
COMMUN. MATH. SCI. 
© 2009 International Press
Vol. 7, No. 3, pp. 635�664

AN ADAPTABLE DISCONTINUOUS GALERKIN SCHEME FOR

THE WIGNER-FOKKER-PLANCK EQUATION∗

IRENE M. GAMBA† , MARIA PIA GUALDANI‡ , AND RICHARD W. SHARP§

Abstra
t. Re
ent analyti
 progress has in
reased demand for numeri
al approa
hes to the
Wigner-Fokker-Plan
k (WFP) equation. We present a Dis
ontinuous Galerkin s
heme for the WFP
equation with a general potential. Estimates showing 
onvergen
e and stability of the s
heme are
provided. The s
heme is adaptable, and may use both polynomial and non-polynomial basis fun
-
tions.
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1. Introdu
tion

We propose a Dis
ontinuous Galerkin (DG) method in order to numeri
ally ap-

proximate the solution to the initial value problem for the time dependent Wigner-

Fokker-Plan
k (WFP) equation given a general smooth potential V (x), posed for

(x,k)∈R
2d, t∈R

+

wt +k ·∇xw+Θ~[V ](w)=Q
~,F P

(w) . (1.1)

The right hand side Q
~,F P

(w) models the averaged environmental intera
tions with

the system and is referred to as the Quantum Fokker-Plan
k operator. The operator

Θ[V ] is a pseudo-di�erential operator and takes into a

ount the nonlo
al a
tion of

the potential V .
In this paper we propose a Dis
ontinuous Galerkin approximation for the above

problem. The 
omputation applies to a wide range of approximation spa
es and does

not rely on a basis of polynomials. We present also estimates showing 
onvergen
e and

stability of the s
heme. The Dis
ontinuous Galerkin (DG) approa
h proposed here

provides several opportunities to optimize the approximation spa
e. In parti
ular, the

use of non-polynomial basis fun
tions, as proposed by Yuan and Shu in [28℄, allows for

improvement over mesh re�nement, in
reased polynomial order, and global or lo
al

basis set adjustments. The method is suitable to be adjusted to unstru
tured grids

in spa
e and time. The basis set may be a priori or adaptively optimized, depending

on the spe
i�
 
ir
umstan
es of the 
al
ulation. Taken to the extreme, this allows the

method to transition from a traditional DG solver to an essentially spe
tral solver. For

example, to study perturbations of the harmoni
 potential one 
ould use the known

eigenfun
tions of the harmoni
 
ase.

1.1. The model and related analyti
al results. Equation (1.1) is a

kineti
 quantum model for 
harge transport, used, for example, in the des
ription of

quantum Brownian motion, quantum opti
s, and plasma physi
s [12, 14, 13℄. The

fun
tion w(x,k,t) is the Wigner transform of the density matrix ρ(x,y,t) [27℄. It is
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a quasi-probability fun
tion, whi
h may take on negative values, and its zeroth and

�rst moments with respe
t to k produ
e, respe
tively, the nonnegative 
harge and

�ux densities asso
iated with ρ(x,t),

ρ(x,t)=

ˆ

Rd

w(x,k,t)dk,

j(x,t)=

ˆ

Rd

kw(x,k,t)dk.

The Quantum Fokker-Plan
k term is a di�usion operator de�ned by

Q
~,F P

(w)=Dqq∆xw+2γdivk (kw)+2
Dpq

m
divx (∇kw)+

Dpp

m2
∆kw. (1.2)

The non-lo
al pseudo-di�erential operator Θ[V ] is de�ned as

Θ[V ](w)=− i

~(2π)
d

ˆ

R2d

δ~V (x,η)w(x,k′)eiη·(k−k′)dk′dη, (1.3)

with

δ~V (x,η)=V

(

x+
~

m

η

2

)

−V

(

x− ~

m

η

2

)

. (1.4)

The 
oe�
ients Dqq, γ, Dpq, and Dpp are 
onstants that depend on several phys-

i
al quantities. Spe
i�
ally,

Dqq =
λ~

2

12m2kBT
γ =

λ

2m
Dpq =

λΩ~
2

12πmkBT
Dpp =λkBT,

where ~ is Plan
k's 
onstant, m is parti
le mass, and kB is Boltzmann's 
onstant.

The operator is derived from a heat bath of harmoni
 os
illators, where T is its

temperature, λ is the 
oupling 
onstant, and Ω is the 
ut-o� frequen
y. The 
onstants

satisfy the Lindblad 
ondition: DqqDpp−D2
pq ≥~

2γ2/4, or equivalently Ω≤kbT/~.

These 
onditions guarantee the quantum me
hani
ally 
orre
t evolution of the system

and 
onvergen
e to the 
lassi
al Fokker-Plan
k dynami
s from sto
hasti
 
al
ulus as

~→0. The reader is referred to [6, 12, 21, 25℄ for more details. In the following

se
tions we a
tually work with the dimensionless version of the problem, although

we use physi
al 
onstants for the numeri
al simulations (spe
i�
 values are noted in

Se
tion 4).

One may interpret the WFP equation as a quantum Liouville equation equated

to an intera
tion operator Q
~,F P

of Fokker-Plan
k type. When Q
~,F P

:=0, (1.1) de-
termines the time evolution of an isolated quantum system under the in�uen
e of a

potential V (x). This is equivalent to solving S
hrödinger's equation, but the solution

is a fun
tion of the 2d-dimensional phase spa
e of the original problem. Despite in-


reasing the dimensionality of the problem, the WFP equation o�ers the advantage

of 
oupling the quantum system to its environment through Q
~,F P

. Spe
i�
ally, (1.2)

models the environmental intera
tion as a heat bath of harmoni
 os
illators [6℄.

It is known that in the semi-
lassi
al limit, ~→0, the intera
tion operator formally


onverges to Q0,FP =∆kw+divk(kw), while the pseudo-di�erential operator simpli-

�es to Θ~[V ](w)→−∇xV ·∇kw. In parti
ular, this limit yields the 
lassi
al Vlasov-

Fokker-Plan
k equation with degenerate di�usion. Moreover, in the spe
ial 
ase of the
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harmoni
 potential, V (x)= 1
2 |x−a|2 with a 
onstant, the pseudo-di�erential operator

of (1.3) has the same form as the 
lassi
al a

eleration term and 
an be rewritten,

Θ[V ](w)=−(x−a) ·∇kw for all ~>0. (1.5)

This provides a basis for 
omparison between the full WFP dynami
s and known

properties of the 
lassi
al di�usion equation whi
h was analyzed in [25℄. This 
om-

parison results from balan
ing the 
lassi
al transport operator for linear a

eleration

with the quantum 
orre
ted di�usion operator Q
~,F P

de�ned in (1.2).

Numerous analyti
al results 
on
erning the existen
e of lo
al or global in time

solutions to (1.1) are available, in the linear and nonlinear 
ases [2, 3, 4, 6, 8, 10℄.

In the mean �eld approximation, when (1.1) is 
oupled to Poisson's equation for the

ele
trostati
 potential

∆xV (x,t)=−
ˆ

Rd

w(x,k,t)dk,

the nonlinear initial value problem has a 
lassi
al solution for all time t>0, [1, 3, 4℄.
Existen
e of global in time solutions asso
iated to initial and boundary value

problem in one spa
e dimension for the Wigner-Poisson system (Q
~,F P

=0) has been
shown in [22℄, where the authors prove well-posedness in C([0,∞),L2(Ωx×Rk;(1+
k2)dxdk)), with in�ow boundary 
onditions for the bounded spatial domain Ωx.

In addition to the lo
al or global existen
e of solutions, there is the outstanding

question of the existen
e of stationary states. For a harmoni
 potential V (x)= 1
2 |x−

a|2, existen
e of a smooth stationary solution to (1.1) in any spa
e dimension is

shown in [25℄. The authors expli
itly 
omputed the unique stationary state µ(x,k) of
(1.1) for V (x)= |x|2/2. Moreover it was shown in [25℄ that the 
orresponding time

dependent solution, w(x,k,t), to (1.1) with V (x)= |x|2/2 and general initial data wI

exponentially de
ays in time toward the steady-state µ.
Existen
e of stationary solutions to (1.1) for perturbations of harmoni
 potentials

V (x)=
|x|2
2

+V0(x),

is a subje
t of 
urrent investigation. A very re
ent result shows the existen
e, unique-

ness, and 
onvergen
e to a unique steady state, when the Lindblad 
ondition holds,

for sub-quadrati
 perturbations to the potential [5℄. Current investigation also fo
uses

on the 
ase when V0 (x) is a smooth regular fun
tion with 
ontrol in its spe
tral norm.

There it is supposed that there exists a unique steady-state, and the solution of the


orresponding time-dependent problem 
onverges exponentially to this steady-state,

with the de
ay rate depending on the perturbation V0(x).
Although there has been re
ent theoreti
al progress on the WFP equation as


ontained in the previous referen
es, few numeri
al simulations are available in 
ases

where the intera
tion operator (1.2) is not in
luded. Some of these approa
hes in-


lude splitting methods for the Wigner-Poisson problem [7, 26℄ and a �nite di�eren
e

approa
h to Wigner's equation [20℄. Also, [19℄ developed 
onvergen
e and spe
tral

a

ura
y analysis of a semidis
rete version of the Wigner equation by means of a

spe
tral method of a periodi
 approximation to the solution of the problem.

One re
ent te
hnique for the 
omplete Wigner-Fokker-Plan
k model (1.1)-(1.2) has

been the use of 
ontinued-fra
tion methods by Gar
ia-Pala
ios and Zue
o [17, 16℄.

