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EXACT ARTIFICIAL BOUNDARY CONDITIONS FOR THE
SCHRÖDINGER EQUATION IN R

2∗

HOUDE HAN † AND ZHONGYI HUANG ‡

Abstract. In this paper, we propose a class of exact artificial boundary conditions for the nu-
merical solution of the Schrödinger equation on unbounded domains in two-dimensional cases. After
we introduce a circular artificial boundary, we get an initial-boundary problem on a disc enclosed
by the artificial boundary which is equivalent to the original problem. Based on the Fourier series
expansion and the special functions techniques, we get the exact artificial boundary condition and a
series of approximating artificial boundary conditions. When the potential function is independent
of the radiant angle θ, the problem can be reduced to a series of one-dimensional problems. That
can reduce the computational complexity greatly. Our numerical examples show that our method
gives quite good numerical solutions with no numerical reflections.
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1. Introduction
The Schrödinger type equation is one of the most important models of mathe-

matical physics, with applications to different fields such as quantum mechanics, non-
linear optics, plasma physics, and so on. Many such physical problems are described
in unbounded domains. Therefore, lots of mathematicians and engineers are devoted
to the study of the non-reflecting boundary conditions for Schrödinger equation in
unbounded domains. Some of them have derived so-called transparent boundary con-
ditions (TBCs) or absorbing boundary conditions (ABCs) [1, 2, 3, 4, 7, 8, 11, 13]. In
these papers, first they take a Fourier (or Laplace) transformation in time, then get
a Helmholtz equation; using the expression of solution by Hankel functions, they get
the ABCs in Fourier space; after making an approximation of the global integrals and
an inverse Fourier transformation, they get the ABCs for the original problem. Here,
they need to deal with the integrals with strong singularity very carefully [3]. Other
people have given the perfectly matching layers method for these problems [6, 12]. We
want to give an exact, flexible and convenient artificial boundary condition for this
problem in two dimensional cases.

Here we consider the following Schrödinger Equation in R
2:

i
∂ψ

∂t
= −1

2
� ψ + V (x, t)ψ, x ∈ R

2, 0 < t ≤ T, (1.1)

ψ|t=0 = ψ0(x), x ∈ R
2, (1.2)

ψ −→ 0, when |x| −→ +∞, 0 < t ≤ T. (1.3)

where V (x, t) is the given potential function and ψ0(x) is the given initial data.
We suppose that the potential function V (x, t) is a constant outside of a disc
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ΩR = {x ∣∣ |x| < R}, namely:

V (x, t) = V∞, when |x| ≥ R. (1.4)

Moreover, we assume that the initial function ψ0(x) is compactly supported and

supp{ψ0(x)} ⊂ ΩR.

We introduce an artificial boundary in R
2:

ΓR =
{
x

∣∣ |x| = R
}
, (1.5)

ΓR divides R
2 into two parts, the bounded part ΩR = {x ∣∣ |x| < R} and the unbounded

part Ωe = {x ∣∣ |x| > R}. Then the problem (1.1)–(1.3) can be rewritten in the coupled
form:

i
∂ψ

∂t
= −1

2
� ψ + V (x, t)ψ, x ∈ ΩR, 0 < t ≤ T, (1.6)

ψ|t=0 = ψ0(x), x ∈ ΩR, (1.7)

i
∂ψ

∂t
= −1

2
� ψ + V (x, t)ψ, x ∈ Ωe, 0 < t ≤ T, (1.8)

ψ|t=0 = 0, x ∈ Ωe, (1.9)
ψ −→ 0, when |x| −→ +∞, 0 < t ≤ T. (1.10)

Moreover

ψ(x, t) and
∂ψ

∂r
are continuous on the artificial boundary ΓR × [0, T ]. (1.11)

The problem (1.6)–(1.11) is a coupled problem, the problem (1.6)–(1.7) or prob-
lem (1.8)–(1.10) can not be solved independently without the connecting condition
(1.11). The main goal of this paper is to derive the artificial boundary condition for
Schrödinger equation on the artificial boundary ΓR × [0, T ].

