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Abstract. We study the global properties of the solutions for the initial value problem for the
Einstein-Boltzmann system with positive cosmological constant and arbitrarily large initial data, in
the spatially homogeneous case, in a Robertson-Walker space-time.
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1. Introduction

In the mathematical study of General Relativity, after establishing global exis-
tence of the solutions for the Einstein equations coupled to various field equations one
of the main problems is the properties of these solutions. On the other hand, it is
necessary to know if the space time obtained is future complete.

In the case of collisionless matter, the particle distributions are governed by the
Einstein-Vlasov system in the pure gravitational case, and by this system coupled
to other field equations, if other fields are involved. Due to its importance in ki-
netic theory, several authors have studied and proved the local and global in time
theorem for the Einstein-Vlasov system. Several authors also studied in the case of
the Einstein-Vlasov equation, and the asymptotic behavior of its solutions. They
have also investigated future geodesic completness. In [4], Lee studied asymptotic be-
havior of the Einstein-Vlasov system with positive cosmological constant. She dealt
with a class of space time possessing a compact Cauchy hypersurface. This allows
her to study the asymptotic behavior of the Einstein-Vlasov system with a positive
cosmological constant.

In the present paper, we consider the collisional evolution of a kind of uncharged
massive particles under the only influence of their own gravitational field which is
a function of the position of the particles. The phenomena are governed by the
coupled Einstein-Boltzmann system. The Boltzmann equation generalizes the Vlasov
equation, in the sense that it takes into account the interaction between the particles.
The interaction is defined by a non-linear operator Q called the “collision operator”.
In the binary and elastic scheme, due to Lichnerowicz and Chernikov [6] we adopt, at a
given position, only two particles (or two kinds of particles) collide in an instantaneous
shock, without destroying each other. The collision only affects their momenta, which
are not the same, before and after the shock. Only the sum of the two momenta being
preserved.

The Einstein-Boltzmann system is coupled in the sense that the distribution func-
tion f, which is subject to the Boltzmann equation, generates the source Tαβ of the
Einstein equations, whereas the metric g, which is subject to the Einstein equations,
is a factor in the collision operator.
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The geometric frame we are looking for is a spatially homogeneous Frieman-
Lemaitre-Robertson-Walker space time, we will call a “Robertson-Walker space time”.
In Cosmology, it is the basic model for the study of the spanding universe. The metric
tensor has only one unknown component which we denote by a, which is a strictly
positive function called the cosmological expansion factor. The spatial homogeneity
means that a depends only on the time t, and the distribution function f depends
only on the time t and the 4-momentum p of the particles.

In this paper, we consider the Einstein equation with cosmological constant Λ.
Our motivation is from a physical point of view. Recent measurements show that the
case Λ>0 is physically very interesting in the sense that it models the astrophysical
observation that the expansion of universe is accelerating. In mathematical terms,
this means that the mean curvature of the space time tends to this constant at late
times; see [11]. In this paper we study the asymptotic behavior of the solution of this
system. Global existence of the solution is proved in [9]. We also study the geodesic
completness of the solutions obtained.

The paper is organized as follows: In section 2, we recall the essential results of
the existence theorem of the Einstein-Boltzmann system with positive cosmological
constant in the Robertson-Walker space time. In section 3, we study the asymptotic
behavior. Section 4 is devoted to the geodesic completness.

2. Preliminary results

2.1. Notations and function spaces. Greek indicies range from 0 to 3
and Latin indicies range from 1 to 3. We adopt the Einstein summation convention
aαbβ =Σaαbβ . We consider as background space time a Robertson-Walker space time
where for x=(xα)=(t,xi)∈R

4, t denotes the time and x̄=(xi) the space. g stands
for the metric tensor with signature (−,+,+,+) which can be written as:

g =−dt2 +a2(t)[(dx1)2 +(dx2)2 +(dx3)2], (2.1)

in which a is a strictly positive function of t, called cosmological expansion factor.
We consider the collisional evolution of a kind of uncharged massive relativis-

tic particles in the time oriented space time (R4,g). The particles are statistically
described by their distribution function, denoted by f , which is a non-negative real
valued function of both the position (xα) and the 4-momentum (pα) of the particles,
and which defines the coordinates of the tangent bundle T (R4). We then have:

f :T (R4)≃R
4×R

4→R+, (xα,pα) 7→f(xα,pα)∈R+. (2.2)