The solution is approximated by expanding the Wigner fun
tion in a basis of Her-

mite polynomials of the momentum variable. Then a series of 
oupled equations for
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the evolution of the time and spa
e dependent 
oe�
ients is derived. By design, the

system of equations is su
h that individual equations are only 
oupled to their �neigh-

bors,� and the system may be solved by straightforward iteration. A di�
ulty arises

in the treatment of arbitrary potentials whi
h may 
ompli
ate the stru
ture of these

equations and in
rease the number whi
h need to be solved. Sharp potentials, su
h

as a step potential, may be espe
ially di�
ult to realize.

For 
omparison to the available analyti
al results, we work with the dimensionless

version of the problem. To this end we set the terms γ = 1
2 and Dpq =0 in (1.2), and

the 
orresponding dimensionless initial value problem in R
2d×R

+ be
omes

{

∂tw+k ·∇xw+Θ[V ]w=∆kw+divk (kw)+∆xw

w
∣

∣

t=0
=wI (x,k) ,

Θ[V ](w)=− i

(2π)
d

ˆ

R2d

δV (x,η)w(x,k′)eiη·(k−k′)dk′dη, (1.6)

δV (x,η)=V
(

x+
η

2

)

−V
(

x− η

2

)

.

These in
lude the expli
it formulas and asso
iated de
ay rates analyti
ally 
al
ulated

in [25℄. We brie�y re
all that the unique stationary state of (1.6) for V (x)= |x|2/2
reads as

µ(x,k)=
1

2
√

5π
e−A(x,k), A(x,k)=

(

1

5
|x|2 +

1

5
x ·k+

3

10
|k|2
)

, (x,k)∈R
2d, (1.7)

and the exponential de
ay in time of the 
orresponding time dependent solution,

w(x,k,t), to (1.6) with V (x)= |x|2/2 and general initial data wI is given in the fol-

lowing norm,

∥

∥

∥

∥

w−µ√
µ

∥

∥

∥

∥

L2(R2d)

≤e−σt

∥

∥

∥

∥

wI −µ√
µ

∥

∥

∥

∥

L2(R2d)

. (1.8)

The value σ is the largest positive 
onstant su
h that Hess(A)−σI≥0.
We have implemented the DG method using polynomial and non-polynomial ap-

proximation spa
es in order to test its a

ura
y and e�
ien
y. The method is based

on a standard Non-symmetri
 Interior Penalty Galerkin (NIPG) treatment, but the

pseudo-di�erential operator Θ[V ](w) requires spe
ial attention. The form presented

in (1.3) is ill-suited for numeri
al implementation. Pra
ti
al representations of the

operator are given, and the 
hoi
e of whi
h representation to use depends on the form

of the potential. The various representations allow the method to a

ommodate a

wide range of potential fun
tions. Harmoni
 and sinusoidal potentials have 
ompa
t

exa
t representations whi
h may be e�
iently implemented. Also, methods for a few

basi
 forms of the potential are qui
kly extended to linear 
ombinations of the forms.

The pseudo-di�erential operator Θ[V ] has been the main obsta
le to both ana-

lyti
 and numeri
al studies of Wigner's equation. We implement three methods for

evaluating Θ[V ](w) in simulations. One is a general method, and the other two are

e�
ient methods for spe
i�
 forms of the potential V . It is di�
ult to work dire
tly

with the representation (1.3) in the DG framework be
ause it doubles the degree of

integration and although the overall integral is real valued, this is brought about by

os
illatory 
an
ellations (of 
ourse one need not expli
itly evaluate the imaginary part,
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however, the real part is required and su�ers the same os
illations). The e�
ien
y and

a

ura
y of the method 
an be greatly improved by �nding alternate representations

for Θ[V ](w).
Of parti
ular interest are perturbations of the harmoni
 potential,

V (x)=
|x−a|2

2
+V0(x).

To treat non-harmoni
 potentials (i.e., the perturbation V0), we use alternate

representations of Θ[V ]. The basi
 approa
h is to take advantage of the well known

properties of the Fourier transform to rewrite the pseudo-di�erential operator in 
on-

volution form,

Θ[V ](w)=− i

(2π)
d

ˆ

Rn

δV (x,η)F [w](x,η,t)exp[iη ·k]dη

=−ℑ
(

F−1 [δV ](x,·)
)

∗w(x,·,t), (1.9)

where we denote the Fourier transform in the variables k′ and η by

F [ϕ](η) :=

ˆ

Rd

ϕ(k′)e−ik′·ηdk′

and the imaginary part of a value z with ℑ(z). The fun
tion δV is a real valued

odd fun
tion in η, thus the real part of F−1 [δV ] is zero. The expression is linear

in w, real valued, and the degree of integration has been redu
ed. Given F−1 [δV ],
numeri
al evaluation of the 
onvolution formula is pra
ti
al. This is a method used

for evaluating non-harmoni
 potentials. The �nal method is for the spe
ial 
ase that

the potential 
onsists of a linear 
ombination of sinusoidal fun
tions. The inverse

Fourier transform produ
es delta fun
tions whi
h simplify the 
onvolution formula.

This method is quite useful not just for potentials whi
h are in Fourier series form,

but also for potentials whi
h 
an be lo
ally approximated with sinusoidal fun
tions

(this in
ludes polynomials). These methods allow us to treat many forms of potential

fun
tions, and several examples appear in Se
tion 4.

The paper is organized as follows. Se
tion 2 introdu
es the DG method for a

general approximation spa
e and our implementation for the WFP equation. Se
tion 3

then presents estimates related to the 
onvergen
e and stability of the method. These

provide a basis to evaluate the resulting numeri
al method. Se
tion 4 
ontains several

numeri
al results whi
h demonstrate agreement with known results from analysis, and

additional results whi
h go beyond the 
lass of problems found in 
urrent analyti


work. Se
tion 5 
ontains 
on
luding remarks, in
luding an indi
ation of how the

availability of numeri
al simulations 
an and is being used to assist analyti
 progress.

2. Implementation of the DG method

The analyti
 results to whi
h we would 
ompare our numeri
al simulations are

derived in all of R
2d, but we must 
ompute on a �nite domain. Numeri
ally we will


ompute the solution of the WFP equation in a bounded domain with zero Diri
hlet

boundary 
onditions for both the x and k variables.

In this se
tion we would like to justify the 
hoi
e of the boundary 
onditions,

showing that if the 
omputational domain is large enough, the di�eren
e (in a 
ertain

norm spe
i�ed later) between the solution of the boundary value problem and the

one in the whole spa
e does not in
rease with time, but stays small for all times.
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We pro
eed following the same approa
h presented in [15℄ for the analysis of the DG

method for the linear Boltzmann equation.

First note that if the WFP in the whole spa
e admits a stationary solution, µ(x,k)
(e.g. (1.7) for the harmoni
 potential), whi
h is integrable in R

2d and normalized to

unity, then

‖µ‖
L2

µ(Ω)
=‖µ‖1/2

L1(Ω)
, (2.1)

for any arbitrary set Ω, where

‖f‖2

L2
µ(Ω)

:=

ˆ

Ω

f2

µ
dx.

For arbitrary ǫ>0, let Ωǫ ⊂R
2d be a set su
h that

ˆ

R2d\Ωǫ

|µ|<ǫ. (2.2)

Essentially, the set Ωǫ is not �very big,� be
ause w∈L2
µ means that w2 de
ays qui
kly

and is still integrable when multiplied by µ−1(x,k).
We remark that, in addition to the harmoni
 
ase where (1.8) holds, the estimates

in this se
tion 
an be 
arried over for other potentials V (x) under the assumption that

there exists a unique stationary state µ∈L1(R2d) and the following inequality holds

‖w(x,k,t)−µ‖
L2

µ(R2d)
≤g(t)‖wI −µ‖

L2
µ(R2d)

, (2.3)

for any initial state wI , where g(t) is a positive and bounded fun
tion su
h that

limt→∞g(t)=0 .

Now we estimate the solution w in the 
ut-o� domain Ωǫ. Sin
e the solution

w(x,k,t) of (1.2) is uniformly 
ontrolled in time and stable with respe
t to wI (see

(2.3)), we 
an estimate the L2
µ(Ωǫ)-norm of the solution as follows:

‖w‖
L2

µ(Ωǫ)
≤g(t)‖wI −µ‖

L2
µ(R2d)

+‖µ‖L2
µ(Ωǫ) ≤K,

where the 
onstant K is uniform in time. Similarly,

‖w‖L2
µ(R2d\Ωǫ)≤g(t)‖wI −µ‖

L2
µ(R2d)

+‖µ‖L2
µ(R2d\Ωǫ) =Cg(t)+ǫ1/2 ,

uniformly in time, where C =‖wI −µ‖
L2

µ(R2d)
, and ‖µ‖

L2
µ(R2d\Ωǫ)

≤ ǫ1/2.

Sin
e limt→∞g(t)=0, there exists a time T ∗ su
h that Cg(T ∗)=O(ǫ1/2). The value
T ∗ depends on the distan
e, in the L2

µ-norm, between the initial and stationary states,

and on the de
ay rate g(t). Consequently, for all t>T ∗ it holds that

‖w‖L2
µ(R2d\Ωǫ)≤O(ǫ1/2).

Thus by 
hoosing the domain Ωǫ big enough, whi
h means Ωǫ 
ontains almost

all of the total mass of the initial datum wI and of the stationary states µ, then
(at least 
omputationally, well beyond ma
hine a

ura
y) the solution of the Cau
hy

problem w at the boundary of Ωǫ will be zero, with zero derivatives, and the asso
iated

evolution problem will essentially be 
on�ned to the domain Ωǫ.
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To the best of our knowledge, there is no available analyti
al result at the present

time to rigorously justify this last statement, whi
h is an assumption for the initial

boundary value problem under 
onsideration and the 
orresponding one in all spa
e.