2. The exact artificial boundary condition on the artificial boundary
ΓR × [0, T ]

Suppose that ψ(x, t) is the solution of problem (1.1)–(1.3), the restriction of ψ(x, t)
on Ωe × (0, T ] satisfies problem (1.8)–(1.10). If the value ψ||x|=R is given, namely

ψ||x|=R = ψ(R, θ, t), (2.1)

then the problem (1.8)–(1.10) and (2.1) is well posed. For the solution in the polar
coordinates, ψ(r, θ, t), of the problem (1.8)–(1.10) and (2.1), we have the Fourier
expansion:

ψ(r, θ, t) =
ψ0(r, t)

2
+

∞∑
n=1

(ψn(r, t) cosnθ + φn(r, t) sinnθ), (2.2)

with

ψn(r, t) =
1
π

∫ 2π

0

ψ(r, θ, t) cosnθ dθ, n = 0, 1, · · · (2.3)

φn(r, t) =
1
π

∫ 2π

0

φ(r, θ, t) sinnθ dθ, n = 1, 2, · · · (2.4)
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and

ψ(R, θ, t) =
ψ0(R, t)

2
+

∞∑
n=1

(ψn(R, t) cosnθ + φn(R, t) sinnθ). (2.5)

Substituting (2.2) and (2.5) into the problem (1.8)–(1.10) and (2.1), for ψn(r, t)
(n = 0, 1, 2, · · · ) and φn(r, t)(n = 1, 2, · · · ) we obtain:

i
∂ψn

∂t
= −1

2
(
∂2ψn

∂r2
+

1
r

∂ψn

∂r
− n2

r2
ψn) + V∞ψn, R < r < +∞, 0 < t ≤ T, (2.6)

ψn|r=R = ψn(R, t), 0 < t ≤ T, (2.7)
ψn|t=0 = 0, R ≤ r < +∞, (2.8)

ψn −→ 0, when r −→ +∞, 0 < t ≤ T. (2.9)

i
∂φn

∂t
= −1

2
(
∂2φn

∂r2
+

1
r

∂φn

∂r
− n2

r2
φn) + V∞φn, R < r < +∞, 0 < t ≤ T, (2.10)

φn|r=R = φn(R, t), 0 < t ≤ T, (2.11)
φn|t=0 = 0, R ≤ r < +∞, (2.12)

φn −→ 0, when r −→ +∞, 0 < t ≤ T. (2.13)

For n = 0, 1, · · · , we discuss the solution ψn(r, t) of problem (2.6)–(2.9). Let

ψn(r, t) = wn(r, t) e−iV∞t, (2.14)

then wn(r, t) satisfies:

i
∂wn

∂t
= −1

2
(
∂2wn

∂r2
+

1
r

∂wn

∂r
− n2

r2
wn), R < r < +∞, 0 < t ≤ T, (2.15)

wn|r=R = ψn(R, t)eiV∞t ≡ wn(R, t), 0 < t ≤ T, (2.16)
wn|t=0 = 0, R ≤ r < +∞, (2.17)

wn −→ 0, when r −→ +∞, 0 < t ≤ T. (2.18)

We now solve the problem (2.15)–(2.18) for given wn(R, t) using the approach
given in [10]. First we consider the following simplified problem:

i
∂Gn

∂t
= −1

2
(
∂2Gn

∂r2
+

1
r

∂Gn

∂r
− n2

r2
Gn), R < r < +∞, 0 < t ≤ T, (2.19)

Gn|r=R = 1, 0 < t ≤ T, (2.20)
Gn|t=0 = 0, R ≤ r < +∞, (2.21)

Gn −→ 0, when r −→ +∞, 0 < t ≤ T. (2.22)

For any µ > 0, let

Gn(r, t) = U(r)e−
i
2 µ2t. (2.23)

Substituting (2.23) into (2.19), we obtain that U(r) satisfies:

∂2U

∂r2
+

1
r

∂U

∂r
+

(
µ2 − n2

r2

)
U = 0. (2.24)
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Equation (2.24) is the Bessel equation of order n, and Jn(µr), Yn(µr) are two
independent solutions of it. Hence

e−
i
2 µ2t Jn(µr)Yn(µR) − Yn(µr)Jn(µR)

J2
n(µR) + Y 2

n (µR)

is a solution of equation (2.24) for any µ > 0. Let

G∗(r, t) =
2
π

∫ +∞

0

e−
i
2 µ2t Jn(µr)Yn(µR) − Yn(µr)Jn(µR)

J2
n(µR) + Y 2

n (µR)
dµ

µ
. (2.25)

G∗(r, t) is a solution of equation (2.24) and

G∗(r, t)|r=R = 0,

G∗(r, t)|t=0 =
2
π

∫ +∞

0

Jn(µr)Yn(µR) − Yn(µr)Jn(µR)
J2

n(µR) + Y 2
n (µR)

dµ

µ

= −
(
R

r

)n

, r > R.