For p̄=(pi), q̄ =(qi) ∈ R
3, we set

p̄.q̄ =

3
∑

i=1

piqi and |p̄|=[

3
∑

i=1

(pi)2]
1

2 . (2.3)

We suppose the rest mass m=1. The relativistic particles are then required to move
in the future sheet of the mass-shell whose equation is g(p,p)=−1. From this, we
deduce using (2.1) and (2.3)

p0 =
√

1+a2|p̄|2. (2.4)

The choice of p0 >0 symbolizes the fact that the particles eject towards the future.
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From (2.4), f depends only on t and p̄=(pi). The appropriate frame we will refer
to will be the subspace of L1(R3), denoted L1

2(R
3) and defined by:

L1
2(R

3)={f ∈L1(R3);‖f‖≡
∫

R3

√

1+ |p̄|2|f(p̄)|dp̄<+∞} (2.5)

Endowed with ‖.‖; which is a norm, L1
2(R

3) is a Banach space.
Let r be a strictly positive real number and I a real interval. We set

{

Xr ={f ∈L1
2(R

3),f ≥0 a.e,‖f‖≤ r}
C[I;L1

2(R
3)] ={f : I →L1

2(R
3),f continuous and bounded} . (2.6)

Endowed with the metric induced by ‖.‖, Xr is a complete and connected metric
subspace of (L1

2(R
3),‖.‖)

One observes that (C[I;L1
2(R

3)],‖|.‖|), where ‖|f‖|=Sup
t∈I

‖f(t)‖ is a Banach space.

We set:

C(I;Xr)={f ∈C[I;L1
2(R

3)],f(t)∈Xr ∀t∈ I}. (2.7)

Endowed with the metric induced by the norm ‖|.‖|, C[I;Xr] is a complete metric
subspace of [C[I;L1

2(R
3)],‖|.‖|]

2.2. The Einstein-Boltzmann system in (R4,g).
The Boltzmann equation. The Boltzmann equation on the curved space time

(R4,g) can be written as

pα ∂f

∂xα
−Γi

µνpµpν ∂f

∂pi
=Q(f,f), (2.8)

in which Γα
µν are the Christoffel symbols of g defined by:

Γλ
αβ =

1

2
gλµ[∂αgµβ +∂βgαµ−∂µgαβ ], (2.9)

in which the metric g is defined by (2.1) and gλµ denotes the inverse of gλµ. Setting
ȧ= da

dt
, a direct computation, using (2.1) and (2.9) gives:

Γ0
ii = ȧa; Γi

i0 =Γi
0i =

ȧ

a
; Γ0

αβ =0 for α 6=β; Γk
ij =Γ0

00 =0. (2.10)

Q is a non-linear operator called the collision operator and will be specified subse-
quently.

In the instantaneous, binary and elastic scheme due to Lichnerowicz and
Chernikov, we consider that at a given point (t,x), only two particles collide in-
stantaneously without destroying each other. The collision affects only the momenta
of the two particles that change after the collision; only the sum of the two momenta
is preserved, following the scheme:

(t,x)

¡
¡µ
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@R

@
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¡
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q
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{

p0 +q0 =p′0 +q′0

p̄+ q̄ = p̄′+ q̄′
(2.11)

The second relation of (2.11) is interpreted by setting, following Glassey in [2]:

{

p̄′ = p̄+b(p̄, q̄,ω)ω

q̄′ = q̄−b(p̄, q̄,ω)ω ω∈S2,
(2.12)

in which b(p̄, q̄,ω) is a real-valued function. We directly prove that

b(p̄, q̄,ω)=
2poqoea2ω.(ˆ̄q− ˆ̄p)

e2−a4(ω.(p̄+ q̄))2
, (2.13)

in which ˆ̄p= p̄
p0 , ˆ̄q = q̄

q0 . e=
√

1+a2 | p̄ |2 +
√

1+a2 | q̄ |2 is given by the first relation

of (2.11). Another direct computation shows, using the classical properties of the
determinants, that the Jacobian of the change of variables (p̄, q̄)→ (p̄′, q̄′) in R

3×R
3,

defined by (2.12) is given by:

∂(p̄′, q̄′)

∂(p̄, q̄)
=−p′oq′o

poqo
. (2.14)

The collision operator Q is then defined, using functions f, g on R
3 by

Q(f,g)=Q+(f,g)−Q−(f,g) (2.15)

where

Q+(f,g)(p̄)=

∫

R3

a3dq̄

q0

∫

S2

f(p̄′)g(q̄′)A(a,p̄, q̄, p̄′, q̄′)dω, (2.16)

Q−(f,g)(p̄)=

∫

R3

.
a3dq̄

q0

∫

S2

f(p̄)g(q̄)A(a,p̄, q̄, p̄′, q̄′)dω. (2.17)

We now introduce step by step the elements which define Q, specifying properties and
hypotheses:

1) S2 is the unit sphere of R
3 whose volume element is denoted dw.

