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ENTROPY SOLUTIONS OF A COMBUSTION MODEL∗

LUNG-AN YING †

Abstract. We study weak solutions to a combustion model problem. An equivalent conservation
law with discontinuous flux is derived. Definition of an entropy solution is given, and the existence
and uniqueness of the entropy solutions is proved. The convergence of a projection method and an
implicit finite difference scheme is also proved. Finally using this approach we prove the convergence
of a random projection method.
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1. Introduction
The Euler system of equations with chemical reaction processes is usually stiff

because the scale of reaction zones may be orders of magnitude smaller than the
fluid dynamical space scales. There have been a number of works dealing with the
numerical simulation of the problem. See [1][4][5][6][10][12].

There are also some mathematical studies on this subject. Especially the study
for Majda’s simplified combustion model[11],which is a 2×2 system, where a “lumped
variable” is introduced to represent density, velocity and temperature. It was proved
in [2] that if the approximate solution to a projection method tended to piecewise
constants weak detonation waves, then the ignition temperature had to be less than
a number of ul∗ − q, where ul∗ is the temperature behind a weak detonation wave
which has the same speed as that of the desired strong detonation wave, and q is the
binding energy. In [15] the convergence was studied rigorously. For the projection
method and an upwind finite difference scheme some sufficient conditions were given
to guarantee that the limit is a strong detonation wave solution or a weak detonation
wave solution. We will continue our study in this paper.

We will make an assumption, which is “no cooling down”, then deduce an equiv-
alent conservation law with discontinuous flux. In [7] the authors studied a kind of
conservation law, where the flux is discontinuous with respect to x. This is a different
kind, where the flux is discontinuous with respect to the dependent variable. Using
the concept of set-valued mapping we define weak solutions and entropy weak solu-
tions for this conservation law. Then under one assumption, that for sufficient large
|x| the initial values are constants, different from the ignition temperature, existence
and uniqueness of the entropy solutions are proved.

We will also introduce an implicit finite difference scheme for the conservation
law and prove the convergence of the scheme. Furthermore it is shown that the limit
is the entropy solution.

Without entropy condition we cannot expect uniqueness of the original Majda’s
model. Applying the above results we get the corresponding existence and uniqueness
results for Majda’s model. Especially for the Riemann problem we will show that dif-
ferent ignition temperatures yield two different kinds of profile of the unique solutions,
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394 ENTROPY SOLUTIONS OF A COMBUSTION MODEL

strong detonation solutions and weak detonation solutions. This result explains some
phenomena in the numerical simulation for combustion problems.

A random projection method was developed in the work by Bao and Jin [1]. The
ignition temperature was assumed to be a random number with uniform distribution
in the projection scheme. Strong detonation waves were obtained in one and two
dimensional flows with chemical reaction. Using our approach we can prove the con-
vergence of this method. We will study this method applied to Majda’s model and
prove that the limit is a strong detonation wave solution.

2. Majda’s model
We consider the following Majda’s model for combustion: [11]

∂(u + qz)
∂t

+
∂f(u)

∂x
= 0, (2.1)

∂z

∂t
= −Kφ(u)z, (2.2)

where u is a “lumped variable”, representing density, velocity and temperature, z ∈
[0, 1] is a variable, representing the fraction of unburnt gas, q and K are positive con-
stants, representing the binding energy and the rate of chemical reaction respectively,
f ′ > 0, f ′′ ≥ a0 > 0,

φ(u) =
{

1, u > Ui,
0, u < Ui,

and Ui is a constant, representing the ignition temperature.
We assume the initial condition,

u|t=0 = u0(x), z|t=0 = z0(x), (2.3)

where naturally we require that z0(x) = 0 for a certain x if u0(x) > Ui.
In the Chapman-Jouguet’s model the rate of chemical reaction is assumed to be

infinity. For this case the second equation in Majda’s model is reduced to: ∂z
∂t ≤ 0,

φ(u)z = 0, and if u < Ui then ∂z
∂t = 0, therefore (2.2) is replaced by

z(x, t) =
{

0, sup0≤τ≤t u(x, τ) > Ui,
z0(x), sup0≤τ≤t u(x, τ) < Ui,

(2.4)

and

∂z

∂t
≤ 0. (2.5)

Global existence theorem for the problem (2.1) (2.4) (2.5) (2.3) was proved in [16].
The solutions to the above problem are not unique. For example the Riemann

initial data are given as

u|t=0 =
{

ul, x < 0,
ur, x > 0,

z|t=0 =
{

0, x < 0,
1, x > 0,

(2.6)

where ur < Ui ≤ ul and ul > ur + q. We assume that ul > uCJ , where uCJ satisfies
f ′(uCJ ) = f(uCJ )−f(ur)

uCJ−(ur+q) , then there are two kinds of solutions satisfying the equations
and the initial condition (2.6) (see [15]). The first one is
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u(x, t) =
{

ul, x < st,
ur, x > st,

z(x, t) =
{

0, x < st,
1, x > st,

(2.7)

where the constant s is the speed of the wave. By (2.1) s should satisfy the Rankine-
Hugoniot condition,

s =
f(ul) − f(ur)
ul − (ur + q)

.