The last equality is given in [9] (pp. 665). Let

Gn(r, t) =
(
R

r

)n

+G∗(r, t). (2.26)

It is straightforward to check that Gn(r, t) is the solution of problem (2.19)–(2.22).
By Duhamel’s theorem and the solution Gn(r, t), we obtain wn(r, t), the solution of
problem (2.15)–(2.18):

wn(r, t) =
∫ t

0

wn(R, λ)
∂Gn(r, t− λ)

∂t
dλ

= −
∫ t

0

wn(R, λ)
∂Gn(r, t− λ)

∂λ
dλ

= −{wn(R, λ)Gn(r, t− λ)}∣∣λ=t

λ=0
+

∫ t

0

∂wn(R, λ)
∂λ

Gn(r, t− λ)dλ

=
∫ t

0

∂wn(R, λ)
∂λ

Gn(r, t− λ)dλ.

By the transformation (2.14), we obtain ψn(r, t), (n = 0, 1, · · · ) , the solution of
problem (2.6)–(2.9), and φn(r, t), (n = 1, 2, · · · ), the solution of problem (2.10)–(2.13).
Namely

ψn(r, t) = e−iV∞t

∫ t

0

∂

∂λ
(ψn(R, λ)eiV∞λ)Gn(r, t− λ)dλ, for n = 0, 1, · · ·

φn(r, t) = e−iV∞t

∫ t

0

∂

∂λ
(φn(R, λ)eiV∞λ)Gn(r, t− λ)dλ, for n = 1, 2, · · ·

Furthermore,

∂ψn

∂r

∣∣∣
r=R

=
∫ t

0

∂

∂λ
(ψn(R, λ)eiV∞(λ−t))

∂Gn

∂r
(R, t− λ)dλ, for n = 0, 1, · · ·(2.27)

∂φn

∂r

∣∣∣
r=R

=
∫ t

0

∂

∂λ
(φn(R, λ)eiV∞(λ−t))

∂Gn

∂r
(R, t− λ)dλ, for n = 1, 2, · · ·(2.28)
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On the other hand,

∂Gn

∂r
(r, t)

∣∣∣
r=R

= − n

R
+

2
π

∫ +∞

0

e−
i
2 µ2t J

′
n(µR)Yn(µR) − Y ′

n(µR)Jn(µR)
J2

n(µR) + Y 2
n (µR)

dµ

= − n

R
− 4
π2R

∫ +∞

0

e−
i
2 µ2t

J2
n(µR) + Y 2

n (µR)
dµ

µ
.

The last equality is from the Wronskian relation

J ′
n(µR)Yn(µR) − Y ′

n(µR)Jn(µR) = − 2
πµR

.

Let

Sn(t) =
4
√
t√
π3

∫ +∞

0

e−
i
2 µ2t

J2
n(µR) + Y 2

n (µR)
dµ

µ
, (2.29)

then

∂Gn(r, t)
∂r

∣∣∣
r=R

= − n

R
− Sn(t)√

πt
. (2.30)

Substituting (2.30) into (2.27) and (2.28), we have:

∂ψn

∂r

∣∣∣
r=R

= − n

R
ψn(R, t) − 1√

π

∫ t

0

∂

∂λ

(
ψn(R, λ)eiV∞(λ−t)

) Sn(t− λ)√
t− λ

dλ, (2.31)

∂φn

∂r

∣∣∣
r=R

= − n

R
φn(R, t) − 1√

π

∫ t

0

∂

∂λ

(
φn(R, λ)eiV∞(λ−t)

) Sn(t− λ)√
t− λ

dλ. (2.32)

Furthermore, by the expansion (2.2) we get

∂ψ

∂r

∣∣∣
r=R

=
1
2
∂ψ0

∂r

∣∣∣
r=R

+
∞∑

n=1

(
∂ψn

∂r

∣∣∣
r=R

cosnθ +
∂φn

∂r

∣∣∣
r=R

sinnθ
)
. (2.33)