2) A is a non-negative real-valued regular function of all its arguments, called
the collision kernel or the cross-section of the collisions, on which we require the
following boundedness, symmetry and Lipschitz continuity assumptions:

0≤A(a, p̄, q̄, p̄′, q̄′)≤C1 (2.18)

A(a,p̄, q̄, p̄′, q̄′)=A(a, q̄, p̄, q̄′, p̄′) (2.19)

A(a,p̄, q̄, p̄′, q̄′)=A(a, p̄′, q̄′, p̄, q̄) (2.20)

|A(a1, p̄, q̄, p̄′, q̄′)−A(a2, p̄, q̄, p̄′, q̄′)|≤γ|a1−a2|, (2.21)

where C1 and γ are strictly positive constants.
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The Einstein equations. We consider the Einstein equations with a cosmo-

logical constant Λ which can be written as

Rαβ −
1

2
Rgαβ +Λgαβ =8πTαβ (2.22)

in which Rαβ is the Ricci tensor of g, R=gαβRαβ is the scalar curvature, Tαβ is the
stress-matter tensor that represents the matter contents, generated by the distribution
function f of the particles by

Tαβ(t)=

∫

R3

pαpβf(t,p̄)|g| 12
p0

dp1dp2dp3, (2.23)

and |g|=a6 is the determinant of g. By a direct computation, we have:

R00 =−3
ä

a
and R11 =aä+2(ȧ)2 (2.24)

R=Rα
α =gαβRαβ =6

[

ä

a
+

(

ȧ

a

)2
]

. (2.25)

The Einstein-Boltzmann system in (a,f), can then be written as

∂f

∂t
−2

ȧ

a

3
∑

i=1

pi ∂f

∂pi
=

1

p0
Q(f,f) (2.26)

(
ȧ

a
)2 =

8π

3
T00 +

Λ

3
(2.27)

ä

a
=

4π

3
(T 00 +3a2T11)+

Λ

3
. (2.28)

(2.27) is called the Hamiltonian constraint and (2.28) is called the evolution equation.

2.3. Existence theorem for the Einstein-Boltzmann system.

2.3.1. Existence theorem for the Boltzmann equation. We consider the
Boltzmann equation on [t0,t0 +T ] with t0∈R+, T ∈R

∗
+, and a is assumed to be given

and defined on [t0,t0 +T ].
(2.26) is a first order PDE. Its resolution is equivalent to the resolution of the

associated characteristic system, which can be written as, taking t as a parameter:

dpi

dt
=−2

ȧ

a
pi;

df

dt
=

1

p0
Q(f,f) (2.29)

We solve the initial value problem on I =[t0,t0 +T ] with initial data:

pi(t0)=yi; f(t0)=ft0 (2.30)

The equation in p̄=(pi) is directly solved to give, setting y =(yi)∈R
3;

p̄(t0 + t,y)=
a2(t0)

a2(t0 + t)
y, t∈ [0,T ]. (2.31)
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The initial value problem for f is equivalent to the following integral equation in f, in
which p̄ stands this time for any independent variable in R

3:

f(t0 + t,p̄)=ft0(p̄)+

∫ t0+t

t0

1

p0
Q(f,f)(s,p̄)ds t∈ [0,T ]. (2.32)

Solving the Boltzmann Equation (2.26) is equivalent to solving the integral equation
(2.32). We prove:

Theorem 2.1. Let a be a strictly positive continuous function such that a(t)≥ 3
2

whenever a is defined. Let ft0 ∈L1
2(R

3), ft0 ≥0, a.e, r∈R
∗
+ such that

r>‖ft0‖. Then, the initial value problem for the Boltzmann equation on [t0,t0 +T ],
with initial data ft0 , has a unique solution f ∈C[[t0,t0 +T ];Xr].
Moreover, f satisfies the estimate

sup
t∈[t0,t0+T ]

‖f(t)‖≤‖ft0‖ (2.33)

Proof : See [9].