The second one is

u(x, t) =

⎧⎨
⎩

ul, x < s1t,
um, s1t < x < s2t
ur, x > s2t,

z(x, t) =
{

0, x < s2t,
1, x > s2t,

(2.8)

where ul > um > ur + q, um > Ui, and

s1 =
f(ul) − f(um)

ul − um
, s2 =

f(um) − f(ur)
um − (ur + q)

.

The value of um is also not unique. The former one is called a strong detonation
wave and the latter one is a solution with two waves, where a weak detonation wave
is followed by a shock wave.

We make one assumption in the following. Let us assume that no cooling down
happens in the process, that is, once z = 0 and u ≥ Ui + q at time t0 then they keep
true for all t ≥ t0. Generally speaking it is not always the case, since it may happen
that u < Ui + q after combustion. However it is valid in the previous examples (2.7)
and (2.8), and it should be always true in a neighborhood of detonation waves for
general cases, hence it can be regarded as a condition of the local. This assumption
will help us to study the behavior of solutions near detonation waves and to study
the entropy condition.

Let v = u + qz, then we get the equation

∂v

∂t
+

∂f1(v)
∂x

= 0, (2.9)

where

f1(v) =
{

f(v − q), v ≤ Ui + q,
f(v), v > Ui + q.

(2.10)

This is an equation with discontinuous flux f1. The fractional steps projection finite
difference scheme in [15] is indeed the finite difference scheme to the equation (2.9).
We will study this equation in the next section, then we will study finite difference
schemes for it, and then return to study the combustion model. Finally we will prove
a result on the random projection method.

3. Single conservation law with discontinuous flux
We will study the equation (2.9) in general in this section. Let f1 be a piecewise

smooth discontinuous function. For simplicity we assume that there is one point of
discontinuity, v = u0. There is no significant difference if there are several points of
discontinuity.
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It is known that the Rankine-Hugoniot condition for (2.9) is

s =
f1(vl) − f1(vr)

vl − vr
, (3.1)

where s is the slope of a discontinuity in a solution v(x, t) and vl = v(x − 0, t),
vr = v(x + 0, t). The wave speed is not bounded, because s can be arbitrary large
if ul and ur are close to u0. Also it known that the geometric entropy condition for
admissible discontinuities is[14]

f1(v) − f1(vl) − s(v − vl) ≥ 0, v ∈ (vl, vr) for vr > vl,

f1(v) − f1(vl) − s(v − vl) ≤ 0, v ∈ (vr, vl) for vr < vl.
(3.2)

To define a weak solution, the meaning of f1(u0) should be clarified. We will
consider f1 as a set-valued mapping, that is, f1(u0) is an interval [f1(u0−0), f1(u0+0)]
or [f1(u0 + 0), f1(u0 − 0)].

Definition. v ∈ L∞ is a weak solution to (2.9), if there is a function w ∈ L∞,
such that

∂v

∂t
+

∂w

∂x
= 0, (3.3)

in the sense of distributions, and w ∈ f1(v).
Let the initial condition be

v|t=0 = ϕ(x). (3.4)

Before studying the existence and uniqueness problem of the initial value problem
(2.9) (3.4), we will show two examples first. We consider the equation (2.9) with flux

f1(v) =
{

v, v < 0,
v + 1, v > 0.

Example 1.

ϕ(x) =
{

0, x < 0,
vr, x > 0,

vr > 0.

Then the solutions are

v =
{

0, x < st,
vr, x > st,

s ∈ f1(0) − f1(vr)
−vr

.

Example 2. ϕ(x) = −x. Then the solution is

v =
{ −x + t, x < t or x > t +

√
2t,

0, t < x < t +
√

2t.

From the first example we know that the solutions cannot be determined uniquely
by the initial data and from the second example we know that there exist waves with
infinite speed. Thus we will restrict ourselves to the following cases: We assume that
there exists a positive constant X, such that ϕ(x) ≡ ϕ(+∞), for x > X, ϕ(x) ≡
ϕ(−∞), for x < −X, and ϕ(+∞) �= u0, ϕ(−∞) �= u0.
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Theorem 3.1. We assume that ϕ ∈ BV, and |ϕ(x)| ≤ M . Then the problem (2.9)
(3.4) admits a weak solution.