We remind the reader that the above estimates do not provide a pointwise 
ontrol

of the solution to (1.2) outside the domain Ωǫ, but give a ni
e estimate in the L2-

norm.

It is important to note that this approa
h is intended to heuristi
ally justify the

sele
tion of the 
omputational domain. However, the 
al
ulation of error estimates in

the following se
tions are with respe
t to the solution of the initial value problem in

the bounded domain.

Our aim is to produ
e a dis
rete approximation to the solution of the initial

value problem (1.6) in Ω×R
+, for a bounded domain Ω with homogeneous Diri
hlet

boundary 
onditions. The numeri
al simulations presented in se
tion 4 use d=1,
but neither the 
onstru
tion of the method nor its analysis depend on this parti
ular


hoi
e. The 
omputational domain Ω⊂R2 is the following: 
onsider Ω=Ωx×Ωk ⊂R
2,

where Ωx := [0,L]⊂R and Ωk := [−K,K]⊂R. The boundaries of Ω are de�ned by

∂Ωx :={(x,−K) | ∀x∈Ωx}∪{(x,K) | ∀x∈Ωx} ,

∂Ωk :=∂Ω0∪∂ΩL :=
{

(0,k) | ∀k∈Ωk
}

∪
{

(L,k) | ∀k∈Ωk
}

,

and are depi
ted in �gure 2.1. The homogeneous Diri
hlet boundary 
onditions on

∂Ωx and ∂Ωk for the asso
iated boundary value problem to (1.6) are de�ned by

w(x,K,t)=w(x,−K,t)=0 on ∂Ωx

w(0,k,t)=w(L,k,t)=0 on ∂Ωk.

2.1. Notation. The domain Ω is partitioned into mutually disjoint open

subsets (or 
ells) Ωj =Ωx
j ×Ωk

j , where the point (x,k)∈Ω, x∈Ωx
j and k∈Ωk

j . Let

hj be the diameter of Ωj , and let h be the maximum diameter over the 
ells in

this nondegenerate subdivision of the domain ΩN
h ={Ωj}N

j=1. Moreover, let Ej =

{e(j,ζ)}Fj

ζ=1 be the set of fa
es belonging to ∂Ωj , the boundary of Ωj . If Ej ∩∂Ω 6=∅,
then any fa
e e(j,ζ)∈Ej ∩∂Ω is an exterior fa
e, whi
h will be indi
ated by writing

∂e(j,ζ). Moreover, let Ee =∪jEj \∂Ω be the set of all internal fa
es, thus partitioning

the set of all fa
es, Eh =Ee∪∂Ω, Ee∩∂Ω=∅. To ea
h fa
e e(j,ζ) we asso
iate an

outward fa
ing unit normal ve
tor ν(j,ζ) su
h that ν(j,ζ) 
oin
ides with ν on ∂Ω.
Note that any internal fa
e 
orresponds to two 
ells Ωj and Ωj′ , so for some pairs

(j′,ζ ′), e(j,ζ) =e(j′,ζ′). Summation of fa
es over the double index would 
ount ea
h

fa
e twi
e, so sometimes it is more 
onvenient to use a single index to identify a

parti
ular fa
e, ei ∈E, without referen
e to a spe
i�
 
ell. The normal ve
tors are

indexed similarly, however, fa
e ζ of 
ell j has a unique outward pointing normal, ν(j,ζ),

whi
h is antiparallel to the 
orresponding ν(j′,ζ′). Thus, e(j,ζ) and e(j′,ζ′) may not be

simply inter
hangeable in expressions whi
h depend on the normal ve
tors. This is the


ase (impli
itly) in the following de�nitions for jump and average operators: for any

interior fa
e e(1,ζ)∈∂Ω1∩∂Ω2 we de�ne the jump, [·], and average, {·}, of a fun
tion

f a
ross the edge,

[f ] :=f |Ω1
−f |Ω2

,

{f} :=
f |Ω1

+f |Ω2

2
.
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!
x

k

+K

-K

L

Figure 2.1. A s
hemati
 of the domain for d=1.

The following identity is used frequently,

[fg]= [f ]{g}+{f} [g]. (2.4)

Another notation used at 
ell boundaries denotes the upwind value of a fun
tion f ,

f↑ =f |Ω1
χ[α·νk>0] +f |Ω2

χ[α·νk<0],

where χ[·] is the 
hara
teristi
 fun
tion and sign(α ·ν) determines the upwind dire
-

tion.

The dis
rete approximation wh is an element of some approximation spa
e V.
The approximation spa
es used in this work are produ
ed by basis fun
tions φ(x,k),
whi
h are themselves produ
ts of primitive basis fun
tions ϕ(x) and ψ(k). Ea
h basis

fun
tion is 
ompa
tly supported on a single 
ell, and all primitive basis fun
tions

(and therefore their produ
ts) are mutually orthogonal. The orthogonality of the

basis fun
tions is a purely pra
ti
al 
onsideration, and not a requirement of the DG

approa
h. The approximation spa
es used in the simulations presented in Se
tion 4

(where d=1) are,

Vp
P := span

{

φ(j,m)(x,k)=ϕ(x)ψ(k)
∣

∣ϕ,ψ∈Pp
Ωj

}

,

VT := span
{

φ(j,m)(x,k)=ϕ(x)ψ(k)
∣

∣ϕ,ψ∈{1,sin(ω(s−δ)),cos(σ(s−δ))}
}

,

Vp
H := span

{

φ(j,m)(x,k)=ϕ(x)ψ(k)
∣

∣ϕ,ψ∈Hp
Ωj

}

.

The double index (j,m) identi�es the 
ell whi
h supports the basis fun
tion, Ωj ,

and the mth basis fun
tion on that 
ell. As with 
ell fa
es, sometimes it will be
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more appropriate to identify basis fun
tions with a single index, φn, that does not

spe
i�
ally identify a parti
ular 
ell. The fun
tions Pp
Ωj

are Legendre polynomials,

up to degree p, whi
h have been shifted and s
aled so that their typi
al orthogonality

relation holds on ea
h 
ell, i.e.,
�

Ωx
j

ϕ(j,m)(x)ϕ(j,m′)(x)dx= δm,m′ , and similarly for

ψ(k) over Ωk
j . In VT the frequen
ies ω and σ are 
hosen so that the width of the


ell is an integer multiple of the wavelength of the fun
tion. Finally, the fun
tions in

Hp
Ωj

are Hermite fun
tions, up to degree p, whi
h have been restri
ted (not res
aled)

to 
ell Ωj and then lo
ally orthogonalized using the Gram-S
hmidt pro
edure. With

respe
t to any approximation spa
e, we write w∗
A to denote the 
ontinuous interpolant

of w in VA∩C0(Ω).

2.2. Implementation. The fun
tion wh approximates w and is a linear


ombination of the elements of VA. The 
omputational task is to 
al
ulate the time

evolution of the expansion 
oe�
ients, cn(t),

w(x,k,t)≈wh(x,k,t)=
∑

n

cn(t)φn(x,k).

We rewrite (1.1) as

wt =F (w).

The problem of �nding the semi-dis
rete dis
ontinuous Galerkin approximation to

(2.6) in a bounded domain Ω is: seek wh(x,k,t)∈R
+
t ×VA su
h that,

wh(·,·,t)=0, on∂Ω, wh(x,k,0)=PVA
wI(x,k), (2.5)

and, for all t>0, it holds that

(wht,ψh)Ω =(F (wh),ψh)Ω , ∀ψh ∈VA, (2.6)

where (·,·)Ω denotes the standard s
alar produ
t in L2(Ω) and PVA
the proje
tion on

the approximated spa
e VA.

The weak formulation be
omes,

∑

n

d

dt
cn(t)(φn,ψh)Ω =

(

F

(

∑

n

cn(t)φn

)

,ψh

)

Ω

.

Choosing ψh =φp, a de
oupled system of ODEs for the time dependent 
oe�
ients

cp(t) is produ
ed (revealing the pra
ti
al reason for using mutually orthogonal basis

fun
tions),

d

dt
cp(t)=

(F (
∑

n cn(t)φn) ,φp)Ω
(φp,φp)Ω

= F̃p(c(t)), ∀k.

A standard third-order total variation diminishing Runge-Kutta method is used to

solve this system [11, 18, 24℄,

c(1) = ct +∆tF̃ (ct),

c(2) =
3

4
ct +

1

4
c(1) +

1

4
∆tF̃ (c(1)),

ct+∆t =
1

3
ct +

2

3
c(2) +

2

3
∆tF̃ (c(2)).
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The right hand side, F̃ (c(t)), is dis
retized as follows: let V (x)= 1
2 |x|2 +V0(x), where

V0(x)∈W 1
∞(Rd). Equation (2.6) 
an be rewritten as

ˆ

Ω

∂twhψh dx+(Θ[V0](wh),ψh)L2(Ω) =(Lwh,ψh)L2(Ω), (2.7)

where L is the linear operator

Lw :=−k ·∇xw+x ·∇kw+2divk(kw)+∆xw+∆kw.