2.3.2. Existence theorem for the Einstein equation. In this paragraph,
we suppose that f is fixed in C[[0,T ];Xr], with f(0)=f0∈L1

2(R
3), f0≥0 a.e. and

r>‖f0‖, and the Einstein equations are (2.27)–(2.28) in the unknown a.
The relations R0i =0, Rij =0 if i 6= j, R11 =R22 =R33, imply for the Einstein

tensor Sαβ =Rαβ − 1
2gαβR that

T11 =T22 =T33, T0i =0, Tij =0 for i 6= j/ (2.34)

However the stress-matter tensor Tαβ is defined by (2.23) in terms of the distribution
function f.

Proposition 2.2. Let ft0 and r>0 be defined as in Theorem 3.1. Assume that, in
addition, ft0 is invariant by SO3

and the collision kernel A satisfies

A(a(t),Mp̄,Mq̄,Mp̄′,Mq̄′)=A(a(t), p̄, q̄, p̄′, q̄′), ∀M ∈SO3
. (2.35)

Then

1) The solution f of the integral equation (2.32) satisfies:

f(t0 + t,Mp̄)=f(t0 + t,p̄), ∀t∈ [0,T ], ∀p̄∈R
3 , ∀M ∈SO3

, (2.36)

2) The stress-matter tensor Tαβ satisfies the conditions (2.34).

Proof : See [9].
In all that follows, we assume that ft0 is invariant by SO3

and that the collision
kernel A satisfies assumption (2.35). It is proved (see for instance [6] p. 29) that
the Hamiltonian constraint (2.27) is satisfied in the whole existence domain of the
solution a of (2.28) on [0, T], once it is satisfied for t=0. So, it will be the case if the
initial data a0, ȧ0, f0 satisfy, using expression (2.23) of T 00, the initial constraint:

(

ȧ0

a0

)2

=
8πa3

0

3

∫

R3

√

1+a2
0|p̄|2f0(p̄)dp̄+

Λ

3
(2.37)

where a0 >0, ȧ0∈R, and f0 are the initial data, i.e.,

a(0)=a0; ȧ(0)= ȧ0; f(0, p̄)=f0(p̄). (2.38)
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We will choose, taking into account the hypothesis on a(t) in Theorem 2.1.

a0≥
3

2
; f0∈L1

2(R
3); f0≥0 a.e ȧ0 >0. (2.39)

Set θ =3 ȧ
a
, the evolution equation (2.28) gives

θ̇ =−θ2

3
−4π(T 00 +3a2T 11)+Λ. (2.40)

(2.40) is called the Raychaudhuri equation in θ.

Taking into account the continuity of t 7→ ȧ(t)
a(t) and using the Hamiltonian con-

straint (2.27), we have ȧ(t)
a(t) ≥

√

Λ
3 . It is then easy to prove that

a(t)≥a(t0);

√

Λ

3
≤ ȧ(t)

a(t)
≤ ȧ(t0)

a(t0)
, t≥ t0. (2.41)

In order to use standard results, we make the change of variable

e=
1

a
. (2.42)

Let us set ρ=T 00 and P =a2T 11, where ρ stands for the density and P for the
pressure.

The Einstein evolution equation (2.28) is equivalent to the following first order
system in (e,θ):

ė=−θ

3
×e (2.43)

θ̇ =−θ2

3
−4π(ρ+3P )+Λ (2.44)

with ρ=ρ(e,f) and P =P (e,f) .

Proposition 2.3. Let T >0 and f ∈C [[0,T ];Xr] be given. Then the initial value
problem for system (2.43)–(2.44) with initial data (e0,θ0) satisfying the initial con-

straint (2.37) the relations 0<e0≤ 2
3 , 0<θ0≤d0, and where d0 =3

√

Λ
3 + 16π

3 ra4
0, has

an unique solution on [0,T ].

Proof : See [9].

2.3.3. Global existence for the coupled system. Recall that the coupled
Einstein-Boltzmann equation in (a,f) is equivalent to the following system in (f,e,θ):

df

dt
=

1

p0
Q(f,f) (2.45)

ė=−θ

3
e (2.46)
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θ̇ =−θ2

3
−4π(ρ+3P ). (2.47)

Proposition 2.4 (local existence theorem). There exists an interval [0,l], l>0
such that, the initial value problem for the system (2.45)–(2.47) with initial data
(f0,e0,θ0)∈L1

2(R
3)×R×R has an unique solution (f,e,θ) on [0,l].