Substituting (2.31), (2.32) into (2.33), and using (2.5), we have

∂ψ

∂r

∣∣∣
r=R

= − 1
2
√
π3

∫ t

0

∫ 2π

0

∂

∂λ

(
ψ(R, ξ, λ)eiV∞(λ−t)

) S0(t− λ)√
t− λ

dξdλ

−
∞∑

n=1

{
n

Rπ

∫ 2π

0

ψ(R, ξ, t) cosn(ξ − θ)dξ

+
1√
π3

∫ t

0

∫ 2π

0

∂

∂λ

(
ψ(R, ξ, λ) cosn(θ − ξ)eiV∞(λ−t)

)Sn(t− λ)√
t− λ

dξdλ

}
≡ Λ∞

(
ψ||x|=R, θ, t

)
. (2.34)

This is the exact boundary condition satisfied by the solution of problem (1.1)–
(1.3). Therefore, the problem (1.1)–(1.3) is equivalent to the following boundary value
problem on the bounded domain ΩR × [0, T ]:

i
∂ψ

∂t
= −1

2
� ψ + V (x, t)ψ, x ∈ ΩR, 0 < t ≤ T, (2.35)

ψ
∣∣
t=0

= ψ0(x), x ∈ ΩR, (2.36)
∂ψ

∂r

∣∣∣
|x|=R

= Λ∞
(
ψ||x|=R, θ, t

)
, 0 < t ≤ T. (2.37)
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In practice, we need to truncate the series in (2.37),

∂ψ

∂r

∣∣∣
|x|=R

= ΛN

(
ψ||x|=R, θ, t

)
, (2.38)

that means we only use the summation of first N + 1 terms in (2.34).

3. The stability analysis of the approximate problem
We now concentrate on the approximate problem:

i
∂ψ

∂t
= −1

2
� ψ + V (x, t)ψ, x ∈ ΩR, 0 < t ≤ T, (3.1)

ψ
∣∣
t=0

= ψ0(x), x ∈ ΩR, (3.2)
∂ψ

∂r

∣∣∣
|x|=R

= ΛN

(
ψ||x|=R, θ, t

)
, (3.3)

where

ΛN

(
ψ||x|=R, θ, t

)
=− 1

2
√
π3

∫ t

0

∫ 2π

0

∂

∂λ

(
ψ(R, ξ, λ)eiV∞(λ−t)

) S0(t−λ)√
t−λ dξdλ (3.4)

−
N∑

n=1

{
n

Rπ

∫ 2π

0

ψ(R, ξ, t) cosn(ξ − θ)dξ

+
1√
π3

∫ t

0

∫ 2π

0

∂

∂λ

(
ψ(R, ξ, λ) cosn(ξ−θ)eiV∞(λ−t)

)Sn(t−λ)√
t−λ dξdλ

}
.

Suppose that ψ(r, θ, t) is a solution of problem (3.1)–(3.3), then we have following
lemma:

Lemma 3.1. The following inequality holds:

Im
{∫ t

0

∫ 2π

0

ΛN

(
ψ||x|=R, θ, τ

)
ψ(R, θ, τ)Rdθ dτ

}
≥ 0, for 0 ≤ t ≤ T. (3.5)

Proof: Let

ψ(R, θ, t) =
α0,R(t)

2
+

∞∑
n=1

(
αn,R(t) cosnθ + βn,R(t) sinnθ

)
. (3.6)

Substituting (3.6) into (3.4), we obtain

ΛN

(
ψ||x|=R, θ, t

)
= − 1

2
√
π

∫ t

0

∂

∂λ

(
α0,R(λ)eiV∞(λ−t)

) S0(t− λ)√
t− λ

dλ

−
N∑

n=1

{[
n

R
αn,R(t)+

1√
π

∫ t

0

∂

∂λ

(
αn,R(λ)eiV∞(λ−t)

)Sn(t−λ)√
t−λ dλ

]
cosnθ

+
[
n

R
βn,R(t) +

1√
π

∫ t

0

∂

∂λ

(
βn,R(λ)eiV∞(λ−t)

)Sn(t− λ)√
t− λ

dλ

]
sinnθ

}
.

