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AN OPTIMAL L1-MINIMIZATION ALGORITHM FOR

STATIONARY HAMILTON-JACOBI EQUATIONS∗

JEAN-LUC GUERMOND† AND BOJAN POPOV‡

Abstract. We describe an algorithm for solving steady one-dimensional convex-like Hamilton-
Jacobi equations using a L1-minimization technique on piecewise linear approximations. For a large
class of convex Hamiltonians, the algorithm is proven to be convergent and of optimal complexity
whenever the viscosity solution is q-semiconcave. Numerical results are presented to illustrate the
performance of the method.
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1. Introduction

This paper is concerned with the approximation of stationary Hamilton-Jacobi
equations in one space dimension using piecewise linear finite elements and a mini-
mization technique in L1. This work is part of a research program aiming at exploring
the potential of nonlinear approximation techniques based on L1-minimization.

L1-based approximation techniques have been introduced by Lavery [13], [14]
and further explored in Guermond [7]. Numerical tests reported in these references
suggest that L1-based minimization techniques can compute the viscosity solution of
some first-order PDEs. This fact has been proved in one space dimension for linear
first-order PDEs equipped with ill-posed boundary conditions in Lavery [14], Guer-
mond and Popov [9], and Guermond, Marpeau, and Popov [8]. This idea has been
applied to stationary Hamilton-Jacobi equations in one and two space dimensions in
Guermond and Popov [10, 11]. It is shown in [10, 11] that when equipped with an
appropriate entropy, the L1-minimization algorithm constructs a sequence of approx-
imate solutions that converges to the unique viscosity solution of the equation. A
key property of this approach is that the entropy is not viscosity-based and thus the
graph of the approximate solution is not smeared in the vicinity of points where the
gradient is discontinuous; this feature puts this approach in the same class as the so-
called fast-marching [17, 16, 18], fast-sweeping [19] and fast semi-Lagrangian methods
[3, 5, 6]. The price to be paid for this highly-regarded property is that of solving a
minimization problem in L1 using a non-smooth and non-convex functional. In the
wake of [8], we show in the present paper that, provided the Hamiltonian satisfies some
convexity assumptions, it is possible to approximately solve the minimization prob-
lem associated with one-dimensional stationary Hamilton-Jacobi equations in O(N)
operations, where N is the number of degrees of freedom involved, and the sequence
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of approximate minimizers (we henceforth call them almost minimizers) converges to
the viscosity solution.

It turns out that the algorithm proposed here has similarities with fast-marching
[17, 16, 18], fast-sweeping [19], and fast semi-Lagrangian methods [3, 5, 6]. In this
respect we suspect that some of the ideas developed in the present paper together with
the theory from [10, 11] could be useful to prove convergence of high-order versions
of the fast-marching, fast-sweeping and semi-Lagrangian methods.

The paper is organized as follows. We describe the continuous and the discrete
settings in section 2. The algorithm that we propose for approximately solving the
minimization problem is described in section 3. We prove in section 4 that under ap-
propriate simplifying assumptions the algorithm yields an almost minimizer in O(N)
operations. The main result of this paper is Theorem 4.6. We finish in section 5 by
numerically illustrating the capabilities of the proposed algorithm. Conclusions and
comments are reported section 6.

2. The problem setting

In this section we describe the problem that we want to solve (i.e., one-dimensional
stationary Hamilton-Jacobi equations) and we introduce the discrete setting that is
used to construct an approximate solution.

2.1. The continuous problem. We consider the following one-dimensional
stationary Hamilton-Jacobi equation

H(x,u,u′)=0, in (0,1), with u(0)=0, u(1)=0, (2.1)

where [0,1] is a bounded interval.
We assume that the Hamiltonian is such that there exists a function u that solves

(2.1) almost everywhere with the following properties:

u∈C0,1[0,1], (2.2)

u is q-semiconcave for some q >1, (2.3)

where we understand q-semiconcavity in the following sense:

Definition 2.1. A function u in C0,1[0,1] is said to be q-semiconcave, q >1, if there
is a concave function vc ∈C0,1[0,1] and a function w∈W 2,q(0,1) so that u=vc +w.

Moreover, we assume the following

{

A solution to (2.1) satisfying (2.2)–(2.3)
is the unique viscosity solution.

(2.4)

A typical example of the above setting is the eikonal equation or any stationary
Hamilton-Jacobi equations derived from scalar conservation laws with convex flux,
see Barles [1], Evans [4], Kružkov [12], or Lions and Souganidis [15]. The goal of this
paper is to construct a sequence of approximate solutions to (2.1) by using continuous
finite elements and by minimizing the residual in L1(Ω).

Remark 2.1. Recall that a function v in C0,1[0,1] is usually called uniformly semicon-
cave in textbooks if and only if it can be decomposed into v(x)=vc(x)+cvx2 where
cv is a nonnegative constant and vc is concave and in C0,1[0,1]. Definition 2.1 is a
slight generalization of semiconcavity.
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To be able to collectively refer to (2.2)–(2.3) in the rest of the paper, we define

X ={v∈C0,1[0,1];v is q-semiconcave}. (2.5)

Remark 2.2. Note that (2.2)–(2.3) implies that u′∈BV(a,b). To see this, observe
that Definition 2.1 implies that u=vc +w where vc ∈C0,1[0,1] is concave and w∈
W 2,p(0,1)⊂W 2,1(0,1). Hence,

|u′|BV(a,b)≤2‖v′
c‖L∞(0,1) +‖w′‖BV(a,b).