Proof. Assuming δ > 0, we define a smooth function fδ(v) such that fδ(v) = f1(v)
for |v−u0| ≥ δ, and minv∈(u0−δ,u0+δ) f1(v)−δ1 < fδ(v) < maxv∈(u0−δ,u0+δ) f1(v)+δ1

for |v − u0| < δ with δ1 → 0 as δ → 0. Then the equation

∂v

∂t
+

∂fδ(v)
∂x

= 0, (3.5)

with (3.4) admits a unique entropy solution vδ[13][8], which satisfies

|vδ| ≤ M, varxvδ(·, t) ≤ varϕ,

and

‖vδ(·, t) − vδ(·, τ)‖L1 ≤ C|t − τ |.
Here and hereafter we will denote by C a generic positive constant. We extract a
sequence of δ such that δ → 0, vδ → v a.e., and fδ(vδ) converges to w, weak * in L∞.
Then v and w satisfy (3.3). If v(x, t) �= u0 at a point (x, t), then w(x, t) = f1(v(x, t))
because of the continuity of f1. If v(x, t) = u0, then either minv∈(u0−δ,u0+δ) f1(v) −
δ1 < fδ(vδ(x, t)) < maxv∈(u0−δ,u0+δ) f1(v) + δ1 or fδ(vδ(x, t)) = f1(vδ(x, t)). Passing
to the limit we get w(x, t) ∈ f1(u0). Consequently v is the weak solution to the
equation (2.9).

We start to study uniqueness. To begin with, we define entropy and entropy flux.
Let U ∈ C2 with U ′′ ≥ 0 be a convex entropy. The entropy flux F is defined by

F (v) =
∫ v

u1

U ′(v)f ′
1(v) dv + a, (3.6)

where u1 < u0, and a is an arbitrary constant. F is discontinuous at v = u0, hence
we divide U into two parts: U = U1 + U2, where U1(v) = U ′(u0)(v − u0). The
corresponding entropy flux is

F1(v) = U ′(u0)(f1(v) − f1(u1)).

Then F2 = F − F1 − a is continuous:

F2(v) =
∫ v

u1

(U ′(v) − U ′(u0))f ′
1(v) dv

= (U ′(v) − U ′(u0))f1(v) − (U ′(u1) − U ′(u0))f1(u1) −
∫ v

u1

U ′′(v)f1(v) dv.

Definition. A weak solution v to (2.9) is an entropy solution if it satisfies

∂U(v)
∂t

+
∂W

∂x
≤ 0, (3.7)

in the sense of distributions, where W = U ′(u0)(w − f1(u1)) + F2(v) + a.

Theorem 3.2. The weak solution in Theorem 3.1 is an entropy solution.

Proof. We set

Fδ(v) =
∫ v

u1

U ′(v)f ′
δ(v) dv + a,
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where fδ is given in the proof of Theorem 3.1. vδ is an entropy solution to the equation
(3.5), hence

∂U(vδ)
∂t

+
∂Fδ(vδ)

∂x
≤ 0. (3.8)

Let F1δ, F2δ be defined as F1, F2, then as δ → 0, F1δ(vδ) = U ′(u0)(fδ(vδ) − fδ(u1))
converges to U ′(u0)(w − f1(u1)) weakly *, and

F2δ(v) =
∫ v

u1

(U ′(v) − U ′(u0))f ′
δ(v) dv

= (U ′(v) − U ′(u0))fδ(v) − (U ′(u1) − U ′(u0))fδ(u1) −
∫ v

u1

U ′′(v)fδ(v) dv

converges to F2 uniformly. Passing to the limit in (3.8) we get (3.7).
Before we state our result on uniqueness, we will prove the following lemma first.

Lemma 3.1. There exists a positive constant X1, depending on T , such that if v is
the solution obtained in Theorem 3.1, then v(x, t) ≡ ϕ(+∞) for x > X1, t ≤ T , and
v(x, t) ≡ ϕ(−∞) for x < −X1, t ≤ T , where T is an arbitrary positive constant.

Proof. Because |f ′
δ| < ∞ in (3.5), vδ(x, t) ≡ ϕ(+∞) for large x. Therefore

inf{ξ; vδ(x, t) = ϕ(+∞),∀x > ξ} is a curve satisfying the Lipschitz condition, and
the Rankine-Hugoniot condition holds on the curve almost everywhere. The curve is
denoted by ξ = l(t). Let v+ = v(ξ + 0, t) and v− = v(ξ − 0, t). Then v+ = ϕ(+∞).
Since ϕ(+∞) �= u0, there is a neighborhood of ϕ(+∞), (ϕ(+∞) − a, ϕ(+∞) + a),
such that u0 does not belong to this neighborhood. If v− ∈ (ϕ(+∞)−a, ϕ(+∞)+a),
then by the Rankine-Hugoniot condition |l′| ≤ max |f ′| ≤ C. If v− �∈ (ϕ(+∞) −
a, ϕ(+∞) + a), then |v− − v+| ≥ a, we also get |l′| ≤ C by the Rankine-Hugoniot
condition. Since l(0) ≤ X, |l(t)| ≤ C. There exists X1 > 0, independent of δ, such
that vδ ≡ ϕ(+∞) for x > X1. Passing to the limit, we get that v possesses the same
property.