≡ W0(α0,R; t)
2

+
N∑

n=1

{
Wn(αn,R; t) cosnθ+Wn(βn,R; t) sinnθ

}
, (3.7)
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with

Wn(f ; t) = − n

R
f(t) − 1√

π

∫ t

0

∂

∂λ

(
f(λ)eiV∞(λ−t)

)Sn(t− λ)√
t− λ

dλ, for n = 0, 1, · · · , N.

Then from (3.6) and (3.7), we have∫ t

0

∫ 2π

0

ΛN

(
ψ||x|=R, θ, τ

)
ψ(R, θ, τ)Rdθdτ

=πR
∫ t

0

{
W0(α0,R; τ)α0,R(τ)

2
+

N∑
n=1

[
Wn(αn,R; τ)αn,R(τ)+Wn(βn,R; τ)βn,R(τ)

]}
dτ.

(3.8)

On the other hand, we consider the following auxiliary problem on the domain
{(r, t)|R ≤ r < +∞, 0 ≤ t ≤ T } for n = 0, 1, · · · , N :

i
∂Pn

∂t
= −1

2
(
∂2Pn

∂r2
+

1
r

∂Pn

∂r
− n2

r2
Pn) + V∞Pn, R < r < +∞, 0 < t ≤ T,(3.9)

Pn|r=R = αn,R, 0 < t ≤ T, (3.10)
Pn|t=0 = 0, R ≤ r < +∞, (3.11)

Pn −→ 0, when r −→ +∞, 0 < t ≤ T. (3.12)

The problem (3.9)–(3.12) has been discussed in Section 2. From (2.32) we have

∂Pn

∂r

∣∣∣
r=R

= Wn(αn,R; t). (3.13)

Multiplying rPn(r, t) on the equation (3.9) and taking the conjugation, we arrive at:

irPn
∂Pn

∂t
= −1

2

(
∂

∂r

(
r
∂Pn

∂r

)
Pn − n2

r
PnPn

)
+ rV∞PnPn, (3.14)

−irPn
∂Pn

∂t
= −1

2

(
∂

∂r

(
r
∂P n

∂r

)
Pn − n2

r
PnPn

)
+ rV∞PnPn. (3.15)

Combining (3.14) and (3.15), we get

ir
∂

∂t
|Pn(r, t)|2 = −1

2
∂

∂r

(
r
∂Pn

∂r

)
Pn +

1
2
∂

∂r

(
r
∂Pn

∂r

)
Pn. (3.16)

Integrating (3.16) on [R,+∞) × [0, t] and using (3.11), we have

i

∫ +∞

R

|Pn(r, t)|2rdr = i Im
{
R

∫ t

0

∂Pn(R, τ)
∂r

Pn(R, τ)dτ
}
.

Namely

0 ≤ Im
∫ t

0

∂Pn(R, τ)
∂r

Pn(R, τ)dτ = Im
∫ t

0

Wn(αn,R; τ)αn,R(τ)dτ. (3.17)

Similarly we can prove

0 ≤ Im
∫ t

0

Wn(βn,R; τ)βn,R(τ)dτ. (3.18)
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Finally, the proof of Lemma 3.1 is completed in view of (3.8), (3.17) and (3.18). �
For the problem (3.1)–(3.3), we have the following stability estimate:

Theorem 3.2. Suppose that ψ is a solution of problem (3.1)–(3.3), the following
stability estimate holds:∫

ΩR

|ψ(x, t)|2dx ≤
∫

ΩR

|ψ0(x)|2dx, 0 ≤ t ≤ T. (3.19)

Proof: Multiplying ψ on the equation (3.1) and taking the conjugation, we have

i
∂ψ

∂t
ψ = −1

2
ψ� ψ + V (x, t)ψψ, (3.20)

−i∂ψ
∂t
ψ = −1

2
ψ� ψ + V (x, t)ψψ. (3.21)

In view of (3.20) and (3.21), we have

i
∂

∂t
|ψ|2 = −1

2
ψ� ψ +

1
2
ψ� ψ, (x, t) ∈ ΩR × [0, T ]. (3.22)

Integrating the equation (3.22) on the domain ΩR × [0, t] and integrating by parts, we
obtain∫

ΩR

|ψ(x, t)|2dx=
∫

ΩR

|ψ0(x)|2dx−Im
{∫ t

0

∫ 2π

0

ΛN(ψ||x|=R, θ, τ)ψ(x, τ)||x|=RRdθdτ

}
.