2.2. The discrete problem. Let {Th}h>0 be an indexed family of finite ele-
ment meshes. We assume that for any given h>0, Th is a partition of the interval [0,1].
Namely, for all indicies h>0, there is an integer n>0 such that Th =∪n

i=0[xi,xi+1]
with x0 =0, xn+1 =1, and hi =xi+1−xi. The quantity h=max0≤i≤nhi is called the
meshsize of the partition Th. Henceforth we refer to any cell [xi,xi+1]∈Th by its
index i∈{0,... ,n}. We denote Vh ={xi; 0≤ i≤n} and Vi

h =Vh∩(0,1)={xi}n
i=1 to be

the collection of the mesh vertices and interior mesh vertices, respectively. To avoid
extra technicalities, we assume that the mesh is quasi-uniform; that is, there is cm >0,
uniform in h so that

cmh≤hi ≤h, ∀i∈{0,... ,n}. (2.6)

Let k≥1 be an integer and denote by Pk the set of real-valued polynomials in
[0,1] of total degree at most k. We introduce

Xh ={vh ∈C0[0,1];vh|K ∈Pk, ∀K ∈Th;vh(0)=0, vh(1)=0} (2.7)

X(h) =X +Xh. (2.8)

Let (t)+ := 1
2 (t+ |t|) denote the positive part of t for all t∈R. For every function v

in X(h) we denote {−∂nv}+ :Vi
h −→R

+ to be the map such that for all {x}=K1∩K2∈
Vi

h,

{−∂nv}+(x)=
(

− 1
2 (v′

|K1
(x)·n1 +v′

|K2
(x)·n2)

)

+
,

where n1 and n2 are the unit outward normals to the mesh cells K1 and K2 at
x, respectively. Note that, if K1 =[xi−1,xi] and K2 =[xi,xi+1], then 2{−∂nv}(xi)
is the jump of v′

h at xi, i.e., 2{−∂nv}(xi)=v′
h(xi +0)−v′

h(xi−0). That gives
2{−∂nv}+(xi)=(v′

h(xi +0)−v′
h(xi−0))+.

Recalling that there is some q >1 so that u is q-semi-concave, we now define a
fixed real number p such that

1<p≤ q. (2.9)

We also define the functional J :X(h)∋v 7−→Jh(v)∈R
+ by

J(v)=

∫ b

a

|H(x,v,v′)|dx+h
∑

K∈Th

∫

K

(v′′(x))p
+dx+h2−p

∑

xi∈Vi
h

(

2{−∂nv}+ (xi)
)p

. (2.10)
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For every function v in X(h) we refer to
∫ 1

0
|H(x,v,v′)|dx as the residual. The two extra

terms in the right-hand side above are referred to as the volume entropy term and
the interface entropy term. The presence of these two terms is motivated by the fact
that the viscosity solution u is q-semiconcave. Actually, an immediate consequence
of q-semiconcavity is that there are c>0 and c′ >0 such that for all δ >0 and all
ω⊂ (0,1) so that ω±δ⊂ (0,1), the following hold:

u(x+δ)−2u(x)+u(x−δ)≤ cδ2− 1
p , ∀x∈ω (2.11)

‖(u(·+δ)−2u(·)+u(·−δ))+‖Lp(ω)≤ c′ δ2. (2.12)

Henceforth c and c′ denote generic constants which may vary at each occurrence but
do not depend on δ nor on the mesh parameter h.

The volume entropy term and the interface entropy term in (2.10) are discrete
versions of the Lp-norm of the positive part of the second derivative of v. According
to (2.12), the discrete entropy of u is of order h. If we denote Ihu to be the piecewise
linear interpolant of u in Xh, one can show that J(Ih(u))≤ ch and both the residual
and the discrete entropy of Ih(u) are of order h; i.e., they are balanced, (see [10,
Lem. 4.2] for details).

Remark 2.3. Whenever v∈C0,1[0,1] is a concave function, for example in the case
of the eikonal equation, the volume and interface entropies in (2.10) are zero, These
two terms do not add extra viscosity; they are meant to prevent the occurrence of
large positive second derivatives.

We now focus our attention on the following minimization problem: we seek uh

in Xh such that

J(uh)= inf
vh∈Xh

J(vh). (2.13)

It is shown in [10] that J(uh)≤ ch, where c does not depend on h. Since in practice
uh might not be computed exactly or might be approximated to some extent through
some iterative process (see the details in the next section), we now define the notion
of an almost minimizer. A family of functions {vh ∈Xh}h>0 is said to be a sequence
of almost minimizers if there is c>0, uniform in h, such that for all h>0,

J(vh)≤ ch. (2.14)

For instance, the family {Ih(u)}h>0 is a sequence of almost minimizers, thus showing
that the class of almost minimizers is not empty. The following theorem is proved in
[10, Thm. 6.2].

Theorem 2.2. Under the assumptions above on the discrete problem and provided
that the structure hypotheses (2.2)–(2.3)–(2.4) hold, every sequence of almost min-
imizers converges strongly in W 1,1(0,1)∩C0[0,1] to the unique viscosity solution to
(2.1).

This result has been extended to two-dimensional stationary Hamilton-Jacobi
equations in [11].

The goal of the rest of the paper is to construct a fast algorithm to compute a
sequence of almost minimizers for (2.13) using a piecewise linear approximation, i.e.,
k =1. The basic assumptions for convergence are (2.2)–(2.3)–(2.4) but it is not yet
clear if a minimizer for (2.13) can be computed quickly. By assuming more restrictive
structural properties on the Hamiltonian (see (4.1) to (4.6)) we are going to prove
that we can compute an almost minimizer for (2.13) with optimal complexity.
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3. The algorithm

In this section we present an algorithm that constructs a sequence of almost
minimizers for (2.13) using a discrete version of the functional (2.10). We henceforth
assume that Xh is composed of piecewise linear functions, i.e., k =1.