The alert reader will re
ognize (1.6), but with a fa
tor of two in front of the divergen
e

term. In the analysis we use the fa
tor of 2 to be 
onsistent with previous works, but

in the numeri
al simulations we 
hange this value to 1. The analyti
 stationary state

reported in se
tion 1 
oin
ides with the value 1, and is the stationary state whi
h will

be used for 
omparison in the numeri
al se
tion. In this and the next se
tion we will

use the value 2. The bilinear expression for Lw and the test fun
tion is

(Lw,ψ)L2(Ω) =
∑

Ωj∈ΩN
h

(w,α ·∇ψ)Ωj
−
∑

ei∈Ee

〈w↑[ψ],α ·νi〉ei

−〈wψ,α ·ν〉∂Ω−
∑

Ωj∈ΩN
h

(∇ψ,∇w)Ωj

+
∑

ei∈Ee

〈[ψ],{∇w ·νi}〉ei
−
∑

ei∈Ee

〈[w],{∇ψ ·νi}〉ei

+〈ψ,∇w ·ν〉∂Ω−
∑

ei∈Ee

1

|ei|
〈[w],[ψ]〉ei

,

with α := (k,−x−2k), ∇ :=
(

∇x

∇k

)

, and |ei| denotes the length of the fa
e ei. The

pseudo-di�erential term is

(Θ[V0](w),ψ)L2(Ωh)

=− i

(2π)d

ˆ

Ωh

ψ(x,k,t)

(
ˆ

R2d

δV0(x,η)w(x,k′,t)eiη·(k−k′)dk′dη

)

dxdk.

In order for the nonlo
al operator Θ[V0] to be well de�ned, the fun
tion wh is meant

to be extended to the whole spa
e in the variable k by the value zero.

The notation 〈·,·〉ei
represents the integration of boundary terms over a 
ell fa
e

following integration by parts in x or k. The Diri
hlet boundary 
onditions (2.5)

of the problem are enfor
ed for the boundary terms 〈wψ,α ·ν〉∂Ω and 〈ψ,∇w ·ν〉∂Ω

through the identities

〈wψ,α ·ν〉∂Ω =
1

2
〈wψ,α ·ν〉∂Ω,

and

〈ψ,∇w ·ν〉∂Ω =〈ψ,∇w ·ν〉∂Ω−〈w,∇ψ ·ν〉∂Ω.
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The weak formulation of the problem is:

(∂twh,ψh)Ω−
∑

Ωj∈ΩN
h

(wh,α ·∇ψh)Ωj
+
∑

ei∈Ee

〈w↑
h[ψh],α ·νi〉ei

+
1

2
〈whψh,α ·ν〉∂Ω

+(Θ[V0](wh),ψh)Ω

=−
∑

Ωj∈ΩN
h

(∇ψh,∇wh)Ωj
+
∑

ei∈Ee

〈[ψh],{∇wh ·νi}〉ei
−
∑

ei∈Ee

〈[wh],{∇ψh ·νi}〉ei

+〈ψh,∇wh ·ν〉∂Ω−〈wh,∇ψh ·ν〉∂Ω−
∑

ei∈Ee

1

|ei|
〈[wh],[ψh]〉ei

. (2.8)

The basi
 integrals, those a
tually 
omputed numeri
ally, are determined by sele
ting

the elements of {φp} as test fun
tions. Let {φp} be a test fun
tion with support in

the 
ell Ωj , then

(wh,α ·∇φp)Ωj
=
∑

n∈Ωj

cn (φn,α ·∇φp)Ωj
,

〈w↑
h[φp],α ·νi〉ei

= δei∈∂Ωj

∑

n∈∂Ωj

cn〈(α ·ν)φ↑n,φp〉ei
,

〈[wh],{∇φp ·νi}〉ei
=
δei∈∂Ωj

2

∑

n∈∂Ωj

cn〈φn,∇φp ·ν〉ei
,

〈[φp],{∇wh ·νi}〉ei
=
δei∈∂Ωj

2

∑

n∈∂Ωj

cn〈∇φn ·ν,φp〉ei
,

(∇φp,∇wh)Ωj
=
∑

n∈Ωj

cn(∇φn,∇φp)Ωj
.

The notation n∈Ωj indi
ates that the sum is only over the basis fun
tions φn whi
h

have support on 
ell Ωj . While mutual orthogonality is no longer expe
ted (α depends

on k and we have di�erentiated), a pair of basis fun
tions still must share the same

supporting 
ell to produ
e a nonzero integral. Similarly, in the se
ond expression, the

fun
tions φn and φp must be supported on 
ells whi
h share a fa
e, n∈∂Ωj . The fa
e

in question, ei must also be one of the fa
es of ∂Ωj , indi
ated by the term δei∈∂Ωj
,

whi
h is 1 if this is true and 0 otherwise. In the next se
tion, there is also referen
e

to n∈Ωj(p), meaning the set of all n su
h that suppφn∩suppφp 6=∅ given φp.

The WFP equation (1.1) is mass-
onserving, in the sense that

ˆ

R2d

w(x,k,t)dxdk= const. ∀t≥0.

This 
onservation property does not hold if the problem is 
onsidered in a bounded

domain with zero-Diri
hlet boundary 
onditions. The s
heme presented here, for (1.1)

with homogeneous Diri
hlet boundary 
ondition, is not mass 
onserving. However if

the basis fun
tions are pie
ewise 
onstants, one may easily 
he
k that the above

s
heme is mass 
onserving.

This property will be shown in the numeri
al simulations in Se
tion 4.
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2.3. The pseudo-di�erential operator. The pseudo-di�erential operator

is evaluated in one of three ways depending on the spe
i�
 form of the potential. The

simplest is the approa
h used for the harmoni
 potential. As noted in the introdu
tion,

the form of the pseudo-di�erential operator in this 
ase is −(x−a) ·∇kw. In the DG

s
heme this term is treated analogously to the transport term, k ·∇xw.
The se
ond approa
h is to work dire
tly with the 
onvolution form of the operator,

Θ[V ](w)=−ℑ
(

F−1 [δV ](x,·)
)

∗w(x,·,t). (2.9)

In bilinear form, using φp as the test fun
tion, all of the required integrals are restri
ted

to �nite intervals

(Θ[V ](wh),φp (x,k))Ω

=−
∑

n∈Ωx
j(p)

cn

ˆ

Ωk
j(p)

ˆ

Ωx
j(p)

ˆ

Ωk
j(n)

ℑ
(

F−1 [δV ](x,k−s)
)

φn (x,s)φp (x,k)dsdxdk.

The sum is now 
arried out over all n∈Ωx
j(p), whi
h indi
ates all fun
tions φn with

support in Ωx
j(p)×

(

∪zΩ
k
z

)

, that is, over all n su
h that the spatial 
omponent of the

support of φn overlaps the spatial 
omponent of the support of φp. Thus, the integral

in s is restri
ted by the support of φn and the integrals in x and k are restri
ted

by the support of φp. Although the integrals may be os
illatory due to the inverse

transform of the potential, these os
illations are independent of the mesh and so 
ould

be eliminated by mesh re�nement.

This approa
h is pra
ti
al when the inverse Fourier transform of the potential

is available and easily integrated by numeri
al methods. Gaussian potentials provide

one useful and obvious example. Step potentials (Heaviside fun
tions) are also treated

in this manner. For the potential,

Va(x)=















0 x<a

1

2
x=a

1 x>a















,

the inverse Fourier transform of δV is,

F−1 [δV ](x,k)= i
cos(2(x−a)k)

πk
.

Linear 
ombinations of step potentials are used in se
tion 4 to produ
e numeri
al

examples in whi
h w is 
on�ned to a bin 
onstru
ted of square walls with �nite height

and width.

Finally, the 
onvolution approa
h 
an be further streamlined if there is a 
losed

form for the 
onvolution. This is possible for the important 
ase of sinusoidal poten-

tials. The inverse Fourier transform then produ
es delta fun
tions, and the 
onvo-

lution may be evaluated immediately. Suppose V (x)=
∑

avaexp[ixa2π/P ]; then the

fun
tion δV (x,η) is

δV (x,η)=
∑

a

va exp[iax2π/P ](exp[iηaπ/P ]−exp[−iηaπ/P ])

=
∑

a

2va exp

[

i

(

2πax

P
+
π

2

)]

sin(πaη/P ).
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Applying the inverse Fourier transform, one arrives at the expression

−ℑ
(

F−1 [δV ](x,k)
)

=
∑

a

ṽa(x)(δ (k−aπ/P )−δ (k+aπ/P )),

where the real valued 
oe�
ients ṽa(x) are

ṽa(x)=2π (ℑ(va)cos(2πax/P )+ℜ(va)sin(2πax/P )).

Applying 
onvolution,

Θ[V ](w(x,k,t))=−ℑ
(

F−1 [δV ](x,·)
)

∗w(x,·,t)
=
∑

a

ṽa(x)((δ(k−aπ/P )−δ(k+aπ/P ))∗w(x,·,t))

=
∑

a

ṽa(x)(w(x,k−aπ/P,t)−w(x,k+aπ/P,t)). (2.10)

Repla
ing w with wh and sele
ting basis fun
tion φp(x,k) as the test fun
tion, the

basi
 integrals to be 
omputed are

(Θ[V ](wh),φp)=
∑

n∈Ωj(p)

cn

(

∑

a

ṽa (x)φn (x,k±aπ/P ) ,φp (x,k)

)

Ωj

.

Note that the nonlo
al nature of the operator means that the support of φn does not

need to be the same as the support of φp to produ
e a nonzero result. No boundary

terms arise, but integration is nonlo
al, and one must 
al
ulate the 
oe�
ients ṽa (x).
The a

ura
y of the representation depends on the �nite number of terms that one

is able to a�ord to 
ompute. Fortunately, many useful potentials may be a

urately,

even exa
tly represented with just a few terms. Primus inter pares:

V (x)=αsin(x+θ)+γ,

where α, θ, and γ, are 
onstants. For this family of potentials, Θ[V ](w) has exa
t,

two term Fourier representations. However, even for fun
tions whi
h require more

Fourier terms, there is only a linearly growing 
omputational 
ost. No additional

theoreti
al development is needed (as would have been the 
ase for the di�erential

representation).

