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A FAST DIRECTIONAL ALGORITHM FOR HIGH FREQUENCY
ACOUSTIC SCATTERING IN TWO DIMENSIONS*

BJORN ENGQUIST' AND LEXING YINGH

Abstract. This paper is concerned with fast solution of high frequency acoustic scattering
problems in two dimensions. We introduce a directional multiscale algorithm for the N-body problem
of the two dimensional Helmholtz kernel. The algorithm follows the approach developed in [Engquist
and Ying, STAM J. Sci. Comput., 29 (4), 2007], where the three dimensional case was studied. The
main observation is that, for two regions that follow a directional parabolic geometric configuration,
the interaction between these two regions through the 2D Helmholtz kernel is approximately low rank.
We propose an improved randomized procedure for generating the low rank separated representation
for the interaction between these regions. Based on this representation, the computation of the far
field interaction is organized in a multidirectional and multiscale way to achieve maximum efficiency.
The proposed algorithm is accurate and has the optimal O(NlogN) complexity for problems from
two dimensional scattering applications. Finally, we combine this fast directional algorithm with
standard boundary integral formulations to solve acoustic scattering problems that are of thousands
of wavelengths in size.

Key words. N-body problems, Helmholtz equation, oscillatory kernels, fast multipole methods,
multidirectional computation, multiscale methods.
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1. Introduction

1.1. Problem statement. This paper is concerned with the rapid solution
of time harmonic acoustic scattering problems [10] in two dimensions. Suppose that
D is a smooth bounded object with a diameter of K wavelengths and u*(x) to be
the incoming field. If D represents an impenetrable scatterer, the scattered field u(x)
satisfies the Helmholtz equation with Dirichlet boundary condition:

Au(z) + (27)*u(z) =0 forz R4\ D
u(z) =—u"¢(x) forz€dD (1.1)

lim |z|Y/? ((CE,Vu(x)) —2mu(w)) =0.
| o0 |z
Here we set the wave number to be 27 and the wavelength A equal to 1. The last
condition is the Sommerfeld radiation condition and guarantees that the scattered
field u(z) propagates to infinity. In this setup, the solution becomes oscillatory when
the scatterer D is large. One efficient way of solving this problem is to reformulate it
with a boundary integral equation (BIE) [10] such as

9G(z,y)

1 mnc
5(;5(1:)4—/8[) (an(y)—znG(x,y)) o(y)dy=—u""(x), VredD (1.2)

where ¢(x) for z € D is the unknown distribution on D, n(y) is the exterior normal
of D at y, and 7 is a constant ~27. The kernel G(z,y)=§ él)(27r|x—y|) is the
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328 DIRECTIONAL ALGORITHM FOR HIGH FREQUENCY SCATTERING

fundamental solution of the 2D Helmholtz equation. Here Hél) denotes the first kind
Hankel function of order zero and we use ¢ to denote v/—1. The main advantages of
the BIE approach is that it reduces an unbounded 2D problem (1.1) to a bounded 1D
problem (1.2). In addition, the condition number of (1.2) is independent of K. Once
¢ is solved from (1.2), the scattered field u(x) can be simply computed by

B 8G(J;,y)_2. . e R\ I
U(w)—/aD (an(y) n-G( 7y)> d(y)dy, VreR*\D.

One obvious disadvantage of the boundary formulation (1.2) is that it is a dense
operator. Therefore, iterative algorithms such as GMRES [34] become the natural
tool for solving the resulting discrete system. At each step of the iterative solver, one
then needs to evaluate the following N-body problem of the high frequency Helmholtz
kernel

N
wi=» G(pi,p;)-fj (1.3)
j=1

where {p;}1<i<ny C B(0,K/2) are the appropriate quadrature points, {f;}1<i<n are

the sources at {p;}1<i<n, and {u;}1<;<n are the potentials. A similar problem can

9G(z,y)
on(y)

It is well known that the complexity of a scattering problem often scales with the

size of scatterer in terms of the wavelength. Since the wavelength is taken to be one
in our setup, the complexity of (1.3) depends on the size of the scatterer K, which
can be on the order of thousands or even tens of thousands for a typical large scale
scattering problem. Since one often discretizes (1.2) with a constant number of points
per wavelength, the number of points IV is then proportional to K.

1.2. Previous work. The direct computation of (1.3) takes O(N?)=0(K?)
operations. This can be quite time consuming when K is large. Various fast algo-
rithms have been proposed to reduce this complexity in the past two decades. Among
them, the most popular approach is the high frequency fast multipole method (HF-
FMM) developed by Rokhlin et al. [8, 32]. In the HF-FMM, the whole computa-
tional domain is partitioned into a quadtree and one associates with each square of
the quadtree two expansions: the far field expansion and the local field expansion [8].
These expansions accelerate the computation in the low frequency regime. In the high
frequency regime, since the translations between them become diagonal operators un-
der the Fourier basis, the Fourier transforms of these expansions are used instead to
achieve optimal efficiency. The HF-FMM has an optimal O(NlogN) complexity and
has been widely used. Other algorithms using related techniques can be found in
[9, 11, 36].