3.1. The approximate functional. We approximate the functional J
by applying the midpoint rule to the integrals over the intervals K ∈Th. For this
purpose we set xi+ 1

2
= 1

2 (xi +xi+1) and for all v∈X(h), we set vl =v(xl) for all

l∈{0, 1
2 ,1,... ,n+ 1

2 ,n+1} and σi(v)=(vi+1−vi)h
−1
i for all i∈{0,1,... ,n}. We then

define

Jh(v) :=

n
∑

i=0

Ri(v)+h2−2p
n

∑

i=0

Ei(v), (3.1)

where we use the notation

Ri(v)=hi|H(xi+ 1
2
,vi+ 1

2
,v′

i+ 1
2

)|, (3.2)

Ei(v)=ωi(v)(σi(v)−σi−1(v))
p
+ , (3.3)

and define E0(v)=hp
0(σ0(v))p and En(v)=hp

n(σn(v))p which correspond to the con-
stant extensions v−1 :=v0 and vn+2 :=vn+1. The weight function ωi is defined as
follows:

ωi(v)=hp
i−1S(σi−1(v),σi(v))+hp

i S(σi(v),σi−1(v)), (3.4)

S(a,b)= 1
2 (sgn(|a|−|b|)+1), where sgn is the sign function. (3.5)

Note that S(a,b) returns 1 if |a|> |b|, 1
2 if |a|= |b|, and 0 otherwise. Therefore, the

weight function ωi returns hp
i−1 if the absolute value of σi−1(v) is larger than the

absolute value of σi(v). When the mesh is uniform, i.e., hi =h for all i∈{0,... ,n},
ωi(v)=hp and the interior entropy terms in Jh(v) coincide with the entropy terms
of J(v). If the mesh is not uniform, but quasi-uniform, the entropy terms above are
equivalent. Note that the discrete functional contains entropy terms at the boundary
corresponding to the constant extensions.

The discrete problem that we now consider is the following: we seek uh ∈Xh such
that

Jh(uh)= min
vh∈Xh

Jh(vh). (3.6)

3.2. Description of the algorithm. In this section we describe an algo-
rithm for computing an almost minimizer of (3.6), which will also turn out to be an
almost minimizer for (2.13) provided more restrictive assumptions on the Hamiltoni-
ans and the mesh are assumed (see (4.1)–(4.7)). The algorithm is composed of two
parts described in Algorithm 1 and Algorithm 2, respectively. Algorithm 1 constructs
an initial guess and Algorithm 2 improves on this guess using a local minimization
strategy. Due to the nonlinearity of the Hamiltonian, problem (3.6) is not convex; as
a result the initialization must be done carefully in order to avoid being trapped in
local minimums.

Algorithm 1 and Algorithm 2 involve set-valued maps ti,l, i∈{0,...n}, l∈{i,i+1}
defined as follows. Let us set

ri(z,s)=hiH(xi+ 1
2
, 1
2 (z+s),h−1

i (s−z)), ∀z,s∈R. (3.7)
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Then we define the multi-valued (i.e., set-valued) nonlinear functions ti,l, so that
ri(z,ti,i(z))=0 and ri(ti,i+1(s),s)=0. Note that due to the possible nonlinear char-
acter of the Hamiltonian, ti,i(z) and ti,i+1(z) are sets and these sets may be empty.

3.2.1. Description of Algorithm 1. Algorithm 1 proceeds from the bound-
ary to the interior and on the way selects a guess by minimizing the functional Jh.
The traversing of the domain can be done in many ways: from left to right, from right
to left, or from both left and right. The traversing strategy used in Algorithm 1 is
done simultaneously from the left and the right sides of the domain.

More specifically, Algorithm 1 proceeds as follows: First we define some arbitrarily
large value uinit. Then we define a list of cells that must be dealt with (at most two),
say cell list; this list is initialized with cell 0 and cell n. Associated with cell list

there is the list of the nodes of the cells in cell list that have been updated at the
previous iteration, say node list; this list is initialized with node 0 and node n+1,
i.e., v0 and vn+1 are set to zero, respectively (or the appropriate nonzero Dirichlet
condition is enforced). Two ghost values v−1 and vn+2, corresponding to constant
extensions, are defined by v−1 =v0 and vn+2 =v0. Let c be the index of a cell in
cell list and i∈node list be the node of cell c that has already been updated.
Note that i= c or i= c+1. If the second node of c, say, j, has been updated in the
past, the algorithm stops and c is called the breakdown cell. The field v thus obtained
will serve as the initial guess for Algorithm 2. If j has not been updated we then
define c

′ to be the cell that touches c at node j. The second node of c
′ is denoted by

k. We then define c
′′ to be the cell that touches c

′ at node k and and we denote l
to be the second node of c

′′ (see figure 3.1). The old residual is computed by setting
ṽ =v and ṽj = ṽk = ṽl =uinit; in other words ṽ is equal to v up to node i and the node
values of ṽ beyond node i are set to uinit. Since we are going to modify only the node
value vj , the only parts of the residual that vary are

Jj(v) :=Rc(v)+Rc
′(v)+h2−2p(Ei(v)+Ej(v)+Ek(v))

=Rj−1(v)+Rj(v)+h2−2p(Ej−1(v)+Ej(v)+Ej+1(v)).

We then set Jold =Jj(ṽ).

−1 10 i1 j1 k1 l1 i2j2k2l2 n+1 n+2

c1 c
′

1 c
′′

1 c2c
′

2c
′′

2

uinit

Figure 3.1. Notation and schematic representation of Algorithm 1.

Now we compute the set tc,i(vi) and remove cell c and node i from cell list and
node list, respectively. If the set tc,i(vi) is not empty, we consider all the values in
tc,i(vi) to be candidates for updating vj . For all z∈ tc,i(vi) we define ṽ(z) by setting
ṽ(z)=v and we correct the values at nodes j, k, and l by setting ṽj(z)=z, ṽk(z)=
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Algorithm 1 Initialization for (3.6).