A wide range of potentials in the form of (1.5) may be treated by 
ombining

the two representations of Θ[V ]. Even polynomials su
h as x2 may be approximated

lo
ally using a 
ombination of sinusoidal terms. This example provides a useful test

for verifying the numeri
al implementation, and is in
luded in the results in se
tion 4.

Between the spe
ial method for harmoni
 potentials, the 
onvolution method, and the

sinusoidal method, a wide range of potential fun
tions, and any linear 
ombination

thereof, is available.

3. Analysis of the numeri
al s
heme

3.1. Interpolation and approximation results. We brie�y re
all some

approximation results that will be useful:
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Lemma 3.1. Let Ωh be a simply 
onne
ted subset of Ω⊂R
d with h=diam (Ωh) and e

be a fa
e of Ωh with normal ve
tor ν. If ph is a �nite polynomial on Ωh there exists

a 
onstant c, not depending on Ωh, su
h that

‖ph‖2,e ≤
c√
h
‖ph‖2,Ωh

, (3.1)

‖∇ph ·ν‖2,e ≤
c√
h
‖∇ph‖2,Ωh

, (3.2)

‖ph‖H1(Ωh)≤
c

h
‖ph‖2,Ωh

. (3.3)

Proof. See [23℄.

Furthermore, for ea
h f(x,t)∈H2(Ω) and its 
ontinuous interpolant f∗P (x,t)∈
VP ∩C0(Ω), the following approximation properties hold for all t>0 for q=0, 1, 2:

‖f(·,t)−f∗P (·,t)‖Hq(Ωh)≤ chp+1−q‖f(·,t)‖Hp+1(Ωh), (3.4)

‖∂tf(·,t)−∂tf
∗
P (·,t)‖2,Ωh

≤ chp‖∂tf(·,t)‖Hp(Ωh). (3.5)

We de�ne the element spa
e

VP :={ϕ |ϕ|Ωj
polynomial of total degree less than or equal to p}, (3.6)

and denote with w∗
P the 
ontinuous interpolant of w in VP ∩C0(Ω) (note that VP is

distin
t from the orthogonalized version Vp
P mentioned in Se
tion 2).

3.2. Stability, 
onsisten
y and L2-error estimates. Let V (x)= 1
2 |x|2 +

V0(x), where V0(x)∈W 1
∞(Rd). Again, the weak formulation of the problem is

(∂twh,ψh)Ω−
∑

Ωh

(wh,α ·∇ψh)Ωh
+
∑

ei∈Ee

〈w↑
h[ψh],α ·νi〉ei

+
1

2
〈whψh,α ·ν〉∂Ω

+(Θ[V0](wh),ψh)Ω

=−
∑

Ωh

(∇ψh,∇wh)Ωh
+
∑

ei∈Ee

〈[ψh],{∇wh ·νi}〉ei
−
∑

ei∈Ee

〈[wh],{∇ψh ·νi}〉ei

+〈ψh,∇wh ·ν〉∂Ω−〈wh,∇ψh ·ν〉∂Ω−
∑

ei∈Ee

1

|ei|
〈[wh],[ψh]〉ei

, (3.7)

with Ω⊂R
2d and where summation over Ωj ∈ΩN

h is now summation over Ωh for


onsisten
y with Lemma 3.1, and re�e
ting the signi�
an
e of h. In this se
tion we

will make use of the following identities: for all fun
tions f ∈VP , we have

1

2
〈[f2],α ·ν〉e−〈f↑[f ],α ·νi〉e =−1

2
〈[f ]2,|α ·ν|〉e, (3.8)

where e denotes a general fa
e, and the integration by parts formula is

∑

Ωh

(f,α ·∇f)Ωh
=
d

2

∑

Ωh

‖f‖2
2,Ωh

+
1

2

∑

ei∈Ee

〈[f2],α ·ν〉ei
+

1

2
〈f2,α ·ν〉∂Ω. (3.9)

For the estimates below, we need the following Lemma:
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Lemma 3.2. Let wh, ψ∈VP be su
h that wh =ψ=0 outside the bounded domain Ω,

and V0(x)∈L∞
(

R
d
)

. We have

(Θ[V0](wh),ψ)Ω≤ c‖wh‖2
2,Ω +‖ψ‖2

2,Ω,

where c depends on V0.

Proof. Sin
e the potential V0 is bounded, we have (see [22℄ and referen
es therein)

ˆ

Ω

Θ[V0](wh)ψdxdk≤‖Θ[V0](wh)‖2
L2(Ω) +‖ψ‖2

L2(Ω)

≤ c||V0||L∞(Rd)||wh||L2(R2d) +‖ψ‖2
L2(Ω)

≤ c‖wh‖2
2,Ω +‖ψ‖2

2,Ω.

The 
onsisten
y and stability of the s
heme are proved in the following theorem:

Theorem 3.1. Let wh(t) be the semi-dis
rete solution on VP to (3.7). For all T >0
we have

‖wh(T )‖2
2,Ω +2

∑

Ωh

ˆ T

0

‖∇wh‖2
2,Ωh

dt+2
∑

ei∈Ee

1

|ei|

ˆ T

0

‖[wh]‖2
2,ei

dt

+
∑

ei∈Ee

ˆ T

0

‖[wh]|α ·ν|1/2‖2
2,ei

dt≤‖wh(0)‖2
2,Ωe

dT .

Proof. Use ψh =wh as the test fun
tion in (3.7). Using (3.9) we obtain

1

2

d

dt
‖wh‖2

2,Ω− d

2

∑

Ωh

‖wh‖2
2,Ωh

− 1

2

∑

ei∈Ee

〈[w2
h],α ·ν〉ei

+
∑

ei∈Ee

〈w↑
h[wh],α ·νi〉ei

+(Θ[V0](wh),wh)Ω +
∑

Ωh

‖∇wh‖2
2,Ωh

+
∑

ei∈Ee

1

|ei|
‖[wh]‖2

2,ei
=0.

The operator Θ[V0] is skew-symmetri
, whi
h implies (Θ[V0](wh),wh)Ω =0.

Identity (3.8) applied to the boundary terms on the interior edges leads to

−1

2

∑

ei∈Ee

〈[w2
h],α ·ν〉ei

+
∑

ei∈Ee

〈w↑
h[wh],α ·νi〉ei

=
1

2

∑

ei∈Ee

〈[wh]2,|α ·ν|〉ei
.

The identity above implies that

d

dt

1

2
‖wh‖2

2,Ω +
∑

Ωh

‖∇wh‖2
2,Ωh

+
∑

ei∈Ee

1

|ei|
‖[wh]‖2

2,ei

+
1

2

∑

ei∈Ee

‖[wh]|α ·ν|1/2‖2
2,ei

≤ d

2
‖wh‖2

2,Ω.

The thesis follows from Gronwall's lemma.
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Theorem 3.2. Let wh(t) be the semi-dis
rete solution in VP to (3.7) for t≥0, and
assume that wI ∈Hp+1(Ω), w(t)∈C∞(Ω) for t>0. Then,

‖(w−wh)(T )‖2
2,Ω +

1

2

∑

Ωh

ˆ T

0

‖∇(w−wh)‖2
2,Ωh

dt+
∑

ei∈Ee

1

2|ei|

ˆ T

0

‖[w−wh]‖2
2,ei

dt

+
1

4

∑

ei∈Ee

ˆ T

0

‖[w−wh]|α ·ν|1/2‖2
2,ei

dt

≤ceT

(

‖(w−wh)(0)‖2
2,Ω +h

2p−2

ˆ T

0

(‖w‖2
Hp+1(Ω) +‖∂tw‖2

Hp(Ω))dt

)

.

Proof. We 
onsider the di�eren
e in the weak formulation for the fun
tions w and

wh, after de
omposing the error w−wh into w−wh =η−ξ with η :=wh−w∗
P and

ξ=w−w∗
P , where w

∗
P is the interpolant of w in VP . We have that

(∂tη,ψ)Ω−
∑

Ωh

(η,α ·∇ψ)Ωh
+
∑

ei∈Ee

〈η↑[ψ],α ·νi〉ei

+
1

2
〈ηψ,α ·ν〉∂Ω +(Θ[V0](η),ψ)Ω

=(∂tξ,ψ)Ω−
∑

Ωh

(ξ,α ·∇ψ)Ωh
+
∑

ei∈Ee

〈ξ↑[ψ],α ·νi〉ei
+

1

2
〈ξψ,α ·ν〉∂Ω

+(Θ[V0](ξ),ψ)Ω−
∑

Ωh

(∇ψ,∇η)Ωh
+
∑

ei∈Ee

〈[ψ],{∇η ·νi}〉ei

−
∑

ei∈Ee

〈[η],{∇ψ ·νi}〉ei
+〈ψ,∇η ·ν〉∂Ω−〈η,∇ψ ·ν〉∂Ω

−
∑

ei∈Ee

1

|ei|
〈[η],[ψ]〉ei

+
∑

Ωh

(∇ψ,∇ξ)Ωh
−
∑

ei∈Ee

〈[ψ],{∇ξ ·νi}〉ei

+
∑

ei∈Ee

〈[ξ],{∇ψ ·νi}〉ei
−〈ψ,∇ξ ·ν〉∂Ω +〈ξ,∇ψ ·ν〉∂Ω

+
∑

ei∈Ee

1

|ei|
〈[ξ],[ψ]〉ei

=A1 + ...+A17.

We 
hoose the test fun
tion ψ=η, and employ the same 
al
ulations as in the previous

lemma. Also, due to the 
ontinuity of ξ, [ξ]=0, simplifying several terms,

A6 =−
∑

Ωh

‖∇η‖2
2,Ωh

, A7 +A8 =0, A9 +A10 =0,

A11 =−
∑

ei∈Ee

1

|ei|
‖[η]‖2

2,ei
, A14, A17 =0.