Proof : See [9].
Proposition 2.5. 1) There exists a strictly positive real number δ >0 depending
only on the absolute constants a0, Λ , r and T such that the initial value problem for
system (2.45)–(2.47) with initial data satisfying the initial constraint has a solution
(f,e= 1

a
,θ) ∈C[[t0,t0 +δ];Xr]×Eδ

t0
×F δ

t0
where

Eδ
t0

=

{

e∈C[t0,t0 +δ],
1

C2
e−C3(t0+t+1)2 ≤e(t0 + t)≤ 2

3
,∀t∈ [0,δ[

}

,

F δ
t0

=
{

θ∈C[t0,t0 +δ], θ ,
√

3Λ≤θ(t0 + t)≤D0 ∀t∈ [0,δ[
}

,

in which C2, C3, and D0 are absolute constants. In fact, setting

γ1 =γ1(a0,r,T )= Λ
3 +

√

Λ
3 +3ra4

0(T +1), we have

C2 =a0e
γ1 ; C3 =γ1 +

Λ

3
(T +1); D0 =3γ1 +Λ(T +1). (2.48)

2) The problem has a global solution (f,e= 1
a
,θ) over [0,+∞[.

Proof : See [9].

3. Asymptotic behavior

We are going to study the asymptotic behavior of the solution of the Einstein-
Boltzmann system with positive cosmological constant in the Robertson-Walker space
time. We will use the following lemma:

Lemma 3.1. Let (a,f) be the solution of the Einstein-Boltzmann system (2.26)–
(2.28). Then ( ȧ

a
)2 goes to Λ

3 as t goes to infinity and the mean curvature goes to a
strictly positive limit.

Proof. Let us compute the derivative of ȧ
a
.

d

dt

(

ȧ

a

)

=
ä

a
−

(

ȧ

a

)2

.

Using (2.27), we have

d

dt

(

ȧ

a

)

=−4π

3
(T 00 +3a2T 11)+

Λ

3
−

(

ȧ

a

)2

.

By direct computation, this implies

d

dt

(

ȧ

a

)

≤ Λ

3
−

(

ȧ

a

)2

. (3.1)
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Due to the Hamiltonian constraint, we have Λ
3 −

(

ȧ
a

)2
<0 for a non trivial solution of

the system (2.26)–(2.28), and then

d

dt

(

ȧ

a

)

≤ Λ

3
−

(

ȧ

a

)2

<0.

This implies that

d
dt

(

ȧ
a

)

(

ȧ
a

)2− Λ
3

≤−1. (3.2)

We observe that

1
(

ȧ
a

)2− Λ
3

=
1

(

ȧ
a
−

√

Λ
3

)(

ȧ
a
+

√

Λ
3

) =
1

2
√

Λ
3





1

ȧ
a
−

√

Λ
3

− 1

ȧ
a
+

√

Λ
3



.

It then follows that

d
dt

(

ȧ
a

)

(

ȧ
a

)2− Λ
3

=
1

2
√

Λ
3





d
dt

(

ȧ
a

)

ȧ
a
−

√

Λ
3

−
d
dt

(

ȧ
a

)

ȧ
a
+

√

Λ
3



≤−1. (3.3)

Integrating relation (3.3) over [0,t], we obtain

Log





ȧ
a
+

√

Λ
3

ȧ
a
−

√

Λ
3

× 1

C4



≤−2

√

Λ

3
t,

where C4 is a constant.
This allows us to obtain the following relation

ȧ
a
−

√

Λ
3

ȧ
a
+

√

Λ
3

≤C4exp

(

−2

√

Λ

3
t

)

(3.4)

From (2.27) we obtain

√

Λ

3
≤ ȧ

a
≤ ȧ(t0)

a(t0)
t≥ t0 (3.5)

This implies

0≤
√

Λ

3
+

ȧ

a
≤

√

Λ

3
+

ȧ(t0)

a(t0)
(3.6)

Using (3.4) and the fact that
√

Λ
3 ≤ ȧ

a
, we have

0≤ ȧ

a
−

√

Λ

3
≤C5exp

(

−2

√

Λ

3
t

)

for t≥ t0 (3.7)
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where C5 =
√

Λ
3 +

˙a(t0)
a(t0)

is a constant.