Another approach for speeding up the computation of (1.3) is to exploit the
translation-invariant property of the kernel and use the fast Fourier transform to per-
form the non-adjacent computation in the Fourier domain [2, 6]. Though quite efficient
for many situations, the asymptotic complexity of this approach is not optimal.

A different way to accelerate the N-body computation is to discretize the integral
Equ. (1.2) under the Galerkin framework with local Fourier bases or wavelet packets.
The stiffness matrix becomes approximately sparse under these bases since most of
the entries are close to zero and can be safely discarded. Early algorithms [1, 4, 7,
14, 15, 19] of this approach focus on finding the correct one dimensional basis, while

be formulated for the kernel as well.




BJORN ENGQUIST AND LEXING YING 329

recent developments [13, 24] consider two dimensional tensor product wave packets
and wave atoms, thus offering more flexibility and better compression rates.

In [30], Michielssen and Boag proposed a multilevel multiplication algorithm to
bring the overall complexity down to O(N log® N ). This algorithm is quite similar to
the FFT and is later extended by [31] to more general problems.

In [18], we proposed an algorithm for the three dimensional N-body problem of the
high frequency Helmholtz kernel. It relies on a low rank property of the 3D Helmholtz
kernel for certain geometric configurations. The algorithm organizes the computation
in a multidirectional and multilevel fashion and has an optimal O(Nlog N) complexity.

1.3. A multidirectional approach. In this paper, we adapt the approach
in [18] to the two dimensional N-body problem of the Helmholtz kernel. The main
observation is a similar low rank property of the 2D Helmholtz kernel. We say that
two sets Y and X satisfy the directional parabolic separation condition if Y is a disk
of radius 7 and X is a conical region with spanning angle 1/r and at least r? away

from Y (see figure 1.1).

Fic. 1.1. Two sets Y and X that satisfy the directional parabolic separation condition.

Once Y and X satisfy the directional parabolic separation condition, one can
show that for any fixed accuracy the interaction between X and Y via the Helmholtz
kernel G(z,y) is approximately low rank and the rank is independent of the size of Y.
More precisely, for any accuracy e there exists a constant t. and two sets of functions
{ai(®)}1<i<e. and {Bi(y) }1<i<e. such that

te
G(z,y) —Zai(x)ﬁi(y) <g, VzeX,VyeYy.
i=1

Notice that {a;(z) h1<i<i. and {8;(y) h1<i<:. are only functions of x and y respectively.
We call such an approximation a directional separated approximation. One major
component of our approach is to use this representation to build equivalent sources
for well-separated interaction.

Similar to the 3D algorithm in [18], our 2D algorithm starts by generating a
quadtree for the whole computational domain (see figure 1.2(a)). In the bottom
part of the quadtree where the squares are of size less than 1, the interactions are
accelerated using the kernel independent FMM algorithm in [38]. In the top part
where the squares are of size greater than or equal to 1, the far field of each square
is partitioned into wedges that follow the directional parabolic separation condition
(see figure 1.2(b)). Between the square and each one of its wedges, the computation
is then accelerated via the directional separated approximation.
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Fic. 1.2. (a) The quadtree constructed for a point distribution supported on a curve. (b) For
each square B in the high frequency regime, its far field is partitioned into multiple wedges. We
construct a separated approximation for the interaction between B and each of its wedges. This
approximation is used to accelerate the computation between B and the wedge.

1.4. Contributions and contents. Apart from extending the multidirec-
tional algorithm of [18] to the 2D Helmholtz kernel, this paper also contains two new
contributions:

e We provide an improved randomized procedure for constructing the direc-
tional separated approximations. This new procedure is more efficient and it
generates approximations with smaller ranks in practice.

e We apply our multidirectional algorithm to the solution of boundary integral
formulations of high frequency scattering problems, which is not performed
in [18]. This allows us to study large scatterers that are thousands of wave-
lengths wide.

We would like to mention that the idea of using directional separation for oscillatory
kernels appeared earlier in the work of [5, 3]. However, the current algorithm is the
first attempt to achieve an O(NlogN) algorithm for the N-body problem of the 2D
Helmholtz kernel using the directional separation idea.

The rest of this paper is organized as follows. In section 2, we describe the im-
proved procedure for constructing the separated approximations. Our multidirectional
algorithm is described in detail in section 3 and in section 4 we present numerical re-
sults for several test examples. In section 5 we apply our algorithm to the boundary
integral solution of high frequency acoustic scattering applications. Finally in section
6, we provide some comments on future research directions.

2. Directional separated approximations
DEFINITION 2.1. Let f(x,y) be a function for x€ X and yeY. We say that f(z,y)
has a t-term e-expansion for X and Y if there exist functions {as(x)}1<s<¢ and
{Bs(y) }1<s<t such that

t

Flay) = ad@)Bi(y)|<e, VreX,Wyey.

s=1

Since the two sets of functions {as(z)}1<s<t and {Bs(y) }1<s<: depend only on z
and y respectively, the above expansion is called separated. Suppose r > /2. For our
problem, we consider

Y=B(0,r) and X={x:0(z,f)<1/r|z|>r?} (2.1)
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where ¢ is a given unit vector and 6(z,f) is the spanning angle between vectors x
and ¢. The geometric relationship between Y and X is illustrated in figure 1.1. The
following theorem serves as the theoretical foundation of our approach.