Theorem 3.3. If v1 and v2 are two entropy solutions to the initial value problem
(2.9) (3.4), v1(x, t) = v2(x, t) = ϕ(+∞) for x > X1, t ≤ T , and v1(x, t) = v2(x, t) =
ϕ(−∞) for x < −X1, t ≤ T , then v1 = v2, a.e. for t ≤ T .

Proof. Let U(v) = |v−c| and c �= u0. We derive an entropy inequality with respect
to this entropy. Let Un be a C2 convex entropy with Un(v) = U(v) for |v − c| > 1/n,
then we replace U by Un in (3.6) and get Fn. We also have Fn1 and Fn2. It is easy
to see the convergence of Un and Fn1 as n → ∞. To see the convergence of Fn2 we
notice that (U ′

n(v)−U ′
n(u0))f ′

1(v) is continuous provided 1
n < |u0 − c|, and converges

as n → ∞. Let us drive the limit of Wn = U ′
n(u0)(w− f1(u1)) + Fn2(v) + a. We have

the following expressions of the limit:

lim
n→∞U ′

n(u0)(w − f1(u1)) =
{

w − f1(u1), u0 > c
f1(u1) − w, u0 < c

.

We may assume that u1 < c, then the limit of Fn2(v) is

F2(v) =

⎧⎪⎪⎨
⎪⎪⎩

−2(f1(v) − f1(u1)), u0 > c, v < c,
0, u0 < c, v < c,
−2(f1(c) − f1(u1)), u0 > c, v ≥ c,
2(f1(v) − f1(c)), u0 < c, v ≥ c.
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The limit of Wn is

W =
{

(w − f1(c)) + (f1(u1) − f1(c)) + a, v > c
(f1(c) − w) + (f1(u1) − f1(c)) + a, v ≤ c

.

We take a = f1(c) − f1(u1) then

W =
{

w − f1(c), v > c,
f1(c) − w, v ≤ c

, (3.9)

and (3.7) holds.
If c = u0, that is U(v) = |v − u0|. Letting c → u0 + 0 in (3.9), we get the limit

W =

⎧⎨
⎩

f1(v) − f1(u0 + 0), v > u0,
f1(u0 + 0) − w, v = u0,
f1(u0 + 0) − f1(v), v < u0.

Let c → u0 + 0 in (3.7), then it still holds for this critical case. Being the same, let
c → u0 − 0, then we get

W =

⎧⎨
⎩

f1(v) − f1(u0 − 0), v > u0,
w − f1(u0 − 0), v = u0,
f1(u0 − 0) − f1(v), v < u0,

and (3.7). We take η ∈ [0, 1] and derive the following linear interpolation:

W =

⎧⎨
⎩

f1(v) − ηf1(u0 + 0) − (1 − η)f1(u0 − 0), v > u0,
(1 − 2η)w + ηf1(u0 + 0) − (1 − η)f1(u0 − 0), v = u0,
ηf1(u0 + 0) + (1 − η)f1(u0 − 0) − f1(v), v < u0.

(3.10)

(3.7) still holds for this W and U = |v − u0|.
We turn now to study uniqueness. Let x ∈ (−∞, +∞), t ∈ (0, T ], and ξ ∈

(−∞, +∞), τ ∈ (0, T ]. We have

∂v1(x, t)
∂t

+
∂w1(x, t)

∂x
= 0,

∂v2(ξ, τ)
∂τ

+
∂w2(ξ, τ)

∂ξ
= 0,

where w1 ∈ f1(v1), and w2 ∈ f1(v2). The solution v1 satisfies the following entropy
inequalities

∂|v1 − c1|
∂t

+
∂W1

∂x
≤ 0,

where W1 is given by (3.9) for c1 = c �= u0, or by (3.10) for c1 = c = u0. We take
c1 = v2(ξ, τ) in (3.9), and let ηf1(u0 + 0) + (1 − η)f1(u0 − 0) in (3.10) be w2(ξ, τ).
Being the same we can get the entropy inequalities for v2,

∂|v2 − c2|
∂τ

+
∂W2

∂ξ
≤ 0,
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where the constants c2, ηf1(u0 +0)+ (1− η)f1(u0 − 0) assume the values v1(x, t) and
w1(x, t). We notice that if v1(x, t) �= u0 or v2(ξ, τ) �= u0, then W1 = W2, regarded as
the functions of x, t, ξ, τ . it remains to check the case of v1(x, t) = v2(ξ, τ) = u0. Let

w1(x, t) = η1f1(u0 + 0) + (1 − η1)f1(u0 − 0),

and

w2(ξ, τ) = η2f1(u0 + 0) + (1 − η2)f1(u0 − 0),

then

W1 = (1− 2η2)(η1f1(u0 + 0) + (1− η1)f1(u0 − 0)) + η2f1(u0 + 0)− (1− η2)f1(u0 − 0),

W2 = (1− 2η1)(η2f1(u0 + 0) + (1− η2)f1(u0 − 0)) + η1f1(u0 + 0)− (1− η1)f1(u0 − 0).