1: Define uinit large enough; Set v0 =vn+1 =0 and define v−1 =vn+2 =0
2: Initialize array updated(1:n) = false

3: Put cell 0 in cell list; Put node 0 in node list

4: Put cell n in cell list; Put node n+1 in node list

5: while (cell list not empty) do

6: Take c∈ cell list; Take i∈ node list; Let j 6= i be the other node of c

7: Let c
′ 6= c be s.t. c

′∩c={xj}; Let k 6= j be the other node of c
′

8: Let c
′′ 6= c

′ be s.t. c
′′∩c

′ ={xk}; Let l 6=k be the other node of c
′′

9: if (updated(j)=true) then

10: Store v and cell index cbreak← c; Stop
11: end if

12: ṽ←v; ṽj ←uinit; ṽk ←uinit; ṽl ←uinit

13: Jold←|Rc(ṽ)|+ |Rc
′(ṽ)|+h2−2p(Ei(ṽ)+Ej(ṽ)+Ek(ṽ))

14: Remove cell c from cell list; Remove node i from node list

15: Compute the set tc,i(vi)
16: if (set tc,i(vi) not empty) then

17: ṽ←v; ṽj ← tc,i(vi); ṽk ←uinit; ṽl ←uinit

18: Pick v̄∈ ṽ with smallest residual |Rc
′(v̄)|+h2−2p(Ei(v̄)+Ej(v̄)+Ek(v̄))

19: Jnew←|Rc
′(v̄)|+h2−2p(Ei(v̄)+Ej(v̄)+Ek(v̄))

20: if (Jnew <Jold) then

21: vj ← v̄j ; updated(j) = true

22: Put cell c
′ in cell list; Put node j in node list

23: end if

24: end if

25: end while

26: Breakdown; Problem is ill-posed; Stop

ṽl(z)=uinit. We then define z̄ :=argminz∈tc,i(vi)Jj(ṽ(z)), v̄ := ṽ(z̄) and set Jnew =
Jj(v̄). If Jold >Jnew, we set vj = v̄j and record the fact that node j has been updated,
and cell c

′ and node j are put in cell list and node list, respectively. Then the
algorithm proceeds until every node has been updated. A schematics representation
of the initialization algorithm is shown in figure 3.1.

3.2.2. Description of Algorithm 2. At the end of Algorithm 1, we have a
field v that satisfies Rc(v)=0 for all c∈{0,... ,n}\{cbreak}. The goal of Algorithm 2 is
to move around the breakdown cell cbreak by performing local L1-minimization until
the functional Jh cannot be further minimized. More precisely, Algorithm 2 proceeds
as follows. We start with the field v that has been computed in Algorithm 1. Let i
be the index of the breakdown cell. Define

Ji,loc(w)

=Ri−1(w)+Ri(w)+Ri+1(w)+h2−2p(Ei−1(w)+Ei(w)+Ei+1(w)+Ei+2(w)),

and set Jold =Ji,loc(v). Now we compute the two sets ti,i(vi) and ti,i+1(vi+1) and
we denote Λi ={0}× ti,i(vi)∪ ti,i+1(vi+1)×{0}. If the set Λi is empty the algorithm
stops and v is proposed as an almost minimizer. If the set Λi is not empty, we define
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−1 10 i−1 i i+1 i+2 n+1 n+2

breakdown cell

ff

ti,i(vi)

ti,i+1(vi+1)



Figure 3.2. Notation and schematic representation of Algorithm 2.

for all z := (z1,z2)∈Λi the function w(z)∈Xh whose point values are

(v0,... ,vi−1,vi,z2,vi+2,... ,vn+1) if z1 =0,

(v0,... ,vi−1,z1,vi+1,vi+2,... ,vn+1) if z2 =0.

We then define z̄ =argminz∈Λi
Ji,loc(w(z)) and we set Jnew =Ji,loc(w(z̄)). If Jold >

Jnew, then we update v as follows. If z̄1 =0 we set vi+1 = z̄2 and cell i+1 becomes the
new breakdown cell, otherwise we set vi = z̄1 and cell i−1 becomes the new breakdown
cell. In both cases we record the fact that something has been done. If Jold≥Jnew

we record the fact that nothing has been done.

Then the algorithm proceeds until nothing can be done to decrease the residual
using the above strategy. A schematics representation of Algorithm 2 is shown in
figure 3.2.

Remark 3.1. Algorithm 1 has some resemblance with the fast marching method
[17]. The fast marching algorithm consists of computing the extremal solutions start-
ing from both ends of the interval and choosing the minimal one at each point in
the domain. Algorithm 1 deviates from this technique by stopping when the two
extremal branches meet. Algorithm 2 has some common features with fast sweeping
[19]. The two main differences between our approach and the fast marching and fast
sweeping techniques are that we use central approximation of the equation (i.e., we
do not use any special discretization of the Hamiltonian) and the selection principle
is incorporated in the entropy part of the functional Jh.

4. Convergence analysis

The purpose of this section is to show that under appropriate simplifying assump-
tions, the combination of Algorithm 1 and Algorithm 2 yields a sequence of almost
minimizers for (2.13) and the algorithmic complexity is O(dim(Xh)).

4.1. Additional structural hypotheses. In order to facilitate the analysis of
the algorithms we henceforth assume that the Hamiltonian can be further decomposed
as follows:

H(x,u(x),u′(x))=u(x)+F (u′(x))−g(x). (4.1)
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Algorithm 2 L1-switch for (3.6).

