.
Most, but not all of the solution is contained by the low barriers. When the calculation was stopped,

the solution was leaking slowly from the central bin [—4,4] into the adjacent bins [—10,—4.1] and
[4.1,10].
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Ficure 4.4. A plot of charge densilty in the xz,t plane. The solution in the white area is
negligible. The inset shows the potential, and a projection of the initial state (the width has been
exaggerated for illustration). The bold part of the potential indicates the locations of the center of
mass during the calculation. The solution eventually settles into two of the three deep wells of this
potential at t=0 and x~—2m. The four vertical lines indicate the points in time which were used
to create the frames in figure 4.5.

frame at t =233 represents a moment when the solution is spilling over from the well
at £~ —2m into the well at the origin. The remaining frames show each part of the
solution completing a circuit of its respective well. As indicated by figure 4.4, the
solution settles into these wells and in each case takes on an appearance very similar
to a pair of Gaussians.

A close examination shows that at least a small but measurable portion of the
solution may be found in four wells, the three central wells, and the well close to 4.
A contour map of the solution, with contour levels close to zero, is shown in figure
4.6. Numbers appear at the center of each well along the x axis. Also, three pairs
of horizontal lines indicate the minimum amount of classical kinetic energy required
to escape each of the marked wells. That is, at values of k outside of the innermost
pair of lines, there is enough kinetic energy to overcome the potential barrier between
wells 4 and 3. The center set of lines indicates the energy needed to move from either
well 1 or 3 into well 2. The outermost pair of lines is the amount of energy needed to
accomplish the reverse, escaping well 2. The vast majority of the solution is contained
within wells 1 and 2. The mass contained inside the 103 contour is approximately
0.991 (out of 1.000). The mass contained outside of the 1075 contour is only equal
to about 1.57 x 107°. While it is doubtful that the solution has reached a stationary
state, it is clear that it has settled into a persistent asymmetric configuration. By the
symmetry in the equation itself, given initial data which is symmetric with respect
to this potential, the solution will remain symmetric. This was confirmed by further
simulations. Given that a stationary state to this linear problem does indeed exist,
the asymmetric result of the calculation is most likely a metastable state, and that the
relaxation of this state to a symmetric steady state occurs on a timescale much longer
than the interval covered by the calculation. A very recent work by Arnold, Fagnola,
and Neumann on existence, uniqueness, and convergence in the case of sub-quadratic
perturbations to the harmonic potential supports this observation [5].
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Ficure 4.5. Snapshots of the solution to the triple well problem. These figures show the
solution completing a circuit of the wells located at x~—2m and r=0. They correspond to the
vertical lines in figure 4.4.

5. Conclusion

The utility of the DG method developed here for the WFP equation has been
demonstrated through analytic estimates and numerical experiments. The stability
and convergence of the scheme were established in Section 3, and numerical simulation
was used to confirm analytic properties of the WFP equation in section 4. The main
challenge was to produce an accurate and practical treatment of the pseudo-differential
term. The methods described in section 2 do this in a manner that falls neatly into
the DG formalism, and a wide range of potential functions may be treated. Linear
combinations of harmonic, sinusoidal, and step functions were demonstrated, and it is
clear how to apply the method to Gaussian and other families of potential functions.

The numerical simulations presented here demonstrated that the use of non-
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Ficure 4.6. A contour map of the state eventually reached in the triple-well calculation. The
solution is positive, and the contour levels are set close to zero. More than 90% of the mass lies
within the 0.001 contour, that is, within wells 1 and 2. Other contours reveal small concentrations
of the solution in two additional wells. Pairs of horizontal lines, symmetric about k=0 indicate
the amount of classical kinetic energy needed to overcome the energy barriers from well J to 8 (the
innermost pair), either well 1 or 8 to well 2 (the central pair), or to escape well 2 (the outermost
pair).

polynomial approximation spaces is possible, but did not extensively explore the pos-
sibilities offered by this flexible framework. A possible improvement to the method,
also suggested in the work by Yuan and Shu, will be to adaptively improve the approx-
imation space as a computation proceeds. Other proposed technical improvements to
the implementation include expansion to three dimensions, and coupling the WFP
with the Poisson equation. One approach might be to use an FFT solver for the
Poisson problem, which would produce a sinusoidal representation of the potential
ready for use in the method reported here.
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