THEOREM 2.2. For any € >0 there exists a number t. that is independent of r such
that
L

1
Ho" @rle—y)

G(.Z’,y):

has a t.-term e-expansion for any X and Y given by (2.1).

One way to prove this theorem is to follow the proof of the 3D Helmholtz kernel
in [18]. However, such an argument does not result an optimal estimate for the
separation rank t., since it only utilizes the smoothness of the kernel and ignores the
analytical properties of the Hankel function. Instead, we quote here a sharp result by
V. Rokhlin in [33], which gives the optimal estimate t. =O(log(1/¢)). In fact, Thm.
1.1 in [33] states a general result of the sparse diagonal forms for the translation
operators of the 2D Helmholtz kernel: for any two regions X and Y,

an%ﬂk»+0<f)v

where p is the distance between X and Y. Specializing this result to our case p=O(r?)
proves Thm. 2.2. We refer to [33] for the details of the proof.

2.1. Construction of directional separated approximations. In [18],
we described a procedure based on random sampling for constructing the directional
separated representation between X and Y. Here, we propose an improved approach
that results in better accuracy and stability.

For a given pair Y and X that satisfy the directional parabolic separation con-
dition, we sample Y randomly with about 2 to 3 points per wavelength and denote
the resulting samples by {y;}1<j<n. Similarly, X NB(0,K) is sampled with a set of
samples {z;}1<i<m at the same rate. Let A be the m xn matrix with the (¢,7)th
element equal to
1

1
116" @l —y;)),

G(wi,y;) =
for 1<i<m and 1<j<n. For a given set of rows S and a set of columns 7', A(S,T")
denotes the submatrix of A that consists of the entries A;; with ¢€S and jeT.
Moreover, A(:,T) denotes the submatrix that consists of the columns in 7" and A(S,:)
is the submatrix that consists of the rows in S.
Thm. 2.2 states that A can be factorized, within error O(g), into the product
of two matrices, with the first one having ¢. columns and the second one having t.
rows. The goal of the new procedure is to construct the pseudoskeleton decomposition
[20, 21] of the matrix A:

A~ A1) -D- Ay, ),

where II; is a set of t. columns, Il is a set of t. rows, and D =~ (A(Ily,11;))~!. The
column set II; is chosen so that the paralleleloid spanned by the columns in II; has
the largest t.-dimensional volume among all paralleleloids spanned by a column set
of size t.. Similarly, the paralleleloid spanned by the rows in Il has the largest
t.-dimensional volume among all paralleleloids spanned by a row set of size t..
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Since the size of the matrix m x n can be quite large, choosing the sets I1; and I,
is a non-trivial task. One attractive idea that is proposed in the recent literature is to
project the columns (or rows) of A onto a p-dimensional subspace L randomly selected
from a certain probability measure over all p-dimensional subspaces (see for example
[26, 35]). As long as p is adequately larger than ¢, the volume spanned by any set
of t. columns (or rows) is preserved up to a good accuracy ([12, 28]). Therefore, one
approach for finding the column set II; would take the following steps

1. Project the columns of A onto a random p dimensional subspace.

2. Find the set of the projected columns that have the largest ¢.-dimensional
volume.

3. Pick the corresponding columns of A to be the answer.

The same procedure can be used to pick Ils if we project the rows of A instead.
However, the complexity of this approach is at least O(mnlogp) [26, 35], which can
still be quite expensive in our setting since both m and n are very large. Here,
we describe a new procedure that replaces the general random projection with a
projection to a randomly selected set of coordinates and finds the sets II; and Ils in
only O(t2-(m+n)) operations. This procedure contains the following steps:

1. Compute the column set I1;. As we mentioned already, finding these columns
directly is quite expensive since the size of the m x n matrix A is quite large.
In order to achieve that efficiently, we first randomly pick a set of rows 2y
with [©1] =0O(t.) and seek a set of t. columns of the submatrix A(£2;,:) whose
paralleleloid has almost the largest possible ¢.-dimensional volume. To do
this, we simply use the pivoted QR factorization to obtain the decomposition

A(Q,A)=Q1Ry.

Here, A; is a permutation of the n columns, @) is a unitary matrix, and R; is
an upper triangular matrix with positive diagonal entries in decreasing order.
The construction of this decomposition takes at most O(|Q;]?-n)=0(t2-n)
steps. We then set I1; to be the first t. members of A;. In practice, we observe
that the volume of the paralleleloid spanned by the vectors in A(:,I1;) is quite
close to the largest possible volume. We shall also use {e;}1<i<:. to denote
{y;}jem,, i.e. the locations associated with the columns in II; (see figure 2.1).