Start with initial guess from Algorithm 1: v and the breakdown cell i
loop

Jold←Ji,loc(v)
Compute the set Λi ={0}× ti,i(vi)∪ ti,i+1(vi+1)×{0}; nothing done ← true

if (set Λi not empty) then

Compute z̄ =argminz∈Λi
Ji,loc(w(z))

Jnew←Ji.loc(w(z̄))
if (Jnew <Jold) then

v←w(z̄); nothing done ← false

if z̄1 =0 then

Cell i+1 is the new breakdown cell
else

Cell i−1 is the new breakdown cell
end if

end if

end if

if (nothing done=true) then

Done; Stop
end if

end loop

The function F is defined on R, belongs to C0,1[0,1], and is assumed to satisfy the
following properties:

F is convex, (4.2)

F (k)≥ c1|k|+c2
0k

2, γ := c1 +c0 >0, min(c1,c0)≥0, (4.3)

F (0)=0. (4.4)

We assume g to be in C0,1[0,1] and that it satisfies

µ0 := 1
4e−γ−1

g(0)− 1
2γ−1

√

g(0)−
∫ 1

0

(−g′(x))+dx>0, (4.5)

µ1 := 1
4e−γ−1

g(1)− 1
2γ−1

√

g(1)−
∫ 1

0

(g′(x))+dx>0. (4.6)

Note that (4.5) also implies λ0 := 1
4e−γ−1

g(0)− 1
2γ−1

√

g(0)>0 (respectively λ1 :=
1
4e−γ−1

g(1)− 1
2γ−1

√

g(1)>0). Also note that (4.5) requires g to be a positive func-

tion, i.e., g(x)≥g(0)−
∫ x

0
(−g′(t))+dt>0 for all x∈ [0,1] (a similar remark holds for

(4.6)).
We now make a technical hypothesis concerning the mesh, namely, we assume

that either one of the following statements is true:

(i) The mesh is uniform.

(ii) There are cg >0 and θ≥1, such that F (k)≤ cg(|k|θ +1) for all
k∈R and p>θ+1.

(4.7)

In other words, if the mesh is uniform no additional assumption on F is needed, but
if the mesh is non-uniform, we require a growth condition on F .
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4.2. Analysis of the extremal positive solutions. The purpose of this
section is to define the so-called forward and backward extremal positive solutions,
henceforth denoted by f and b, respectively, and to state some of their properties.

The extremal positive solutions will be used to generate the initial guess for the
iterative technique. The extremal solutions f and b are defined to be piecewise linear
on the mesh Th with f0 =0 and bn+1 =0. To avoid technicalities we extend f on
[x−1,0] and b on [1,xn+2], where x−1 :=x0−h0 and xn+2 :=xn+1 +hn, by setting
f−1 =0 and bn+2 =0. The node values fi, i≥1, are defined inductively as follows.
Consider the function

φi(k)=fi +
1
2khi +F (k)−gi+ 1

2
(4.8)

and let k+
i be a positive root of φi(k)=0, then set fi+1 =fi +k+

i hi. Similarly the
node values of b are defined backwards by looking for a negative root, κ−

i , of

ψi(κ)= bi+1− 1
2κhi +F (κ)−gi+ 1

2
, (4.9)

and by setting bi = bi+1−κ−
i hi. The following lemma justifies the above construction.

Lemma 4.1. Under the hypotheses (4.1)–(4.6), the following statements hold:

(i) φi(k)=0 has a unique positive and a unique negative root for all i∈{1,... ,n}.
The same holds for the equation ψi(κ)=0. Therefore, f and b are uniquely
defined.

(ii) µ0≤gi+ 1
2
−fi, (resp. µ1≤gi+ 1

2
−bi+1) for all i∈{0,... ,n}.

(iii) max(‖f‖L∞ ,‖b‖L∞)≤‖g‖L∞ .

(iv) max(‖f ′‖L∞ ,‖b′‖L∞)≤γ−1(‖g‖L∞ +‖g‖
1
2

L∞).

Proof. We prove the statements only for f . The proofs for b are analogous. We
work by induction. Assume that fi−gi+ 1

2
<0; this true for i=0 owing to (4.4) and

since g is a positive function.
Observe that φi(0)=fi−gi+ 1

2
<0 and φi is strictly increasing. Actually, owing to

(4.3), φi goes to +∞ when k goes to −∞ and when k to +∞. As a result, φi(k)=0
has a negative root and a positive root, say k−

i <0 and k+
i >0, respectively. The

convexity assumption (4.2) implies that the negative root is unique and the positive
root is unique. To alleviate notation and since the context is clear we use ki instead
of k+

i in the rest of the proof. It is then legitimate to define fi+1 =fi +kihi.
We now need to prove that fi+1 satisfies the induction hypotheses, i.e., we want

to prove that fi+1−gi+ 3
2
<0. Define

ϕi(k)=fi +
1
2khi +c1k+c2

0k
2−gi+ 1

2
.

Hypothesis (4.3) implies that φi(k)≥ϕi(k) for all k∈R. Let li be the unique positive
root of ϕi(k)=0. By construction

ki ≤ li ≤ lmax :=min

(

gi+ 1
2
−fi

c1 + 1
2hi

,
(gi+ 1

2
−fi)

1
2

c0

)

.

Moreover,

gi+ 3
2
−fi+1 =gi+ 3

2
−gi+ 1

2
+gi+ 1

2
−fi−kihi

≥gi+ 3
2
−gi+ 1

2
+gi+ 1

2
−fi− lmaxhi.
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Setting zi =gi+ 1
2
−fi, ∆gi+ 3

2
=gi+ 3

2
−gi+ 1

2
and using the inequality min(α

β , γ
δ )≤ α+γ

β+δ
we infer that

lmax≤
zi +z

1
2

i

c1 +c0 + 1
2hi

≤γ−1(zi +z
1
2

i ),

which in turn implies that

zi+1≥zi +∆gi+ 3
2
−γ−1hi(zi +z

1
2

i ).