They are equal. We conclude that the entropy and entropy flux for v1 and v2 are
symmetric.

It is routine to obtain that
∫ X1

−X1

|v1 − v2| dx ≤
∫ X1

−X1

|v1(x, 0) − v2(x, 0)| dx,

which implies uniqueness.

4. An implicit finite difference scheme
The system (2.1) (2.2) is stiff, in the sense K is very large. Therefore the split-

ting method is a natural approach. It is a kind of fractional step method and the
computation processes in two steps in each time interval with length ∆t:

First step. Solving

∂(u + qz)
∂t

+
∂f(u)

∂x
= 0,

∂z

∂t
= 0.

Second step. Solving

∂(u + qz)
∂t

= 0,

∂z

∂t
= −Kφ(u)z.

For very large K the second step is in fact a projection, where K = ∞. The
difference scheme for this fractional steps scheme is just the finite difference scheme
for (2.9).

To solve the problem (2.9) (3.4) we cannot expect the CFL condition to be satisfied
for an explicit scheme, since the wave speed may be infinity. However if f ′

1 ≥ 0 in the
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sense of distributions, the following implicit finite difference scheme can be applied.
Let vj

i = v(i∆x, j∆t), then the scheme reads

vj+1
i − vj

i

∆t
+

f1(v
j+1
i ) − f1(v

j+1
i−1 )

∆x
= 0. (4.1)

The equation can be solved step by step from the left to the right, because it can be
rewritten as

vj+1
i + rf1(v

j+1
i ) = vj

i + rf1(v
j+1
i−1 ), (4.2)

where r = ∆t/∆x is assumed to be a fixed number. The derivatives of the left hand
side with respect to vj+1

i is positive, so there is a unique vj+1
i , and even if vj+1

i = u0,
w ∈ f1(v

j+1
i ) is still fixed.

Theorem 4.1. If ϕ(x) ∈ [m,M ], ϕ ∈ BV , and f1(ϕ) ∈ BV then limi→∞ vj
i =

ϕ(+∞), and the following estimates hold:

m ≤ vj
i ≤ M. (4.3)

∑
i

|vj
i − vj

i−1| ≤ varϕ. (4.4)

∑
i

|zj
i | ≤ rvarf1(ϕ), (4.5)

with zj
i = vj

i − vj−1
i .

∑
i

|f1(v
j+1
i ) − f1(v

j+1
i−1 )| ≤ 1

r

∑
i

|zj+1
i |. (4.6)

Proof. (4.3) is proved by induction.
To prove vj

i → ϕ(+∞) we consider graph G = {(v, w); w ∈ f1(v)}. There is
an one to one correspondence between a parameter p = v + rw and the point (v, w)
on G, and (v, w) depends continuously on p. Let pj

i = vj
i + rf1(v

j
i ) and p∞ =

ϕ(+∞) + rf1(ϕ(+∞)), then because ϕ(+∞) �= u0, vj
i → ϕ(+∞) is equivalent to

pj
i → p∞. For definiteness we assume that ϕ(+∞) − u0 = a > 0.

We prove by induction that |vj
i − ϕ(+∞)| < Cαi, and |pj

i − p∞| < Cαi for large
i, where α ∈ (0, 1), depending on j. We suppose that these inequalities are valid for
a certain j. By equation (4.2)

pj+1
i−1 = vj+1

i−1 + rf1(v
j+1
i−1 ) = vj

i + rf1(v
j+1
i−1 ) + (vj+1

i−1 − vj
i ) = pj+1

i + (vj+1
i−1 − vj

i ). (4.7)

If vj+1
i−1 > u0, then since f1 is differentiable, there exists a constant C1, such that

|pj+1
i−1 − p∞| ≤ C1|vj+1

i−1 − ϕ(+∞)|.