2. Compute the row set Ils. Similar to the previous step, we first randomly pick a
set of columns Q5 with |Q3] =O(t.) and seek a set of t. rows of the submatrix
A(:,9Q2) that has almost the largest possible t.-dimensional volume. Applying
the pivoted QR factorization to (A(:,€22))" gives the following decomposition

A(Az,ﬂz):RzQz

where As is a permutation of the m rows. Similar to the previous step, this
decomposition takes at most O(|Q1]?-m)=0(t2-m) steps. We then set Iy
to be the first t. members of As. In practice, the volume of the paralleleloid
spanned by the vectors in A(Ils,:) is quite close to the largest possible volume.
We shall use {cs}1<s<¢. to denote {z; }ierm,, i.e., the locations associated with
the columns in Il (see figure 2.1).

3. Compute the matriz D. Here we seek a matrix D that minimizes

HA—A(7H1)DA(H27)HF
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A direct formula for computing D is given by
D=(A(:T)) - A (A(TT,:) "

where (-)T stands for the pseudo-inverse. However, computing D directly
using this formula can be quite costly since A is a large m x n matrix. Instead,
we restrict the problem again to a random subspace. We pick randomly a set
of rows I'; and a set of columns I's, both of size O(t.), and choose D to be
the minimizer of

[A(T1,I2) — ATy, 1) - D- A2, T ||
instead. The resulting D is given explicitly by
D=(A(Ty,1T))"- AT, T2) - (AT, T'2)) .

Notice that the matrix D is of size t. X t.. In practice, we observe that

|Aij = (A IL) - D- A(Ilp,:)) 5| = O(e), 1<i<m,1<j<n. (2:2)
X
O
{e} fes}

Fi1G. 2.1. The construction of the separated approzimation between X and Y. The {et} are the
samples associated with the columns in A(:,II1) (Step 1). The {cs} are the samples associated with
the columns in A(Il2,:) (Step 2).

This randomized procedure performs quite well in practice as we will see from
the numerical results in section 4. In the above description, the sizes of the random
index sets Q1, o, I'1, and I's are all equal to a constant multiple of ¢t.. When one
increases these numbers, the resulting pseudoskeleton approximation (2.2) becomes
more and more accurate. In practice, we find that a factor of 4 to 6 is sufficient to
provide good results. Compared with the approach described at the beginning of this
section, the projection to a randomly selected coordinates is more restrictive compared
to a general random projection. However, since both the columns and the rows of
our matrix A are highly incoherent with the Dirac delta functions, a projection to a
randomly selected set of coordinates preserves the t.-dimensional volume well with
an overwhelming probability.

We would like to emphasize that there has been a lot of research devoted to
the construction of low rank approximations from both the numerical linear algebra
community and the theoretical computer science community (see [17, 29, 26, 35, 16, 23]
for details). Many of these approaches have rigorous error estimates. However, for
the best of our knowledge, in the situation where the desired accuracy ¢ is small all
of these methods require an complexity that is at least O(mn). On the other hand,
the procedure proposed here takes only O(t2-(m+mn)) operations.
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By denoting the entries of the matrix D by (dis)1<s,t<t., We can rewrite (2.2) as

t=1 s=1

G(zi,yj) — i:G(xhet) <idtsG(csayj)> | =0(¢)

for all z; and y;. Finally, since {z;} and {y;} sample the sets XN B(0,K) and Y with
a constant number of points per wavelength, it is reasonable to expect

Gla,y)— 3 Glaren) (idtsa<cs,y>> ‘ —0(e) (2.3)
t=1 s=1

for any x € XNB(0,K) and y €Y. In order to represent such a low rank approxima-
tion, one only needs to store {¢s}1<s<t., {€tf1<t<t., and the matrix D = (dis)1<s 1<t -
Since all of them together takes at most O(t2) storage space, the storage requirement
of this approximation is extremely efficient.

3. Algorithm description

The structure of this algorithm is similar but more complicated when compared
to the one of the HF-FMM. Without loss of generality, we assume that the size of the
domain is K =22% for a positive integer L.

We start by constructing a quadtree that contains the points {p;}1<i<n. We
shall use B to denote a square in the quadtree and w for its width. A square B is
said to be in the low frequency regime if w <1 and in the high frequency regime if
w > 1. In the high frequency regime of the quadtree, no adaptivity is used, i.e., every
non-empty square is further partitioned until the width of the square is less than 1.
In the low frequency regime, a square B is partitioned as long as the number of points
in B is greater than a fixed constant N,. The value of N, is chosen to optimize the
computational complexity and, in practice, we pick N, =20.

3.1. Compact representations.

3.1.1. Low frequency regime. For a square B in the low frequency regime,
we follow the description of the kernel independent FMM in [38]. The near field N
is the union of the squares that are on the same level as B and adjacent to B. The
far field F'B is the complement of NZ. The interaction list I” contains the squares
in NP\N® on B’s level, where P is the parent square of B. There are two important
compact representations associated with each square B:

o {fB}; are the outgoing equivalent sources located at a set of points {eP}; C B.
{fB}; encode the potential in FB generated by the points in B and play the
role of the multipole expansion in the classical FMM.

o {uP}; are the incoming check potentials located at the same points {e?}, C B.
{uB}; encode the potential in B generated by the points in F'® and play the
role of the local expansion in the classical FMM.