Let us define the sequence (wi)i≥0 by

w0 =g 1
2
, and wi+1 =wi−γ−1hi(wi +w

1
2

i ),

where we have made the induction hypothesis that wl ≥0, for all l∈{0,... ,i}, which is
clearly true for i=0 when h is small enough. Since the sequence (wi)i≥0 is decreasing,
wi+1≤wi ≤ ...≤w0, we infer that

wi+1 =w0Π
i
l=0(1−γ−1hl)−γ−1

i+1
∑

l=1

hl−1w
1
2

l−1Π
i
m=l(1−γ−1hm)

≥ 1
2w0e

−γ−1xi+1 −γ−1xi+1w
1
2

0 ≥ 1
2e−γ−1

w0−γ−1w
1
2

0 = 1
2e−γ−1

g 1
2
−γ−1g

1
2
1
2

,

where we assumed that h is small enough (say h≤ 1
2γ) and used 1− t> 1

2e−t for all t∈
[0, 1

2 ]. Owing to the assumed regularity on g (i.e., g∈W 1,1(0,1)), 1
2e−γ−1

g 1
2
−γ−1g

1
2
1
2

≥
λ0 := 1

2 ( 1
2e−γ−1

g(0)−γ−1
√

g(0))>0 when h is small enough, i.e., see Hypothesis (4.5).
This implies that wi+1≥λ0 >0, thus proving the induction hypothesis on wi+1.

We now evaluate αi+1 :=wi+1−zi+1 as follows:

αi+1 =wi+1−zi+1≤wi−zi−∆gi+ 3
2
−γ−1hi(wi−zi +(wi−zi)(

√
wi +

√
zi)

−1)

≤αi−∆gi+ 3
2
−γ−1hiαi

(

1+(
√

wi +
√

zi)
−1

)

≤αi

(

1−γ−1hi

(

1+(
√

wi +
√

zi)
−1

))

−∆gi+ 3
2
.

Observe that 1−γ−1hi

(

1+(
√

wi +
√

zi)
−1

)

≥1−γ−1hi(1+λ
−1/2
0 )≥0 for h small

enough. Then

(αi+1)+≤ (αi)+ +(−∆gi+ 3
2
)+≤

i
∑

l=0

(gl+ 1
2
−gl+ 3

2
)+≤

∫ 1

0

(−g′(x))+dx,

since α0 =w0−z0 =0. Then

zi+1 =wi+1 +zi+1−wi+1≥λ0−αi+1≥λ0−(αi+1)+

≥λ0−
∫ 1

0

(−g′(x))+dx :=µ0 >0,

which owing to (4.5) proves item (ii) since zi+1≥µ0 >0 and also proves the induction
hypothesis on fi+1, i.e., fi+1−gi+ 3

2
<0. Hence item (i) is proved.
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Item (iii) is a consequence of fi <gi+ 1
2

for all i∈{0,...n}. Item (iv) is a conse-

quence of the bound lmax≤γ−1(zi +z
1
2

i ) together with fi ≥0 for all i∈{0,...n}. This
completes the proof for f . Repeat the argument backwards for b.

For each i we denote by k+
i (resp. k−

i ) the unique positive (resp. negative) root
of φi. We use the same convention for κ+

i and κ−
i . For further reference, we also use

the following notation:

f−
i+1 =fi +k−

i hi

f+
i+1 =fi +k+

i hi,

b+
i = bi+1−κ+

i hi

b−i = bi+1−κ−
i hi.

(4.10)

Observe that f+
i :=fi and b−i := bi. We refer to f as the forward extremal positive

solution and to b as the backward extremal positive solution.
Let us set

kmax :=γ−1
(

‖g‖L∞ +‖g‖
1
2

L∞

)

(4.11)

kmin := 1
2kmaxmin

(

µ0F (kmax)
−1,µ1F (−kmax)

−1
)

. (4.12)

Next we want to have a control on the entropy of f and b.

Lemma 4.2. Under the hypotheses (4.1)–(4.6), there is c, uniform in h, such that

max
(∣

∣k+
i −k+

i−1

∣

∣ ,
∣

∣κ−
i −κ−

i−1

∣

∣

)

≤ ch, (4.13)

kmin≤min(k+
i ,−k−

i ,κ+
i ,−κ−

i )≤max(k+
i ,−k−

i ,κ+
i ,−κ−

i )≤kmax, (4.14)

for all i∈{1,... ,n}.
Proof. We do the proof for k+

i only because the rest is analogous. To alleviate
notation and since the context is clear we use ki instead of k+

i in this proof.
We first establish a bound from below for the k’s. By definition φi(ki)=0 for all

i∈{0,...,n}, which also gives φi+1(ki+1)−φi(ki)=0. In other words,

0=φi+1(ki+1)−φi(ki)

=fi+1−fi +
1
2 (ki+1hi+1−kihi)+F (ki+1)−F (ki)−gi+ 3

2
+gi+ 1

2

= 1
2ki+1hi+1 + 1

2kihi +

∫ ki+1

ki

F ′(k)dk−
∫ x

i+ 3
2

x
i+ 1

2

g′(x)dx.

Then,
(

ess inf
[ki,ki+1]

|F ′|
)

|ki+1−ki|≤ 1
2ki+1hi+1 + 1

2kihi +

∫ x
i+ 3

2

x
i+ 1

2

|g′(x)|dx.

Item (iv) in Lemma 4.1 implies that |kl|≤kmax for all l∈{0,... ,n}. Then provided we
can prove that the family {kl}0≤l≤n is bounded away from zero uniformly, the above
inequality would yield an upper bound on |ki+1−ki|. By the convexity of F we have
that

φi(k)≤fi +
1
2kihi +k−1

maxF (kmax)k−gi+ 1
2

∀k∈ [0,kmax],

which, provided h is small enough, yields

ki ≥
(

gi+ 1
2
−fi− 1

2kihi

)

kmaxF (kmax)
−1≥ 1

2µ0kmaxF (kmax)
−1≥kmin >0.