By (4.7) we have

pj+1
i−1 − p∞ = pj+1

i − p∞ + (vj+1
i−1 − ϕ(+∞)) + (ϕ(+∞) − vj

i ).
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We note that pj+1
i−1 − p∞ and vj+1

i−1 − ϕ(+∞) have the same sign, thus

|pj+1
i − p∞| ≤

(
1 − 1

C1

)
|pj+1

i−1 − p∞| + Cαi, ∀i. (4.8)

If vj+1
i−1 ≤ u0, then vj+1

i−1 − vj
i ≤ −a + Cαi. Then by (4.7) we get pj+1

i − p∞ ≥
pj+1

i−1 − p∞ + a − Cαi. pj+1
i−1 − p∞ is bounded, hence if i is large enough, so that

Cαi ≤ a/2, then there is a constant C1, such that |pj+1
i−1 − p∞| ≤ C1|a − Cαi|. Then

pj+1
i − p∞ ≥ (pj+1

i−1 − p∞) +
1
C1

|pj+1
i−1 − p∞| =

(
1 − 1

C1

)
(pj+1

i−1 − p∞).

Moreover, the scheme (4.1) is monotone, hence pj+1
i ≤ max(pj+1

i−1 , pj
i ) ≤ p∞ + Cαi.

Therefore (4.8) also holds.
We obtain by induction that

|pj+1
i − p∞| ≤ Ci

(
max

(
1 − 1

C1
, α

))i

.

Taking α′ > max
(
1 − 1

C1
, α

)
, we get

|pj+1
i − p∞| ≤ Cα′i,

thus the induction is complete.
Let wj

i = f1(v
j
i ), νj

i = vj
i − vj

i−1, and ωj
i = wj

i − wj
i−1, then the equation (4.2) is

vj+1
i + rwj+1

i = vj
i + rwj+1

i−1 .

By subtracting with respect to i and i − 1, we get

νj+1
i + rωj+1

i = νj
i + rωj+1

i−1 .

We note that if νj+1
i �= 0, then owing to f ′

1 ≥ 0, ωj+1
i possesses the same sign with

νj+1
i . Therefore

|νj+1
i | + r|ωj+1

i | = |νj+1
i + rωj+1

i | ≤ |νj
i | + r|ωj+1

i−1 |.

We also note that νj
i and ωj

i vanish for sufficiently small i, hence

I∑
i=−∞

|νj+1
i | + r|ωj+1

I | ≤
I∑

i=−∞
|νj

i |.

Passing to the limit as I → ∞ yields (4.4). Using the same approach we can get∑
1 |zj

i | ≤
∑

i |z0
i |, where v−1

i is given by the equation (4.1) in an opposite direction.
Then (4.5) follows from the equation (4.1) . Finally the equation (4.1) gives ωj+1

i =
1
r zj+1

i , which implies (4.6).
Applying Theorem 4.1 we can extract a sequence of approximate solutions con-

verging to a weak solution v(x, t). Moreover we can prove that it is an entropy
solution.
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Theorem 4.2. v(x, t) is an entropy solution.

Proof. Let U ∈ C2, U ′′ ≥ 0, and F is given by (3.6). F is discontinuous at v = u0,
As before we set F (vj

i ) = U ′(u0)(f1(v
j
i ) − f1(u1)) + F2(v

j
i ) + a.

We are going to prove a discrete entropy inequality. Let θ ∈ [0, 1] we define

v(θ) = θvj+1
i−1 + (1 − θ)vj+1

i ,

u(θ) = vj+1
i + r(f1(v

j+1
i ) − f1(v(θ))),

and

H(θ) = U(vj+1
i ) − U(u(θ)) + r(F (vj+1

i ) − F (v(θ))).

The functions u and H may be discontinuous. We consider the continuous case first,
so we assume that v(θ) �= u0.

We have

H ′(θ) = −U ′(u(θ))u′(θ) − rF ′(v(θ))v′(θ)
= r(U ′(u(θ)) − U ′(v(θ)))f ′

1(v(θ))v′(θ)
= rU ′′(u(θ) − v(θ))f ′

1(v(θ))v′(θ)

= rU ′′(vj+1
i − v(θ) + r(f1(v

j+1
i ) − f1(v(θ))))f ′

1(v(θ))(vj+1
i−1 − vj+1

i ).

We see that vj+1
i − v(θ) = θ(vj+1

i − vj+1
i−1 ), so vj+1

i − v(θ), f1(v
j+1
i ) − f1(v(θ)), and

vj+1
i −vj+1

i−1 possess the same sign. Consequently H ′ ≤ 0. Because H(0) = 0, H(1) ≤ 0,
which gives the discrete entropy inequality

U(vj+1
i ) − U(vj

i ) + r(F (vj+1
i ) − F (vj+1

i−1 )) ≤ 0. (4.9)