Then the stability estimate (3.19) follows directly from Lemma 3.1. �
From the estimate (3.19), we obtain the uniqueness of the approximate problem

(3.1)–(3.3) immediately.

Corollary 3.1. The approximate problem (3.1)–(3.3) at most has one solution.

4. The functions {Sn(t), n = 0, 1, · · · }
The functions {Sn(t), n = 0, 1, · · · } are involved in the artificial boundary (2.34).

Before we discuss the numerical solution of problem (1.1)–(1.3), we must calculate the
functions {Sn(t), n = 0, 1, · · · } as a new class of special functions. By the definition
of Sn(t), we have:

Sn(t) =
4
√
t√
π3

∫ +∞

0

e−
i
2 µ2t

J2
n(µR) + Y 2

n (µR)
dµ

µ
.

From Fig. 4.1, 4.2 and 4.3, we can see that Sn(t) are smooth. After discretizing
the boundary condition (2.38), we need to calculate the summation

m∑
k=1

ψ(R, ·, tm−k)Hn(k),

where

tk = k� t, for k = 1, · · · ,m,
and

Hn(k) = e−iV∞tk

∫ tk

tk−1

Sn(λ)√
λ
dλ − e−iV∞tk+1

∫ tk+1

tk

Sn(λ)√
λ
dλ. (4.1)

As k → ∞, |Hn(k)| goes like O(( 1
k + �t)

√
�t
k ) (see Fig. 4.4).
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Fig. 4.4. The graph of |H0(k)| in logarithmic scales. Here �t = 1
256

, V∞ = 0.

5. A special case
Many popular potentials are independent on the radiation angle θ, such as Lennard-

Jones potential and Coulomb potential. Therefore, in this section we consider this
special case of problem (1.1)–(1.3). Suppose that the given potential V (x, t) is sym-
metric, namely

V = V (r, t). (5.1)

Let

ψ(r, θ, t) =
ψ0(r, t)

2
+

∞∑
n=1

(ψn(r, t) cosnθ + φn(r, t) sinnθ), (5.2)

be the Fourier expansion of ψ(r, θ, t), the solution of problem (1.1)–(1.3), where
ψn(r, t) and φn(r, t) are defined in (2.3) and (2.4). From the above definitions, we can
get directly

lim
r→0

ψn(r, t) = 0, for n = 1, 2, · · ·
lim
r→0

φn(r, t) = 0, for n = 1, 2, · · ·

On the other hand, ψ0(r, t) can be considered as a function in Cartesian coordinates:

ψ0(r, t) = ψ0(
√
x2

1 + x2
2, t) ≡ ψ0(x, t).

Then it is easy to get

1
r

∂

∂r

(
r
∂ψ0

∂r

)
= �xψ0, for r > 0,

and

lim
r→0

1
r

∂

∂r

(
r
∂ψ0

∂r

)
= �xψ0(x, t)||x|=0.
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It is reasonable that we can discretize the operator “�” in Cartesian coordinates
without singularity at r = 0. Therefore, ψ0(r, t) satisfies

i
∂ψ0

∂t
= −1

2

(
∂2ψ0

∂r2
+

1
r

∂ψ0

∂r

)
+ V (r, t)ψ0, 0 < r < +∞, 0 < t ≤ T, (5.3)

ψ0|t=0 = ψ0
0(r), 0 ≤ r < +∞, (5.4)

i
∂ψ0

∂t

∣∣∣
r=0

=
(
−1

2
� ψ0 + V ψ0

) ∣∣∣
r=0

, 0 < t ≤ T, (5.5)

ψ0 −→ 0, when r −→ +∞, 0 < t ≤ T, (5.6)

ψn(r, t)(n = 1, 2, · · · ) satisfy

i
∂ψn

∂t
= −1

2

(
∂2ψn

∂r2
+

1
r

∂ψn

∂r
−n

2

r2
ψn

)
+ V (r, t)ψn, 0 < r < +∞, 0 < t ≤ T, (5.7)

ψn|t=0 = ψ0
n(r), 0 ≤ r < +∞, (5.8)