J.L. GUERMOND AND B. POPOV 223

This proves the lower bound for ki in (4.14); the upper bound was proved in Lemma
4.1. Then the convexity of F together with F (0)=0 implies that

ess inf
k∈[ki,ki+1]

F ′(k)≥F (kmin)k−1
min≥ 1

2 min(γ,γ2)min(1,kmin)>0,

which in turn yields

|ki+1−ki|≤2h(kmax +‖g′‖L∞)(min(γ,γ2))−1min(1,kmin)−1,

meaning that h−1|ki+1−ki| is bounded uniformly. The conclusion follows readily.
Similar arguments hold for the backward extremal positive solution.

4.3. Initialization. Let v∈Xh be the field obtained from Algorithm 1. The
following lemma characterizes v.

Lemma 4.3. Assume that uinit≥2‖g‖L∞ and hypotheses (4.1)–(4.7) hold. Then,
the index of the breakdown cell m is [12 (n+1)] if Algorithm 1 starts from the left
or n− [ 12 (n+1)] if the algorithm starts from the right, where [·] denotes the integer
part. Moreover, the restriction of v on [0,xm] is equal to the forward extremal positive
solution, the restriction of v on [xm+1,xn+1] is equal to the backward extremal positive
solution, and v linearly connects the forward and the backward solutions on [xm,xm+1].

Proof. We denote v to be the field produced by Algorithm 1 at every step. This
field is initialized so that v−1 =v0 =0=vn+1 =vn+2.

We work by induction. Let us assume that there is still work to be done from
the left, i.e., there is an index i≥0 such that no value has yet been assigned to
vi+1 (meaning that cell i is in cell list and update(i+1) is false). We will prove
by induction that if the restriction of v to [x−1,xi] is equal to the forward extremal
positive solution f , then Algorithm 1 updates v so that the restriction of v to [xi,xi+1]
is also equal to f , i.e., vi+1 =fi+1. For i=0, we only need to verify that v0 =f0, which
is true by definition.

Let us now assume that the induction hypothesis holds for i, namely v|[x−1,xi] =

f |[x−1,xi]. Let k+
i and k−

i be the positive and the negative roots of φi(k)=0, respec-

tively. The existence and uniqueness of k+
i and k−

i have been established in Lemma
4.1. Algorithm 1 compares the functional Jh of the following three fields: uold, u+,
and u−, whose vertex values are

(0,f0,... ,fi,u
init,uinit,... ,uinit),

(0,f0,... ,fi,fi +k+
i hi,u

init,... ,uinit),

(0,f0,... ,fi,fi +k−
i hi,u

init,... ,uinit),

respectively, and selects the field that minimizes Jh. Proving the induction hypothesis
amounts to proving that Jh(u+)<min(Jh(uold),Jh(u−)) because fi+1 =fi +k+

i hi =:
u+

i+1. We will do this in two steps.

Step 1. We first want to prove that Jh(u+)≤Jh(u−). Since the two fields u+

and u− only differ at node xi+1, is suffices to consider

Ji(u
±) :=Ri(u

±)+Ri+1(u
±)+h2−2p(Ei(u

±)+Ei+1(u
±)+Ei+2(u

±)). (4.15)
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Clearly Ri(u
±)=0 by construction. Let us start by comparing Ri+1(u

+) and
Ri+1(u

−). By definition, we have

∆R :=Ri+1(u
−)−Ri+1(u

+)

=hi+1

∣

∣

∣

1
2 (uinit +u−

i+1)+F (h−1
i+1(u

init−u−
i+1))−gi+ 1

2

∣

∣

∣

−hi+1

∣

∣

∣

1
2 (uinit +u+

i+1)+F (h−1
i+1(u

init−u+
i+1))−gi+ 1

2

∣

∣

∣
.

Using the fact that uinit≥2‖g‖L∞ , we can remove the absolute values

∆R= 1
2hi+1(u

−
i+1−u+

i+1)

+hi+1

(

F (h−1
i+1(u

init−u−
i+1))−F (h−1

i+1(u
init−u+

i+1))
)

≥(u+
i+1−u−

i+1)

(

ess inf
(h−1

i+1
‖g‖L∞ ,∞)

|F ′|− 1
2hi+1

)

.

Assuming that h is small enough, say min(‖g‖L∞ ,min(γ,γ2))≥h, we infer that

∆R≥ (u+
i+1−u−

i+1)(F (1)− 1
2hi+1)

≥ (u+
i+1−u−

i+1)(
1
2 min(γ,γ2)− 1

2hi+1)≥0,

giving Ri+1(u
−)≥Ri+1(u

+).
We now compare the entropies. By construction u+

i+1 =fi+1 <uinit and we thus
have

(u+
i+3−u+

i+2)h
−1
i+2−(u+

i+2−u+
i+1)h

−1
i+1 =−(uinit−u+

i+1)h
−1
i+1 <0,

i.e., Ei+2(u
+)=0. By the same argument we also have that Ei+2(u

−)=0. Fi-
nally, using the fact that k+

i−1≥0 and k−
i ≤0 we obtain Ei(u

−)=0. Let us de-
note ∆E :=Ei+1(u

−)−Ei+1(u
+)−Ei(u

+). If i=0, it is easy to prove that ∆E :=
E1(u

−)−E1(u
+)−E0(u

+)>0. Let us now assume that i≥1. If h is small enough,
say h≤‖g‖L∞k−1

max, then ωi+1(u
±)=hp

i+1, and

∆E =hp
i+1((u

init−u−
i+1)h

−1
i+1−(u−

i+1−fi)h
−1
i )p

+

−hp
i+1((u

init−u+
i+1)h

−1
i+1−(u+

i+1−fi)h
−1
i )p

+

−ωi(u
−)((u+

i+1−fi)h
−1
i −(fi−fi−1)h

−1
i−1)

p
+.