If the functions are discontinuous, there are some cases: The point of discontinuity
is a single point θ0 ∈ [0, 1], where v(θ0) = u0, or v(θ) ≡ u0. We consider one case,
θ0 ∈ (0, 1). The consideration for the others are similar. Let f+ = f1 ◦ v(θ0 + 0),
f− = f1 ◦ v(θ0 − 0), and analogously F+ and F−. We define

f(η) = ηf+ + (1 − η)f−, F (η) = ηF+ + (1 − η)F−,

u(η) = vj+1
i + r(f1(v

j+1
i ) − f(η)),

and

H(η) = U(vj+1
i ) − U(u(η)) + r(F (vj+1

i ) − F (η)),

with η ∈ [0, 1]. Then

H ′(η) = r(U ′(u(η)) − U ′(u0))(f+ − f−)
= rU ′′(u(η) − u0)(f+ − f−)

= rU ′′(vj+1
i − u0 + r(f1(v

j+1
i ) − f(η)))(f+ − f−).

f1(v
j+1
i )− f(η) possesses the same sign with vj+1

i −u0, and f+ − f− has the opposite
sign, so H ′(η) ≤ 0. Taking this fact into account, the discrete entropy inequality (4.9)
also holds.

Let ∆x → 0 and ∆t → 0, then we get the entropy inequality for the weak solution
v.
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5. Application to the combustion model
The previous results can be applied to the combustion model (2.1) (2.4) (2.5)

(2.3). If f1 is given by (2.10), then the entropy solution exists. For piecewise smooth
solution the geometric entropy condition (3.2) is equivalent to the entropy inequality
(3.7)[9]. We apply the condition (3.2) to the weak solution (2.7) (2.8) to get the
following:

Theorem 5.1. Among the weak solutions (2.7) (2.8) to the problem (2.1) (2.4) (2.5)
(2.6) the entropy solution is

u(x, t) =
{

ul, x < st,
ur, x > st,

z(x, t) =
{

0, x < st,
1, x > st,

if Ui ∈ [ul∗ − q, ul − q), where s and ul∗ < uCJ are given by

s =
f(ul) − f(ur)
ul − (ur + q)

=
f(ul) − f(ul∗)

ul − ul∗
,

and

u(x, t) =

⎧⎨
⎩

ul, x < s1t,
Ui + q, s1t < x < s2t
ur, x > s2t,

z(x, t) =
{

0, x < s2t,
1, x > s2t,

if Ui ∈ (ur, ul∗ − q), where

s1 =
f(ul) − f(Ui + q)

ul − Ui − q
, s2 =

f(Ui + q) − f(ur)
Ui − ur

.

It is the unique solution in the sense of that it corresponds to an entropy solution to
the equation (2.9) and u ≡ ul for t ≤ T , x < X1, and u ≡ ur for t ≤ T , x > X1,
where T , X1 are positive constants.

Proof. The corresponding solutions v to the equation (2.9) are

v(x, t) =
{

ul, x < st,
ur + q, x > st,

(5.1)

and

v(x, t) =

⎧⎨
⎩

ul, x < s1t,
um, s1t < x < s2t
ur + q, x > s2t.

(5.2)

We consider a set

J ={g̃ ∈ C([ur + q, ul]); g̃(ur + q) = f1(ur + q), g̃(ul) = f1(ul),
g̃′′(v) ≤ 0, g̃(v) ≥ f1(v),∀v ∈ [ur + q, ul]}.

The solutions (5.1) (5.2)in the (v, f1) plane are a line segment and a broken line
segment:

g(v) = f1(ul)
v − ur − q

ul − ur − q
+ f1(ur + q)

ul − v

ul − ur − q
, v ∈ [ur + q, ul], (5.3)
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g(v) =
{

f1(ul) v−um

ul−um
+ f1(um) ul−v

ul−um
, v ∈ [um, ul],

f1(um) v−ur−q
um−ur−q + f1(ur + q) um−v

um−ur−q , v ∈ [ur + q, um]. (5.4)

The geometric entropy condition (3.2) is equivalent to the following:

g(v) = inf
g̃∈J

g̃(v), v ∈ [ur + q, ul].

We consider (5.3) first. We consider a critical case, g(Ui + q) = f1(Ui + q + 0),
that is

s =
f1(ul) − f1(ur + q)

ul − (ur + q)
=

f1(ul) − f1(Ui + q + 0)
ul − Ui − q

.

Therefore Ui+q = ul∗. If Ui+q ≥ ul∗, (5.1) is an entropy solution, and if Ui+q < ul∗,
(5.1) is not an entropy solution.

Next we consider (5.4). If Ui + q > ul∗ it is not a solution, because the function
is not concave. If Ui + q ≤ ul∗, um = Ui + q is the only possibility.

Uniqueness follows directly from Theorem 3.3.
We have proved in the previous section that the implicit scheme gives the entropy

solutions, and we have given some sufficient conditions for the explicit scheme in [15],
where the weak solutions are also entropy solutions.

6. A random projection method
To design a method for the numerical simulation to strong detonation waves, a

random projection method is introduced in [1]. We are going to prove that if our
implicit finite difference scheme is applied in the random projection method, then it
yields the strong detonation wave solution (2.7) for Majda’s model.