3.1.2. High frequency regime. For a square B in the high frequency regime,
the near field N? is the union of the squares {A} that satisfy dist(A,B) <w?. The
far field F'B is the complement of NZ. The interaction list I contains the squares
in NP\N® on B’s level, where P is B’s parent square. Notice that the far field of
a square B in the high frequency regime is pushed away in order to be compatible
with the directional parabolic separation condition. In order to take advantage of the
directional separated approximations discussed in the previous section, the far field
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FB is further partitioned into a group of directional wedges, each belonging to a cone
with spanning angle O(1/w). We denote the set of the wedges of B by {W5-*}. figure
3.1 illustrates the angular decompositions for w=1,2, and 4.

Fic. 3.1. The far field is partitioned into wedges. From left to right, w=1,2,4. The radii are
1,4, and 16, respectively.

Let us consider the interaction between a square B of width w and one of its
wedges WE* using the separated approximations constructed in section 2 with Y =
B and X =W5B* In the following discussion, we write the quantities {e;}1<i<.,
{esti<s<t., and D = (dss)1<t,s<¢. With superscript ()B+* to denote their dependence
on B and ¢. However, for a fixed width w and a fixed direction ¢, the relative positions
of B and W5 remains the same. Therefore, the relative positions of {e” ’é}lgtgts
and {c;B ’é}lgtga respect to B’s center are independent of the absolute position of B.
Similarly, the matrix D+ only depends on w and ¢.

We first consider the potentials in W5 generated by the points in B. Applying
(2.3) to y=p; for each p; € B and summing them up with weight f; gives the following
estimate:

te

te
Z G(»T?Pi)fi—ZG(%ef’e) ng’é Z G(cPpi)fi < Z lfil | e
t=1

pi€B s=1 pi€EB pi€EB

This implies that we can place a set of sources

ts
Ot | D Gl (3.
s=1

pi€B 1<t<t.

at points {e“}1<i<;. to approximate the potential generated by the sources {f;}
located at points {p; € B}. Conceptually, the sources {f”*}1</<,. encode the po-
tential in W%¢ generated by the points in B and we call them the directional out-
going equivalent sources of B in direction £. It is clear from (3.1) that {ftB’e}lgtgtE
can be computed simply from kernel evaluations and a matrix multiplication with
DB = (d Nzrs<t.

Let us now reverse the situation and consider the potential in B generated by the
points {p; € WB*}. Since G(zr,y)=G(y,r), summing over (2.3) with xz=p; e WH*
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and weights f; leads us to the estimate

te

S G- G [ SaB S Gy
s=1

p; EW Bt t=1 piEWB.L

< Z |fil | &

p; EW B £

This means that, once the potentials

b= Z G apz fz (32)

B,
Pi€W 1<t<t.

at points {ef’e}1<t<t are given, we can then approximate at any y € B the potential
generated by the points in W5+, through a matrix multlphcatlon with DB = (dB Z)
and kernel evaluations. Conceptually, the potentials {ut }1§t§,.5 encode the potential
in B generated by the points in W2 and we call them the directional incoming check
potentials of B in direction .

In the high frequency regime, the directional outgoing equivalent sources
{ ftB’e}lgtStE will play the role of the multipole expansion in classical FMM and the
directional incoming check potentials {uftB ’L]}lgtgta will play the role of the local ex-
pansion in classical FMM. However, it is important to notice that these quantities
now depend on ¢ and thus vary from one wedge to another.

3.2. Translation operators. An important component of our algorithm
is the translation operators that transform the compact representations introduced
above. Though no multipole or local expansions are involved in our algorithm, we
follow the convention in [22, 32] and name these translation operators the M2M, L2L,
and L2L translations. The translation operators for squares in the low frequency
regime are detailed already in [38]. The translation operators in the high frequency
regime are slightly more complicated and the main reason is that the computations
are now directional.

3.2.1. M2M translation. For a square B and a direction ¢, the M2M
translation constructs the outgoing directional equivalent sources { ftB ’Z}t from the
equivalent sources of B’s children. There are two cases to consider. In the first case,
w=1 and the children squares {B.}. have only non-directional equivalent sources.
The M2M translation simply takes the equivalent sources {f7°}; . of these children
squares as the true sources and performs the following step similar to (3.1):

Plexa (S et ). 59
s c t

In the second case, w > 1. Now the children squares have directional equivalent sources
as well. Due to the nested structure of the wedges between B and B,, for each ¢ there
exists a direction ¢’ such that W5+ is contained in W5 for each child B, of B (see

figure 3.2). The M2M translation then takes the equivalent sources { f; “’el}t’c of the
children squares as the true source and performs the following step similar to (3.1)

Z@Zdﬁ’e (ZZG(CSB X 65“( ) 5”’”) . (3.4)
s c t
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FIG. 3.2. B is a square with width w>1. For any fized £, there exists £’ such that WB-t is
contained in W where C is any one of B’s children.