The 
ombined result is,

d

dt
‖η‖2

2,Ω +
1

2

∑

ei∈Ee

‖[η]|α ·ν|1/2‖2
2,ei

− d

2
‖η‖2

2,Ωh

+
∑

Ωh

‖∇η‖2
2,Ωh

+
∑

ei∈Ee

1

|ei|
‖[η]‖2

2,ei
=A1 + ...+A5 +A12 +A13 +A15 +A16.
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In the following estimates, we draw the reader's attention to the dependen
e on mesh

size h by using a bold fa
ed h.

Cau
hy-S
hwarz and the inverse inequality (3.3) produ
e the following estimates:

A1≤ ch2p‖∂tw‖2
Hp(Ω) +‖η‖2

2,Ω,

A2≤
1

h2
‖ξ‖2

2,Ω‖α‖2
∞,Ω +

∑

Ωh

‖η‖2
2,Ωh

≤ c|Ω|h
2p‖w‖2

Hp+1(Ω) +‖η‖2
2,Ω.

Inequality (3.1) leads to:

A3≤
∑

ei∈Ee

‖α‖∞,ei
‖ξ↑‖2

2,ei
+

1

4

∑

ei∈Ee

‖[η]|α ·νi|1/2‖2
2,ei

,

≤c|Ω|h
2p+1‖w‖2

Hp+1(Ω) +
1

4

∑

ei∈Ee

‖[η]|α ·νi|1/2‖2
2,ei

,

A4≤
1

2
h‖η‖2

2,∂Ω +
1

2h
‖ξα ·ν‖2

2,∂Ω≤ 1

2
‖η‖2

2,Ω +c|Ω|h
2p‖w‖2

Hp+1(Ω)

A5≤‖η‖2
2,Ω +ch2p+2‖w‖2

Hp+1(Ω),

A12≤
1

4

∑

Ωh

‖∇η‖2
2,Ωh

+
∑

Ωh

‖∇ξ‖2
2,Ωh

,

≤1

4

∑

Ωh

‖∇η‖2
2,Ωh

+ch2p‖w‖2
Hp+1(Ω),

A13≤
∑

ei∈Ee

(

1

4h
‖[η]‖2

2,ei
+h‖{∇ξ ·νi}‖2

2,ei

)

≤ 1

4h

∑

ei∈Ee

‖[η]‖2
2,ei

+ch2p‖w‖2
Hp+1(Ω).

Finally, using (3.2) gives,

A15≤h‖η‖2
2,∂Ω +

1

h
‖∇ξ ·ν‖2

2,∂Ω

≤c‖η‖2
2,Ω +ch2p−2‖w‖2

Hp+1(Ω),

A16 =〈ξ,∇η ·ν〉∂Ω≤ 1

h
‖ξ2‖2,∂Ω +

h

4
‖∇η ·ν‖2

2,∂Ω

≤h
2p‖w‖2

Hp+1(Ω) +
1

4
‖∇η‖2

2,Ω.

Altogether, we have,

d

dt
‖η‖2

2,Ω +
1

4

∑

ei∈Ee

‖[η]|α ·ν|1/2‖2
2,ei

+
1

4
‖[η]|α ·ν|1/2‖2

2,∂Ω0
+

1

2

∑

Ωh

‖∇η‖2
2,Ωh

+
∑

ei∈Ee

1

2|ei|
‖[η]‖2

2,ei
≤ c‖η‖2

2,Ω +c|Ω|h
2p−2(‖w‖2

Hp+1(Ω) +‖∂tw‖2
Hp(Ω)).

The thesis then follows from Gronwall's lemma.
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3.3. On the spe
trum of the WFP operator in the harmoni
 
ase.

Some knowledge of the spe
trum of the WFP operator provides a way to test the


onvergen
e rate of the DG method. When V (x)=x2/2 and d=1 equation (1.6)

reads,

wt =xwk−kwx +wxx +kwk +w+wkk =Lw, (x,k)∈ R
2.

The �rst eigenfun
tion of L, with eigenvalue 0, is µ,

µ=
(

1/
(

2
√

5π
))

exp[−
(

x2/5+xk/5+3k2/10
)

]. (3.10)

Additional eigenfun
tions 
an be produ
ed by applying L to Ps(x,k)µ(x,k), where
Ps is an undetermined polynomial of degree s in x and k. The result is Qs(x,k)µ(x,k),
where Qs is a new polynomial. By solving the eigenvalue problem Ps(x,k)=λQs(x,k)
for the unknown 
oe�
ients of Ps, one determines new eigenvalues and eigenfun
tions

of L. Setting s=1 produ
es a 
onjugate pair of eigenvalues and eigenfun
tions,

λ±1 =−1

2
±

√
3

2
i,

µ±1 =

((

3

14
∓ 5

√
3

14
i

)

x+k

)

µ(x,k).

We are only interested in real valued solutions of the WFP problem and 
onsider the

initial 
ondition given by the sum

µ1 =µ+1 +µ−1 =

(

3

7
x+2k

)

µ(x,k). (3.11)

Note that µ1 has zero mass. If wI =µ1, the solution to the WFP equation will 
onverge

to the trivial steady state, 0, at the rate exp[−t/2].
When s=2, three new eigenvalues are produ
ed. One of the eigenvalues is real,

λ2 =−1, µ2 =

(

x2 +xk+
7

3
k2− 20

3

)

µ. (3.12)

The two remaining eigenvalues are a 
onjugate pair with real part also equal to -1.

Real 
ombinations of all three eigenfun
tions de
ay at rate exp[−t].
Another expe
ted rate of 
onvergen
e was des
ribed in equation (1.8). The

weighted di�eren
e, ‖w−µ‖L2
µ(Ω), will always de
ay at least as fast as e−σt, where σ

is the largest value su
h that Hess(A)−σI≥0. Numeri
al results exhibiting these


onvergen
e rates 
an be found in Se
tion 4.1.

4. Numeri
al Results

The DG method des
ribed here has been implemented for d=1. The domain

was partitioned into a regular re
tangular mesh. The stru
ture of the domain,

Ω=Ωx×Ωk, makes this the natural 
hoi
e, though in higher dimensions a more elab-

orate stru
ture may be appropriate. To verify the numeri
al implementation, several

tests were 
ondu
ted using various potentials and di�erent approximation spa
es. In

addition to 
on�rming several known properties of the WFP equation, numeri
al tests

were also performed whi
h go beyond the s
ope of 
ontemporary analysis.

For our numeri
al simulations we use the equation with the physi
al parameters,

like in (1.2)�(1.4). We 
hoose ~=m=1 and Ω=0.
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N L1 abs deviation L1 L2
µ abs deviation L2

µ

slope = -1.781 slope = -1.698

50 1.600e-02 3.284e-03 3.404e-02 3.894e-03

72 8.480e-03 3.079e-03 1.865e-02 3.616e-03

94 5.276e-03 3.247e-03 1.187e-02 3.867e-03

116 3.605e-03 0.499e-03 8.242e-03 0.663e-03

138 2.621e-03 3.535e-03 6.068e-03 4.255e-03

Table 4.1. Convergen
e to the analyti
 steady state of the harmoni
 potential with respe
t
to mesh re�nement. A regular N ×N grid was used in ea
h 
ase. The log of ‖µh−µ‖L1(Ω) and
‖µh−µ‖L2

µ(Ω) are reported in 
olumns two and four. These values de
rease linearly with the log of

N . The deviation between ea
h datum and a best �t linear relationship is reported in 
olumns three
and �ve under "abs deviation." The slope of the best �t trend is reported in the respe
tive 
olumn
header.

4.1. Veri�
ation. The �rst and most basi
 tests showed that a number of

subproblems 
ontained within the WFP equation are 
orre
tly solved. Two of the

tests 
he
k for 
onvergen
e of the numeri
al solution to the time dependent solutions

of the transport and heat equations with respe
t to mesh and basis set order. These

tests were su

essful, a
hieving the expe
ted 
onvergen
e and rates.

Those initial tests were trivial in that they did not involve the pseudo-di�erential

operator. To test the implementation of Θ[V ], we veri�ed that simulations 
onverge at

the proper rate to the known stationary state of the WFP problem using a harmoni


potential, V (x)=x2/2. The tests in this Se
tion (4.1) were 
arried out under the

following 
onditions: all 
onstants were set equal to unity, as in equation (1.6); the


omputational domain and time-step used were Ω=[−10,10]× [−10,10] and dt=0.001
respe
tively; in order to measure the rate of 
onvergen
e to the steady state, the initial

state is a Gaussian fun
tion, normalized and 
entered at the origin,

wI =(2/π)exp[−2
(

x2 +k2
)

]. (4.1)

The amount of mass not 
ontained in Ω is approximately 7.8×10−9 for µ, and less

than 10−10 for wI . These values are mu
h smaller than other sour
es of numeri
al

error (see the introdu
tion for a dis
ussion of the 
onsequen
es of working in a 
ut-o�

domain).

The numeri
al implementation uses one of three di�erent approa
hes to evaluate

the pseudo-di�erential operator depending on the form of the potential. The �rst

method examined was the �
lassi
al� approa
h, that repla
es the pseudo-di�erential

with (1.5) be
ause the potential is harmoni
.

Table 4.1 shows 
onvergen
e to (3.10) with respe
t to mesh re�nement. The

simulations were 
arried out using V1
P , pie
ewise linear fun
tions. Ea
h simulation was

evolved until a numeri
al steady state, µh, was (approximately) rea
hed. The table

lists L1(Ω), L2
µ(Ω), and 
orresponding �abs deviation� values. The �abs deviation�


olumns indi
ate the absolute value of the di�eren
e between the data in 
olumns two

and four and a best �t linear relationship between the fun
tions log(N) and log(err).
The slope of these linear relationships is listed at the top of ea
h 
olumn. The small

values in these 
olumns indi
ate linear behavior, that is, exponential 
onvergen
e to

the analyti
 steady state as the mesh is re�ned.