Let us denote the function defined in (2.10) by f(v, Ui), then we fix a lower
bound vl and an upper bound vu. We assume that Ui is random between vl and
vu. In fact we assume that it satisfies the van der Corput rule: Let j be an integer
j =

∑n
k=0 ik2k, then θj =

∑n
k=0 ik2−(k+1) ∈ [0, 1]. Ui is given by Ui = vl +θj(vu−vl).

The corresponding function f(v, Ui) is denoted by f j(v). Replacing the function f1

in (4.1) by f j , we obtain a new difference scheme which is in fact equivalent to the
random projection scheme to Majda’s model (2.1) (2.4) (2.5) (2.3).

Theorem 6.1. Under the conditions of Theorem 4.1, the approximate solution of the
random projection scheme tends to an entropy solution to the equation

∂v

∂t
+

∂f̄(v)
∂x

= 0, (6.1)

as ∆x → 0 and ∆t → 0 with r = ∆t/∆x fixed, where

f̄(v) =

⎧⎨
⎩

f(v − q), v ≤ vl + q,
1

vu−vl

∫ vu

vl
f(v, Ui) dUi, vl + q < v ≤ vu + q,

f(v), v > vu + q.

Proof. The estimates of Theorem 4.1 still holds for this scheme, hence as ∆x → 0
and ∆t → 0 with r = ∆t/∆x fixed, there is a convergent sequence. Let v(x, t) be the
limit. We are going to study the limit of flux. Letting m be an integer, we consider
the average ṽj

i =
∑2m−1

k=0 vj+k
i /2m, which has the same property of convergence as vj

i .
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The estimate (4.5) implies Lipschitz continuous with respect to t, so the limit is the
same, lim ṽj

i = lim vj
i = v(x, t). We obtain the difference scheme

ṽj+1
i − ṽj

i

∆t
+

∑2m−1
k=0

(
f j+k(vj+k+1

i ) − f j+k(vj+k+1
i−1 )

)
/2m

∆x
= 0.

By the property of van der Corput quasi-random series, if the interval [vl, vu] is divided
into 2m equal subintervals, then there exists exactly one point of Ui, associated with
f j+k, in each subinterval. Thus

∑2m−1
k=0 f j+k(v(x, t))/2m is the Riemann sum of the

integral 1
vu−vl

∫ vu

vl
f(v, Ui) dUi. Let ε > 0 be an arbitrary constant. We take m large

enough so that ∣∣∣∣∣
2m−1∑
k=0

f j+k(v(x, t))/2m − f̄(v(x, t))

∣∣∣∣∣ < ε.

For the given v(x, t) there are at least 2m − 2 random number Ui satisfying |v(x, t)−
Ui − q| > (vu −vl)/2m, and we have that vj+k

i converges to v(x, t) almost everywhere,
so

|f j+k(vj+k
i ) − f j+k(v(x, t))| ≤ C|vj+k

i − v(x, t)| < ε,

for almost all f j+k except 2, provided ∆x, ∆t are small enough. For the remaining
two terms we note that f j+k is bounded, therefore∣∣∣∣∣

2m−1∑
k=0

(
f j+k(vj+k+1

i ) − f j+k(v(x, t))
)
/2m

∣∣∣∣∣ ≤ ε +
4C

2m
.

We take m large enough to get 4C/2m < ε.
In conclusion we take ε first, then determine m, which is independent of (x, t),

then take ∆x, ∆t small enough, and obtain∣∣∣∣∣
2m−1∑
k=0

f j+k(vj+k+1
i )/2m − f̄(v(x, t))

∣∣∣∣∣ ≤ Cε

pointwise for almost all (x, t). Passing to the limit, it holds that∣∣∣∣
∫ ∫ (

v
∂ϕ

∂t
+ f̄(v)

∂ϕ

∂x

)
dxdt

∣∣∣∣ ≤ Cε‖ϕ‖C1 ,

for any ϕ ∈ C1
0 . However ε is arbitrary, so we obtain∫ ∫ (

v
∂ϕ

∂t
+ f̄(v)

∂ϕ

∂x

)
dxdt = 0

finally. The entropy inequality can be proved in the same way.
It is known that the entropy solution to the initial value problem of the equation

(6.1) is unique, consequently the approximate solution vj
i tends to v as ∆x → 0,

∆t → 0.
We notice that f̄ is continuous, and by direct calculation we find that it is convex

between vl + q and vu + q. We also notice that f̄(vl + q) = f(vl), and f̄(vu + q) =
f(vu + q). As a result, if we take vl = ur and vu = ul − q, and consider the Riemann
problem (2.1) (2.4) (2.5) (2.6), then the random projection method gives the strong
detonation wave solution (5.1).
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