ψn|r=0 = 0, 0 < t ≤ T, (5.9)
ψn −→ 0, when r −→ +∞, 0 < t ≤ T, (5.10)

φn(r, t)(n = 1, 2, · · · ) satisfy

i
∂φn

∂t
= −1

2

(
∂2φn

∂r2
+

1
r

∂φn

∂r
−n

2

r2
φn

)
+ V (r, t)φn, 0 < r < +∞, 0 < t ≤ T, (5.11)

φn|t=0 = φ0
n(r), 0 ≤ r < +∞, (5.12)

φn|r=0 = 0, 0 < t ≤ T, (5.13)
φn −→ 0, when r −→ +∞, 0 < t ≤ T, (5.14)

where

ψ0
n(r) =

1
π

∫ 2π

0

ψ0(r, θ) cos(nθ)dθ, n = 0, 1, · · · (5.15)

φ0
n(r) =

1
π

∫ 2π

0

φ0(r, θ) sin(nθ)dθ, n = 1, 2, · · · (5.16)

Now the two dimensional problem (1.1)–(1.3) is reduced to a series of one dimen-
sional problems (5.3)–(5.6), (5.7)–(5.10) and (5.11)–(5.14). By the condition (1.2),
we know that

ψ0
n(r) = 0, and φ0

n(r) = 0, when r ≥ R, (5.17)

Using (2.32) and (2.33), the problems (5.3)–(5.6), (5.7)–(5.10) and (5.11)–(5.14) are
equivalent to the following problems on a bounded domain:

i
∂ψ0

∂t
= −1

2

(
∂2ψ0

∂r2
+

1
r

∂ψ0

∂r

)
+ V (r, t)ψ0, r ∈ (0, R), t > 0, (5.18)

∂ψ0

∂r

∣∣∣
r=R

= − 1√
π

∫ t

0

∂

∂λ

(
ψ0(R, λ)eiV∞(λ−t)S0(t− λ)√

t− λ

)
dλ, t > 0, (5.19)

i
∂ψ0

∂t

∣∣∣
r=0

=
(
− 1

2
� ψ0 + V ψ0

)∣∣∣
r=0

, 0 < t ≤ T, (5.20)

ψ0

∣∣
t=0

= ψ0
0(r), r ∈ [0, R], (5.21)
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i
∂ψn

∂t
= −1

2

(
∂2ψn

∂r2
+

1
r

∂ψn

∂r
− n2

r2
ψn

)
+ V (r, t)ψn, r ∈ (0, R), t > 0, (5.22)

∂ψn

∂r

∣∣∣
r=R

= − n

R
ψn(R, t)− 1√

π

∫ t

0

∂

∂λ

(
ψn(R, λ)eiV∞(λ−t)Sn(t−λ)√

t−λ

)
dλ, t > 0,(5.23)

ψn

∣∣
r=0

= 0, 0 < t ≤ T, (5.24)

ψn

∣∣
t=0

= ψ0
n(r), r ∈ [0, R], (5.25)

i
∂φn

∂t
= −1

2

(
∂2φn

∂r2
+

1
r

∂φn

∂r
− n2

r2
φn

)
+ V (r, t)φn, r ∈ (0, R), t > 0, (5.26)

∂φn

∂r

∣∣∣
r=R

= − n

R
φn(R, t)− 1√

π

∫ t

0

∂

∂λ

(
φn(R, λ)eiV∞(λ−t)Sn(t−λ)√

t−λ

)
dλ, t > 0,(5.27)

φn

∣∣
r=0

= 0, 0 < t ≤ T, (5.28)

φn

∣∣
t=0

= φ0
n(r), r ∈ [0, R]. (5.29)

6. Numerical examples
In this section, we give two numerical examples.

Example 1. First, we consider a simple one:

i
∂ψ

∂t
= −1

2
(
∂2ψ

∂r2
+

1
r

∂ψ

∂r
+

1
r2
∂2ψ

∂θ2
) + V (r, t)ψ, r > 0, t > 0 (6.1)

ψ
∣∣
t=0

= ψ0(r), r ≥ 0, (6.2)

lim
r→0

r
∂ψ

∂r
= 0, t > 0, (6.3)

ψ −→ 0, when r −→ +∞, t ≥ 0, (6.4)

where

V (r, t) =
{

sin(2πr), r ∈ [0, 1],
0, otherwise,

ψ0(r) =
{

1 + cos(πr) + i(cos(2πr) − 1), r ∈ [0, 1],
0, otherwise,

(see Fig. 6.1-6.2). That means the initial condition and the potential are independent
of θ, so is the solution of this problem. Therefore, we can only use one component
in our numerical solution, namely we need only solve (5.18)–(5.21). The results are
given in Fig. 6.3. The numerical solution mimics the exact solution very well.