3.2.2. L2L translation. For a square B and a direction ¢, the L2L translation
constructs the incoming check potentials of B’s children from the incoming directional
check potentials {uf 1, of B. Again there are two cases to consider. In the first case
w=1 and the children squares have only non-directional check potentials {uZ"},. The
L2L translation then regards {uiB ,e}t as the true potentials generated by the points
in W5 and performs the following step:

upe =ulbe +ZG(et ,Cs (ZdB euf Z) . (3.5)

In the second case, w>1. Now the children squares have directional check potentials.
If WBe*" is the wedge of B, that contains W5+, the L2L translation then constructs

the check potentials {u’ C’K,}t through the following step:

¢uf~4+ZG Pt Bty <Zd§;‘u57‘>. (3.6)

t

3.2.3. M2L translation. Finally, the M2L translation is applied to all pairs
of squares A and B that are in each other’s interaction list. Suppose that B is in the
wedge WAL of A while A is in the wedge W4 of B. The implementation of the
M2L translation contains only one step:

uPt =ul —|—ZG (et el t, fw. (3.7

To summarize the discussion on the transition operators, we would like to emphasize
that all of these operators involve only kernel evaluation and matrix-vector multi-
plication with precomputed matrices. Therefore, they are simple to implement and
highly efficient.

3.3. Algorithm summary. Now we are ready to give the overall structure
of our new algorithm. An illustration of the various components of the algorithm is
given in figure 3.3.

1. Construct the quadtree. In the high frequency regime, each non-empty square
is partitioned dyadically. In the low frequency regime, the tree is constructed
adaptively and each leaf square contains at most NV, points.
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2. Travel up in the quadtree and visit the squares in the low frequency regime.
These squares have width less than 1. For each square B, compute its out-
going non-directional equivalent sources {fZ}; using the low frequency non-
directional M2M translation.

3. Travel up in the quadtree and visit the squares in the high frequency regime.
For every such square B and each ¢, use the high frequency directional
M2M translation (3.3) or (3.4) to construct the directional equivalent sources
{f2"};. We skip the squares with width greater than v/K since their inter-
action lists are empty.

4. Travel down in the quadtree and visit the squares in the high frequency
regime. For every such square B and for each direction ¢, perform the follow-
ing two steps:

(a) For each square A that is in W2 and also in B’s interaction list, perform
the high frequency directional M2L translation (3.7).

(b) Perform the high-frequency directional L2L translation (3.5) or (3.6) to
transform {u”"‘}; to the incoming check potentials for B’s children.
Again, we skip the squares with width greater than VK.

5. Travel down in the quadtree. For every square B in the low frequency regime,
we perform the following two steps:

(a) For each square A that is in B’s interaction list, use the low frequency
non-directional M2L translation to update B’s incoming non-directional
check potentials {uP};.

(b) Perform the low frequency non-directional L2L translation. Depending
on whether B is a leaf square or not, add the result either to the incoming
check potentials of B’s children or to the potentials at the original points
inside B.

6. Nearby interaction. For each leaf square B and for each p; € B, we add to u;
the nearby interaction from the points p; € N B,
The following theorem summarizes the complexity of the proposed algorithm.

THEOREM 3.1. Let S be a rectifiable curve in B(0,1/2). Suppose that for a fized K the
points {p;h1<i<n are samples of KS, where N=0O(K) and KS={K-p,pe S} (the
surface obtained by magnifying S by a factor of K ). Then, for any prescribed accuracy,
the proposed algorithm has a computational complezity O(KlogK)=O(NlogN).

The proof of this theorem follows closely the steps of Thm. 4.1 of [18]. The
main step of the proof is the observation that, for any fixed w > 1, there are at most
O(K/w) squares of size w and, for each of them, there are at most O(w) squares to
which we apply the M2L operator.

4. Numerical results

In this section, we report some numerical results to illustrate the properties of
our multidirectional algorithm. All of the computational results below are obtained
on a desktop computer with a 2.8 GHz CPU.

Let us first study the performance of the randomized procedure presented in
section 2. In Table 4.1, we list the number of terms in the separated approximation
for two sets X and Y for different choices of accuracy ¢ and square width w. Here r,
the radius of Y, is set to be V2w so that the square of width w is contained in Y.
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High frequency regime
High frequency directional
M2L operator

Outgoing directional
equivalent sources

» Incoming directional
check potentials

High frequency directional
M2M operator

High frequency directional
L2L operator

Incoming directional
check potentials

Outgoing directional
equivalent sources

High frequency directional
L2L operator

f High frequency directional
M2M operator

Outgoing non-directional
equivalent sources

»

Low frequency non-

4

directional M2L operator

Incoming non-directional
check potentials

Incoming non-directional
check potentials

Low frequency non-
directional L2L operator

Low frequency non-
directional M2M operator

Outgoing non-directional
equivalent sources

Incoming non-directional
check potentials

Low frequency regime

Fic. 3.3. A small part of the quadtree used in the computation. Each rectangular region stands
for a square of the quadtree. The diagram shows how the outgoing non-directional equivalent sources
from a leaf square have been transformed into incoming non-directional check potentials at other leaf
squares. Far field interaction involves directional computation in the high frequency regime.