From (3.7) we conclude that ȧ
a
−

√

Λ
3 goes to zero as t goes to infinity. Finally

(

ȧ
a

)2
goes to Λ

3 as t goes to infinity.

Theorem 3.2. At late times in the future, the solution of Einstein-Boltzmann system
with positive cosmological constant for the Robertson-Walker space time is asymptot-
ically dust-like.

Proof.

- Using Lemma 3.1 and the Hamiltonian constraint
(

ȧ
a

)2
= 8π

3 T 00 + Λ
3 , it is clear

that the density given by ρ=T 00 goes to zero as t goes to infinity.

- recall that both the density ρ=T 00 and the pressure P =a2T 11 are defined by
the relation (2.23). It is then obvious by direct estimation that P ≤ρ. Since
P ≥0, this allows us to conclude that the pressure goes to zero as t goes to
infinity.

- To complete the proof of this theorem, we are going to prove that the expres-
sion P

ρ
goes to zero as t goes to infinity.

Using the characteristic system for the Boltzmann equation, we have

dpi

dt
=−2

ȧ

a
pi

The explicit solutions of the above system are

pi =
a2(0)pi(0)

a2(t)
. (3.8)

Setting Ci =a2(0)pi(0), we have

pi =
Ci

a2(t)
which implies a2pi =Ci. (3.9)

Recall that










ρ =a3(t)
∫

R3

√

1+a3(t)|p̄|2f(t,p̄)dp̄

P =a5(t)
∫

R3

(p1)2√
1+a3(t)|p̄|2

f(t,p̄)dp̄
. (3.10)

We then have

P

ρ
=

1

a2

∫

R3

(a2p1)2√
1+a3(t)|p̄|2

f(t,p̄)dp̄

∫

R3

√

1+a3(t)|p̄|2f(t,p̄)dp̄

Using the relation (3.9), we obtain

P

ρ
=

(C1)2

a2

∫

R3

1√
1+a3(t)|p̄|2

f(t,p̄)dp̄

∫

R3

√

1+a3(t)|p̄|2f(t,p̄)dp̄

P

ρ
≤ (C1)2

a2

∫

R3 f(t,p̄)dp̄
∫

R3

√

1+a3(t)|p̄|2f(t,p̄)dp̄
, (3.11)
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and then

P

ρ
≤ (C1)2

a2
. (3.12)

Integrating the first inequality of (3.5) over the interval [t0,t], we have

a(t)≥a(t0)exp

(

√

Λ

3
(t− t0)

)

, (3.13)

which implies that

P

ρ
≤ (C1)2

a2
0

exp

(

2

√

Λ

3
(t0− t)

)

. (3.14)

By (3.14), we conclude that P
ρ

goes to zero as t goes to infinity.

4. Geodesic completness

Theorem 4.1. Let a0 =a(0), ȧ0 = ȧ(0), and f0∈L1
2(R

3) be the initial data for the
Einstein-Boltzmann system on the Robertson-Walker space time. Then the space time
proved in the existence theorem is future complete.

Proof. Recall that the metric we use is the Robertson-Walker metric.
The geodesic equation for such a metric implies that along the geodesics the

variables t, p0, and pi satisfy the following system of differential equations:











dt
dτ

=p0

dp0

dτ
= ȧa[(p1)2 +(p2)2 +(p3)2]

dpi

dτ
=−2 ȧ

a
p0pi,

(4.1)

where τ is an affine parameter.
The particles are for the rest mass m=1 and are supposed to move forward in

time. Recall that p0 =
√

1+a2|p̄|2.
The geodesic completness is decided by looking the relation between the time t

and the affine parameter τ along any future directed causal geodesic. From (4.1), we
have dt

dτ
=

√

1+a2|p̄|2, which implies that dτ
dt

= 1√
1+a2|p̄|2

.

To control the relation between t and τ , we need to control the quantity a2(t)|p̄|2
as a function of coordinate time t.

From (3.9), we have a2pi =Ci. Using (2.41), we have a(t)≥a0 ∀t∈ [0,+∞[. Direct
computation gives

dτ

dt
≥χ (4.2)

where χ=[1+ 1
a2
0

(C1)2 +(C2)2 +(C2)2]−
1

2 is a strictly positive constant. Therefore,

τ is recovered by integrating (4.2). The integral of the right hand side diverges as t
goes to infinity. Therefore as t goes to infinity so does τ .
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