In the 
ase of the harmoni
 potential, the steady state is unique, so we repeated

some of the 
al
ulations above with di�erent initial data. One example is a 
ombina-
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Figure 4.1. Density plot of the 
onvergen
e of a three 
entered initial state to the unique
steady state of WFP equation with a harmoni
 potential. The numeri
al solution is essentially zero
in the white regions.

tion of three Gaussians 
entered about the origin,

wI =
2

3π

(

exp[−2
(

(x−4)2 +(k−0)2
)

]+exp
[

−2
(

(x+2)2 +(k−2
√

3)2
)]

+exp
[

−2
(

(x+2)2 +(k+2
√

3)2
)])

. (4.2)

Convergen
e is depi
ted in �gure 4.1, a plot of 
harge density, ρ(x,t)=
�

w(x,k,t)dk,
as a fun
tion of x and t. Sin
e density is a proje
tion of the solution onto x and t, wI

initially appears to have only two 
enters due to a symmetry, whi
h is immediately

broken as the three 
enters spiral around the origin. The steady state a
hieved in

this 
al
ulation is µ, whi
h is shown in �gure 4.2 (using a 64×64 grid), labelled

�three Gaussians�. The rate of 
onvergen
e to µ is 
ontrolled by the spe
trum of

the WFP operator. Some of its eigenvalues were derived, for the harmoni
 
ase, in

se
tion 3.3, and a bound on these values, is known: −σ≈−0.276. �gure 4.2 is a plot

of log‖wh−µ‖L2
µh

(Ω) as a fun
tion of time for several di�erent initial 
onditions. The

grid used is 64×64, the approximation spa
e is V1
P , and the remaining parameters are

those stated at the beginning of this se
tion. Both panels show the same data, but the

�rst is plotted on a shorter time-s
ale to highlight the initial 
onvergen
e behavior.

The rate is 
al
ulated with respe
t to the numeri
al steady state, µh, as determined

by the 
al
ulation. If the analyti
 steady state is used instead, approximation error

obs
ures the long term behavior. Convergen
e rate is the primary obje
t of interest,

so ea
h 
urve in 4.2 has been translated to interse
t the origin. Results are shown

for �ve di�erent initial 
onditions: �asymmetri
,� wI =xµ+µ, whi
h initially de
ays

at the slowest possible rate, −σ; ��rst eigenfun
tion,� µ1 +µ, from equation (3.11),

whi
h initially de
ays with rate -1/2; �se
ond eigenfun
tion,� µ2 +µ, from equation

(3.12), whi
h initially de
ays at rate -1; �one Gaussian,� equation (4.1); and �three

Gaussians,� equation (4.2). The steady state µ was added to the �rst and se
ond

eigenfun
tions so that the solution would have unit mass and therefore 
onverge to µ
rather than the trivial steady state, 0, whi
h 
annot be used to produ
e the weighted
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L2 norm. The tra
es in the �gure os
illate, but reveal several distin
t slopes, revealing

information about the spe
trum of the WFP operator. To further test the �
lassi
al"

Figure 4.2. The L2
µh


onvergen
e of the solution to the unique steady state (equation 3.10)
of the harmoni
 potential. The two �gures show the same data on di�erent time s
ales. The �gure
on the left highlights the initial de
ay rates using various initial 
onditions, as des
ribed in the text.
To simplify 
omparison between 
urves, they have all been shifted to interse
t the origin. The rate
of 
onvergen
e 
an be no slower than exp(−σt) where σ =(1−1/

√
5)/2≈0.276. Lines with slopes

-1/2, -1, and −σ are drawn, 
orresponding to two eigenvalues of the WFP operator and the bound
on the de
ay rate.

implementation of the pseudo-di�erential operator, several runs were performed using

ea
h of the di�erent approximation spa
es. The same parameters were used, but

the mesh size and approximation spa
e were varied. The results are listed in Table

4.2. The variable m is the number of primitive basis fun
tions used to 
onstru
t
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the approximation spa
e on ea
h 
ell in the mesh, 
onsequently, there are m2 basis

fun
tions on ea
h 
ell. For the polynomial and Hermite bases, m is equal to p+1.
For the trigonometri
 
ase, the sets of primitive basis fun
tions for m = 1, 2, and 3

are {1}, {1,cos}, and {1,cos,sin} respe
tively (no m=4 trigonometri
 approximation

spa
e was implemented). The period of ea
h primitive trigonometri
 basis fun
tion

was equal to the width of its 
ell, in the respe
tive 
oordinate, x or k. The restri
ted
Hermite approximation spa
es have more stru
ture, and they are des
ribed in detail

below.

The purpose of these tests was to show the advantages and disadvantages of

various approximation spa
es, so the meshes are relatively 
oarse in order to magnify

di�eren
es. The polynomial basis is in fa
t optimal as N be
omes large, but sub-grid

resolution 
an be exploited on 
oarse meshes to boost e�
ien
y. As a 
onsequen
e of

equation (3.7), mass is 
onserved when the approximation spa
e is pie
ewise 
onstant.

This was observed, up to ma
hine pre
ision, and furthermore, in all polynomial and

trigonometri
 
ases, the total mass was preserved to at least 0.1%. However, the

Hermite approximation spa
e does not in
lude pie
ewise 
onstant solutions. Hermite

fun
tions are produ
ts of Hermite polynomials and a Gaussian fun
tion. In these


ases 
onservation of mass was obtained through the following pro
edure: a parameter


ontrolling the width of the Gaussian part of the Hermite fun
tions was adjusted until

mass was 
onserved to better than 0.1% after 10,000 timesteps. This parameter is

very similar to the αj , whi
h appear in equation (3.1) of [28℄. Shu has indi
ated to

the authors that there is not a general approa
h for sele
ting this parameter in su
h

a way as to preserve mass. That is, the approximation spa
e was optimized by hand

to give good subgrid resolution on very 
oarse meshes.

Column one shows the error, ‖µh−µ‖L1(Ω), and 
olumn two shows the log (base

10) of the weighted L2
µ norm. Essentially, 
olumn one gives the absolute error, and


olumn two measures the quality of the solution in a relative sense. There is a 
lear

trend of improvement as the mesh and basis set are re�ned for the polynomial ap-

proximation spa
es, with one ex
eption. In the pie
ewise 
onstant 
ase, the N =16
grid is best. A pie
ewise 
onstant basis is a
tually unsuitable for this problem, for

example, be
ause the 
ontribution from the se
ond order terms in the Fokker-Plan
k

operator are eliminated, and the solution fails to 
onverge to µ, be
oming tightly

peaked around the origin. The trigonometri
 approximation spa
es also fare poorly.

Qualitatively, they produ
e a peak whi
h is too �at and broad.

Hermite fun
tions are the eigenfun
tions of the quantized Hamiltonian with a

harmoni
 potential (see for example [9℄), and are very similar to the eigenfun
tions

of the WFP equation (see the dis
ussion of �gure 4.2). That is, the approximation

spa
e is made of fun
tions very similar to the desired solution. The result is a good

solution even on the N =2 mesh. As more Hermite fun
tions are added and the mesh

be
omes 
oarser, the method is nearly a spe
tral solver in a 
ut-o� domain.

4.2. Cal
ulations for perturbations of the harmoni
 potential. The

next 
hallenge is to verify the implementation of the 
onvolution based methods for

evaluating the pseudo-di�erential operator a
ting on the perturbation potential, where

the only (non-trivial) analyti
 solution is for the harmoni
 potential. There is already

a good approa
h for harmoni
 potentials, and be
ause the inverse Fourier transform

of the harmoni
 potential is a distribution, it is not possible to simply insert it into

the 
onvolution based numeri
al 
al
ulations used to evaluate Θ[V ](w). However, the
harmoni
 potential 
an be approximated lo
ally, i.e., everywhere within the 
ut-o�

domain, by a simple 
ombination of sinusoidal fun
tions. In all subsequent 
al
ula-
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‖µh−µ‖L1 log10

(

‖µh−µ‖L2
µ

)

Vp
P m Vp

P m

N 1 2 3 4 N 1 2 3 4

2 2

4 1.485 0.484 0.278 0.198 4 11.866 10.357 9.002 8.547

8 0.970 0.178 0.109 0.023 8 10.435 6.465 4.536 3.029

16 0.356 0.106 0.044 0.003 16 7.125 0.939 -0.927 -2.186

32 0.812 0.035 0.018 0.000 32 0.275 -1.140 -1.550 -3.523

VT m VT m

N 1 2 3 4 N 1 2 3 4

2 2

4 1.486 1.920 1.318 4 11.866 11.344 11.609

8 0.970 1.263 1.102 8 10.435 11.625 10.572

16 0.356 0.419 0.916 16 7.125 9.433 8.529

32 0.812 0.772 0.748 32 0.275 3.166 6.212

Vp
H m Vp

H m

N 1 2 3 4 N 1 2 3 4

2 0.321 0.124 2 -0.301 -0.470

4 0.320 4 -0.303

8 8

16 16

32 32

Table 4.2. A 
al
ulation on relatively 
oarse grids shows the e�e
t of various approximations
spa
es. The left 
olumn reports the L1 error between the numeri
al and analyti
 steady states
(absolute error), and right 
olumn gives the logarithm (base 10) of the weighted L2 error (roughly,
the relative error). The value m is the number of primitive basis fun
tions used to 
onstru
t ea
h
approximation spa
e.

tions the basis used is V1
P , the pie
ewise linear polynomial basis. We stress that we

have found this is the most e�
ient one to use for �ner meshes.