We can see from Table 4.1 that the separation rank is bounded by a constant which
is independent of the values of w. This is consistent with Thm. 2.2. In fact it seems
that as w grows the separation rank decays slightly.

w=1l w=2 w=4 w=8 w=16 w=32 w=64 w=128
e=le-4 14 11 11 10 9 9 9 9
e=1le-6 19 16 14 13 12 12 12 11
e=1e-8 27 20 16 15 15 15 14 14

TABLE 4.1. The separation rank of the directional separated approximation for different choices
of requested accuracy € and square size w.

Next, we applied our algorithm to the N-body problems on several objects. In
our experiments, the boundary of each object is represented by a piecewise smooth
curve. For these tests, the points {p;}1<i<ny sample the boundary curve randomly
with about 20 points per wavelength. The sources {f;}1<i<n are generated from a
random distribution with mean 0. Suppose that we use {u;}1<;<n to denote the true
discrete potentials and {ul}1<;<n to denote the approximations obtained through
our algorithm. In order to estimate the relative error, we pick a set S of 200 points
from {p;}1<i<ny and compute the accuracy with

Zies|ui_“g|2

EiES‘uiP ’

where the true potentials {u;};cs are computed by using direct evaluation.
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Before reporting the results, let us first summarize the notations. N is the number
of points, K is the size of the problem in terms of the wavelength, ¢ is the prescribed
error threshold such that the final error is to be bounded by a small constant multiple
of e, T, is the running time of our algorithm in seconds, Ty is the estimated running
time of the direct evaluation in seconds, Ty/T, is the speedup factor, and ¢, is the
resulting error of our algorithm.

| n!m s ‘ |
e TTTTTTT $
g Es
i's Fa
. TTTTITTT ﬁ
[ | ‘ [
(K,e) N Tu(sec)  Ty(sec) T4/T, €a

(2048,1e-4) | 1.13e+5 3.40e+1 8.05e+3 2.37e+2 1.25e-4
(8192,1e-4) | 4.50e+5 1.56e+2 1.28e+5 8.21le+2 1.3le-4
(32768,1e-4) | 1.80e+6 7.07e+2 2.06e+6 2.91e+3 1.80e-4
(2048,1e-6) | 1.13e+5 5.30e+1 8.00e+3 1.5le+2 7.88e-7
(8192,1e-6) | 4.50e+5 2.39e+2 1.28e+5 5.37e+2 9.98e-7
(32768,1e-6) | 1.80e+6 1.08e+3 2.06e+6 1.91e+3 1.00e-6
(2048,1e-8) | 1.13e+5 8.20e+1 8.05e+3 9.82e+1 8.48e-9
(8192,1e-8) | 4.50e+5 3.57e+2 1.29e+5 3.60e+2 1.18¢-8
(32768,1e-8) | 1.80e+6 1.58e+3 2.07e+6 1.3le+3 1.30e-8

TABLE 4.2. Results of a circle with the Helmholtz kernel. N is the number of points, K is
the size of the problem in terms of the wavelength, € is the prescribed error threshold such that the
final error is to be bounded by a constant multiple of €, T, is the running time of our algorithm in
seconds, Ty is the estimated running time of the direct evaluation in seconds, Tgq/Tq is the speedup
factor, and e, is the estimated error of our algorithm.

The first example is a circle and the results are summarized in Table 4.2. The
second example is an airfoil and the results are shown in Table 4.3. The final example
is a kite-shaped object and we report the numbers in Table 4.4. These numbers
demonstrate clearly that our algorithm scales exactly like O(NlogN) in terms of the
number of points. Furthermore, the error seems to grow only slightly as we increase
the number of points, indicating that the separated approximations are stable.

Compared with the results presented in [8], our algorithm is slower by a factor
of 7 to 8. The reason is that our multidirectional algorithm heavily uses the kernel
evaluation formula. Since the 2D Helmholtz kernel is a Hankel function, its com-
putational procedure is rather slow. On the other hand, all of the high frequency
translations in [8] are precomputed and stored in the diagonal form and no special
function evaluation is required during the computation.
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@

(K,e) N Tu(sec)  Ty(sec) T,/T, €a
(2048,1e-4) | 7.82e+4 2.00e+1 3.87e+3 1.94e+2 1.15e-4
(8192,1e-4) | 3.13e+5 8.80e+1 6.17e+4 7.02e+2 1.21e-4
(32768,1e-4) | 1.25e+6 3.90e+2 9.90e+5 2.54e+3 1.07e-4
(2048,1e-6) | 7.82e+4 3.20e+1 3.87e+3 1.2le+2 1.04e-6
(8192,1e-6) | 3.13e+5 1.38e+2 6.20e+4 4.50e+2  9.65e-7
(32768,1e-6) | 1.25e+6 6.05e+2 1.0le+6 1.67e+3 1.20e-6
(2048,1e-8) | 7.82e+4 4.70e+1 3.87e+3 8.24e+1 8.58¢-9
(8192,1e-8) | 3.13e+5 2.03e+2 6.22e+4 3.06e+2 1.69e-8
(32768,1e-8) | 1.25e+6 8.78¢+2 9.95e+5 1.13e+3 1.33e-8

TABLE 4.3. Results of an airfoil with the Helmholtz kernel.
K HH : IN|
g T
I _P
- 1
in s
T Jﬁ
¥ R : 1