Example 2. Then we consider a Cauchy problem for the Schrödinger equation in
the absence of a potential (i.e. V (x) = 0):

i
∂ψ

∂t
= −1

2
(
∂2ψ

∂r2
+

1
r

∂ψ

∂r
+

1
r2
∂2ψ

∂θ2
), r > 0, θ ∈ [0, 2π], t > 0, (6.5)

ψ
∣∣
t=0

= ψ0(r, θ), r ≥ 0, θ ∈ [0, 2π], (6.6)

lim
r→0

r
∂ψ

∂r
= 0, θ ∈ [0, 2π], t > 0, (6.7)

ψ −→ 0, when r −→ +∞, θ ∈ [0, 2π], t ≥ 0, (6.8)
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Fig. 6.1. Re ψ0(r) and Im ψ0(r)
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Fig. 6.3. Comparison of the exact solution and our numerical solution at time t = 0.25. The
solid line is the exact solution, the dash line is our numerical solution. We use the Crank-Nicolson
method in our simulation. The left one is the real part, the right one is the imaginary part. Here
R = 1, �t = �r = 1

256
. We let N = 0 (refer to (2.38)), that means we only use the first item in

(2.34).
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Fig. 6.4. Comparison of the exact solution and our numerical solution at time t = 0.25. The
dash line is the exact solution, the solid one is our numerical solution. We use the Crank-Nicolson
method in our simulation. The left one is the real part, the right one is the imaginary part. Here
we let R = 1, �t = �r = 1

256
, N = 0 (refer to (2.38)).
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Fig. 6.5. Comparison of the exact solution and our numerical solution at time t = 0.25. The
dash line is the exact solution, the solid one is our numerical solution. We use the Crank-Nicolson
method in our simulation. The left one is the real part, the right one is the imaginary part. Here
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where

ψ0(r, θ) =
e
2ikxr cos θ+2ikyr sin θ− (r cos θ)2

2αx
− (r sin θ)2

2αy

√
αxαy

.

The exact solution is

ψ(r, θ, t) =
e
2ikx(r cos θ−kxt)+2iky(r sin θ−kyt)− (r cos θ−2kxt)2

2(αx+it) − (r sin θ−2kyt)2

2(αy+it)

√
αx + it

√
αy + it

.

We let αx = αy = 0.04, kx = −ky = 1. Here the initial condition depends on θ. If
we only use one component, i.e. N = 0 for (5.22)–(5.25), we can not get a satisfied
solution (see Fig. 6.4). But if we use three components, i.e. N = 0 and 1 for (5.22)–
(5.25) and N = 1 for (5.26)–(5.29), we can get a very good approximation (see Fig.
6.5). The comparison of the exact solution and our numerical solution at time t = 0.25
is give in Fig. 6.6.

7. Conclusion
In this paper, we provide a kind of exact artificial boundary condition for the

numerical solution of Schrödinger equation on unbounded domains in two-dimensional
cases. First, we introduce an artificial boundary, then we get a initial-boundary
problem on a finite domain enclosed by the artificial boundary which is equivalent
to the original problem. In addition, after we use the variables separation technique
and some properties of Bessel functions, we can obtain the exact artificial boundary
condition in a very simple formula. Then we can get a series of approximate artificial
boundary conditions. Furthermore, we proved the well-posedness of the approximate
problem (3.1)–(3.3). As the kernels of our ABCs have only weak singularities, it is
easy to integrate them. In our numerical simulation, from the Fig. 4.4, we can see
that the kernel in this convolution decays very fast. By this property, we can truncate
the convolution to save the calculation in long time evolution problems. When the
potential function is independent of the radiant angle θ, the problem can be reduced
to a series of one-dimensional problems. That can reduce the computation complexity
greatly. Our numerical examples show that we can get good numerical solutions with
no numerical reflections using our artificial boundary conditions.
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