4.2.1. Small sinusoidal perturbations. The method for evaluating

Θ[V ](w), where the potential 
onsists of sinusoidal fun
tions, (2.10), was therefore

tested by showing that a sequen
e of non-harmoni
 potentials 
onverging lo
ally to

V (x)=x2/2 produ
es a sequen
e of stationary states whi
h 
onverge to the stationary

state of the related harmoni
 problem. The sequen
e of potentials, parameterized by

ai, is,

V (x;ai)=ai

(

1−cos

(

x√
ai

))

=
1

2
x2 +O

(

x4

a2
i

)

.

The parameters used were the same as those used to produ
e Table 4.1. A 94×94
mesh was used. The 
al
ulation was run to a steady state, and this steady state was


ompared to the same numeri
al steady state whi
h was used to produ
e the third

row of Table 4.1. The result demonstrating the desired 
onvergen
e appears in Table



658 A DG METHOD FOR WIGNER-FOKKER-PLANCK

ai ‖µai
−µh‖L1(Ω) ‖µai

−µh‖L2
µh

(Ω)

10.0 6.019e-02 7.024e-01

20.0 2.776e-02 6.967e-02

30.0 1.824e-02 4.173e-02

50.0 1.094e-02 2.369e-02

100.0 5.588e-03 1.150e-02

Table 4.3. Convergen
e to the harmoni
 potential steady state for the potential, V (x;ai)=
ai(1−cos(x/

√
ai)). As the parameter ai in
reases, the potential 
onverges lo
ally to x2/2, and the

numeri
al steady state, µai , 
onverges to the numeri
al steady state of the purely harmoni
 problem,
µh.

4.3.

4.2.2. Parti
le in a box. The �nal method for evaluating the pseudo-

di�erential operator whi
h needs to be tested is the expli
it 
onvolution method,

(2.9). This test was qualitative, and similar to the well known "parti
le in a box"

problem. Again, it 
onsisted of setting wI equal to a Gaussian 
entered at the origin

and evolving the solution. A 
ombination of Heaviside fun
tions was used to 
reate a

set of four potential barriers with various heights and widths. The barriers were pla
ed

on the intervals [−11,−10], [−4.1,−4], [4,4.1], and [10,11]. The height of the outer

barriers is ten times greater than the inner barriers. The outer barriers are essentially

impenetrable, and meant to 
on�ne the solution. The inner barriers restri
t, but do

not 
ompletely 
ontain wh as it evolves. The di�usion 
onstants were Dqq =Dpp =0.1.
The domain was Ω=[−15,15]× [−4,4] and was divided into a 128×64 mesh. The

time-step was dt=0.001. The solution, after some 50,000 timesteps, is pi
tured in

�gure 4.3. It has not rea
hed a steady state, but rather is slowly leaking from the


enter box into the outer boxes. At this point, due to the relatively long time-step,

it be
omes di�
ult to determine whether the solution is 
hanging due to numeri
al

mass loss or a slow physi
al pro
ess. The solution has 
learly been 
ontained by the

barriers in a qualitatively appropriate manner.

4.2.3. Triple well. Finally, the method was used to 
al
ulate the behavior of

an initial Gaussian in a perturbed 
on�ning potential. The potential used was,

V (x)=
x2

2
+30(1−cos(x)). (4.3)

The potential is pi
tured in the inset in �gure 4.4 and has three deep wells, at the

origin and near ±2π. In this 
ase, the initial state was a Gaussian 
on
entrated about

a large positive value of x and negative value of k to give it a rapid initial motion

toward the origin. A proje
tion of the initial state onto the x axis is also provided in

the inset to �gure 4.4 (its width has been exaggerated for the purpose of illustration).

During the 
ourse of the simulation, the 
enter of mass (
harge) �ows down the

potential wall, and a short way up the other side before be
oming 
on
entrated in

two of the wells. The main panel in �gure 4.4 shows a plot of 
harge density in the

x,t plane (it is analogous to �gure 4.1). The total mass is preserved to within 10−5

during the simulation. The time-step was dt=0.001, Ω=[−20,30]× [−35,15], and the

mesh measured 200×200. At any given time, the total mass 
ontained outside the

0.005 
ontour level (the white area) is essentially zero. The verti
al lines at t=33,
37, 41, and 45 
orrespond the snapshots of the solution shown in �gure 4.5. The
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(a)

(b) x=2

Figure 4.3. The numeri
al solution to the (quasi) "parti
le in a box" problem after 50,000
timesteps. The potential 
onsists of low barriers pla
ed at x=±4 and high barriers at x=±10.
Most, but not all of the solution is 
ontained by the low barriers. When the 
al
ulation was stopped,
the solution was leaking slowly from the 
entral bin [−4,4] into the adja
ent bins [−10,−4.1] and
[4.1,10].
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Figure 4.4. A plot of 
harge density in the x,t plane. The solution in the white area is
negligible. The inset shows the potential, and a proje
tion of the initial state (the width has been
exaggerated for illustration). The bold part of the potential indi
ates the lo
ations of the 
enter of
mass during the 
al
ulation. The solution eventually settles into two of the three deep wells of this
potential at x=0 and x≈−2π. The four verti
al lines indi
ate the points in time whi
h were used
to 
reate the frames in �gure 4.5.

frame at t=33 represents a moment when the solution is spilling over from the well

at x≈−2π into the well at the origin. The remaining frames show ea
h part of the

solution 
ompleting a 
ir
uit of its respe
tive well. As indi
ated by �gure 4.4, the

solution settles into these wells and in ea
h 
ase takes on an appearan
e very similar

to a pair of Gaussians.

A 
lose examination shows that at least a small but measurable portion of the

solution may be found in four wells, the three 
entral wells, and the well 
lose to 4π.
A 
ontour map of the solution, with 
ontour levels 
lose to zero, is shown in �gure

4.6. Numbers appear at the 
enter of ea
h well along the x axis. Also, three pairs

of horizontal lines indi
ate the minimum amount of 
lassi
al kineti
 energy required

to es
ape ea
h of the marked wells. That is, at values of k outside of the innermost

pair of lines, there is enough kineti
 energy to over
ome the potential barrier between

wells 4 and 3. The 
enter set of lines indi
ates the energy needed to move from either

well 1 or 3 into well 2. The outermost pair of lines is the amount of energy needed to

a

omplish the reverse, es
aping well 2. The vast majority of the solution is 
ontained

within wells 1 and 2. The mass 
ontained inside the 10−3 
ontour is approximately

0.991 (out of 1.000). The mass 
ontained outside of the 10−6 
ontour is only equal

to about 1.57×10−5. While it is doubtful that the solution has rea
hed a stationary

state, it is 
lear that it has settled into a persistent asymmetri
 
on�guration. By the

symmetry in the equation itself, given initial data whi
h is symmetri
 with respe
t

to this potential, the solution will remain symmetri
. This was 
on�rmed by further

simulations. Given that a stationary state to this linear problem does indeed exist,

the asymmetri
 result of the 
al
ulation is most likely a metastable state, and that the

relaxation of this state to a symmetri
 steady state o

urs on a times
ale mu
h longer

than the interval 
overed by the 
al
ulation. A very re
ent work by Arnold, Fagnola,

and Neumann on existen
e, uniqueness, and 
onvergen
e in the 
ase of sub-quadrati


perturbations to the harmoni
 potential supports this observation [5℄.
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(a) t=33 (b) t=37

(
) t=41 (d) t=45

Figure 4.5. Snapshots of the solution to the triple well problem. These �gures show the
solution 
ompleting a 
ir
uit of the wells lo
ated at x≈−2π and x=0. They 
orrespond to the
verti
al lines in �gure 4.4.

5. Con
lusion

The utility of the DG method developed here for the WFP equation has been

demonstrated through analyti
 estimates and numeri
al experiments. The stability

and 
onvergen
e of the s
heme were established in Se
tion 3, and numeri
al simulation

was used to 
on�rm analyti
 properties of the WFP equation in se
tion 4. The main


hallenge was to produ
e an a

urate and pra
ti
al treatment of the pseudo-di�erential

term. The methods des
ribed in se
tion 2 do this in a manner that falls neatly into

the DG formalism, and a wide range of potential fun
tions may be treated. Linear


ombinations of harmoni
, sinusoidal, and step fun
tions were demonstrated, and it is


lear how to apply the method to Gaussian and other families of potential fun
tions.

The numeri
al simulations presented here demonstrated that the use of non-
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Figure 4.6. A 
ontour map of the state eventually rea
hed in the triple-well 
al
ulation. The
solution is positive, and the 
ontour levels are set 
lose to zero. More than 90% of the mass lies
within the 0.001 
ontour, that is, within wells 1 and 2. Other 
ontours reveal small 
on
entrations
of the solution in two additional wells. Pairs of horizontal lines, symmetri
 about k =0 indi
ate
the amount of 
lassi
al kineti
 energy needed to over
ome the energy barriers from well 4 to 3 (the
innermost pair), either well 1 or 3 to well 2 (the 
entral pair), or to es
ape well 2 (the outermost
pair).

polynomial approximation spa
es is possible, but did not extensively explore the pos-

sibilities o�ered by this �exible framework. A possible improvement to the method,

also suggested in the work by Yuan and Shu, will be to adaptively improve the approx-

imation spa
e as a 
omputation pro
eeds. Other proposed te
hni
al improvements to

the implementation in
lude expansion to three dimensions, and 
oupling the WFP

with the Poisson equation. One approa
h might be to use an FFT solver for the

Poisson problem, whi
h would produ
e a sinusoidal representation of the potential

ready for use in the method reported here.
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