(K,e) N T.(sec)  Ty(sec) Ty/T, €a
(2048,1e-4) | 1.13e+5 4.00e+1 8.11le+3 2.03e+2 1.08e-4
(8192,1e-4) | 4.53e+5 1.77e+2 1.30e+5 7.36e+2 1.33e-4
(32768,1e-4) | 1.8le+6 8.04de+2 2.09e+6 2.60e+3 1.4le-4
(2048,1e-6) | 1.13e+5 6.10e+1 8.11le+3 1.33e+2  9.35e-7
(8192,1e-6) | 4.53e+5 2.72e+2 1.30e+5 4.78e+2 9.15e-7
(32768,1e-6) | 1.81e+6 1.24e+3 2.10e+6 1.70e+3 8.80e-7
(2048,1e-8) | 1.13e+5 9.20e+1 8.16e+3 8.87e+1 1.45e-8
(8192,1e-8) | 4.53e+5 4.05e+2 1.30e+5 3.22e+2 1.31e-8
(32768,1e-8) | 1.81e+6 1.80e+3 2.1le+6 1.17e+3 1.52e-8

TABLE 4.4. Results of a kite-shaped model with the Helmholtz kernel.

341
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5. Acoustic scattering problems
In this section, we apply our algorithm to the solution of the BIE formulation

g [ (TGl ) o)y =" (2 6.1)
of the 2D scattering problem mentioned in section 1. Here, we report the numerical
results for the smooth objects in Tables 4.2 and 4.4.

In our experiments, the incoming field u'"¢(z) is equal to e*™*'¢ with d=(1,0).
We set the coupling constant n=m and discretize (5.1) with the standard colloca-
tion method [10, 25] with piecewise linear basis functions. The boundary curve is
discretized with about 15 points per wavelength. We use the standard Gaussian
quadrature weights to integrate the interaction between two non-adjacent elements.
The adjacent interaction has a logarithmic singularity due to the single layer part of
the kernel and we integrate it with the generalized Gaussian quadrature rule described
in [27]. The resulting discrete system is solved iteratively with the GMRES algorithm
[34]. We choose a relative tolerance of le-3 and set the restarted number to be 80.
Within each iteration of the GMRES solver, the application of the integral operator
in (5.1) is accelerated using our multidirectional algorithm with a prescribed accuracy
le-4.

Table 5.1 summarizes the numerical results for the circle with its size equal to
1024 to 8192 wavelengths. Here T; is the averaged time of each iteration, NV; is the
number of iterations, and T; is the total time. Table 5.2 reports the results of the
kite-shaped object shown in Table 4.4. From the tables, we observe that the number
of iterations grows only slowly as we double the size of the problem each time.

K N Ti(sec) N;  Ty(sec)
1024 | 5.15e+04 3.10e+01 27 8.38e+02
2048 | 1.03e+05 6.40e4+01 32  2.05e+03
4096 | 2.06e+05 1.42e+02 39 5.54e+03
8192 | 4.12e+05 3.82e4+02 47 1.79e+04

TABLE 5.1. Timings of computing the scattered field of the circle. K is the size of the problem
in terms of the wavelength, N is the number of quadrature points, T; is the averaged time of each
iteration, N; is the number of iterations, and Ty is the total time.

K N T;(sec) N;  Ty(sec)
1024 | 5.15e+04 3.10e+01 27 8.41e+402
2048 | 1.03e+05 6.60e4+01 32 2.12e+03
4096 | 2.06e4+05 1.47e4+02 39 5.79e+03
8192 | 4.12e+05 4.45e4+02 48 2.13e+04

TABLE 5.2. Timings of computing the scattered field of the kite-shaped object.

In figure 5.1, we display the scattered field of the kite-shaped object in a region
that contains caustics. It clearly shows the geometric optics phenomenon, which is
naturally expected when the wavelength is small compared to the size of the object.
Here, the significance is that one can indeed bring the gap between the finite dif-
ference or finite element approach in the low frequency regime and the geometric
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optics approach in the high frequency regime to address the scattering problems at
all frequencies.

-100
-200
-300
-400

-500
-600 -400 -200 0 200 -410 -400 -390 -380 -370 -360

Fic. 5.1. Scattered field of the kite-shaped object with K =1024. Left: a square region that
contains the caustics. Right: the real part of the scattered field inside the square. The field is
sampled at 8 points per wavelength.

6. Conclusions

In this paper, we described a directional multiscale algorithm for computing the
N-body problem for the high frequency Helmholtz kernel in two dimensions. The
approach follows the framework described in [18]. By using the directional low rank
representations for regions that follow the directional parabolic separation condition,
our algorithm achieves the optimal O(NlogN) complexity. We have also introduced
an improved randomized procedure for constructing the low rank separated approxi-
mations. The numerical results have shown that our algorithm is capable of addressing
very large scale problems in high frequency scattering.

One direction of future research is to find a rigorous proof for the randomized
procedure proposed in section 2. Another interesting direction for future research is
to apply this kind of directional multiscale idea to other problems with oscillatory
behavior, in both two and three dimensions. One typical example is the computation
of the far field pattern of a scattered field [10, 37].
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