Using uinit≥2‖g‖L∞ , we conclude that Ei+1(u
−) and Ei+1(u

+) are positive. Owing
to Lemma 4.2 and since u+

i+1 =fi+1, we deduce that Ei(u
+) is bounded by ch2p. This

gives

∆E≥hp
i+1((u

init−u−
i+1)h

−1
i+1−(u−

i+1−fi)h
−1
i )p

−hp
i+1((u

init−u+
i+1)h

−1
i+1−(u+

i+1−fi)h
−1
i )p−ch2p.

Using the inequality Xp−Y p ≥ (X−Y )Y p−1, which is valid for all X ≥Y ≥0 and
p≥1, and using the fact that u+

i+1≥u−
i+1, we infer that

∆E≥hp
i+1(h

−1
i+1 +h−1

i )(u+
i+1−u−

i+1)((u
init−fi+1)h

−1
i+1−(fi+1−fi)h

−1
i )p−1−ch2p

≥ c′(u+
i+1−u−

i+1)−ch2p ≥ c′′kminh−ch2p,
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where kmin is defined in (4.12). Then ∆E >0 if h is small enough since p>1. In
conclusion Ji(u

−)>Ji(u
+).

Step 2. We now need to show that Jh(uold)>Jh(u+). Let us first com-
pare the entropies. Clearly Ei+1(u

old)=0, Ei+2(u
old)=0, and Ei+2(u

+)=0. Let
∆E :=Ei(u

old)−Ei(u
+)−Ei+1(u

+). If i=0, an easy computation shows that ∆E >
0. Let us now assume that i≥1. The smoothness of the forward extremal posi-
tive solution implies that Ei(u

+)≤ ch2p, and using the fact that uinit is large, say
1
2uinit≥‖g‖L∞ ≥‖f‖L∞ , we derive ωi(u

old)=hi and ωi+1(u
+)=hi+1. The entropy

variation is evaluated as follows:

∆E =Ei(u
old)−Ei(u

+)−Ei+1(u
+)

≥hp
i ((u

init−u+
i )h−1

i −k+
i−1)

p−hp
i+1((u

init−u+
i+1)h

−1
i+1−k+

i )p−ch2p

≥ (uinit−u+
i −k+

i−1hi)
p−(uinit−u+

i −k+
i (hi +hi+1))

p−ch2p.

Let X =uinit−u+
i −k+

i−1hi and Y =uinit−u+
i −k+

i (hi +hi+1). Then

X−Y =−k+
i−1hi +k+

i (hi +hi+1)=(k+
i −k+

i−1)hi +k+
i hi+1≥−ch2 +kmincmh,

which implies that X−Y >ch provided h is small enough. As a result, we have that

∆E≥ (X−Y )Y p−1−c′′h2p ≥ c′h−c′′h2p >ch>0. (4.16)

This means that the entropy of uold is larger than that of u+. Now we compare the
residuals. The residual variation is evaluated as follows:

∆R :=Ri(u
old)+Ri+1(u

old)−Ri+1(u
+)

=hi| 12 (uinit +u+
i )+F ((uinit−u+

i )h−1
i )−gi+ 1

2
|+hi+1|uinit−gi+ 3

2
|

−hi+1|12 (uinit +u+
i+1)+F ((uinit−u+

i+1)h
−1
i+1)−gi+ 3

2
|

≥hiF ((uinit−u+
i )h−1

i )−hi+1F ((uinit−u+
i+1)h

−1
i+1)

+ 1
2hi(u

init +u+
i −2gi+ 1

2
)+ 1

2hi+1(u
init−u+

i+1)

≥ch+hiF ((uinit−u+
i )h−1

i )−hi+1F ((uinit−u+
i+1)h

−1
i+1),

where in deriving the last inequality we used that uinit≥2‖g‖L∞ and that h is small.
In the case of uniform meshes, we have

∆R≥ ch+h
(

F
(

(uinit−u+
i )h−1

)

−F
(

(uinit−u+
i )h−1−k+

i

)

)

≥ ch,

because k+
i >0 and F is an increasing function for positive arguments. Therefore, we

infer Ji(u
old)≥Ji(u

+) in the case of uniform meshes. For quasi-uniform meshes we
use the growth hypothesis (4.7) to derive

|∆R|≤ ch1−θ. (4.17)

Then, provided h is small enough and p>1+ 1
2θ, we estimate

∆R+h2−2p∆E≥ c(h3−2p−h1−θ)>0,

where we used the bound (4.17) for ∆R and the bound (4.16) for ∆E.
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In conclusion min(Jh(uold),Jh(u−))>Jh(u+). That is to say the initialization
algorithm selects u+ to set the value of v at the node xi+1, i.e., the algorithm sets
vi+1 =u+

i+1, which proves the induction hypothesis.
Since, as shown in the above argument, neither the forward update nor the back-

ward one break down, the two branches collide in cell [12 (n+1)] or n− [ 12 (n+1)],
depending on the initialization of cell list. This concludes the proof.

Remark 4.1. The output of Algorithm 1 is almost always far from the solution.
Algorithm 1 produces a guess for Algorithm 2 composed of two branches consisting
of extremal positive solutions.

4.4. Local L1-switch. We analyze Algorithm 2 in this section. We start with
a preliminary technical result.

Lemma 4.4. Assume that the hypotheses (4.1)–(4.6) hold. There is c uniform in h
so that for all i∈{0,...n} such that fi ≥ bi, the following hold:

κ−
i −k−

i ≤ ch, (4.18)

f−
i −bi +ch≤f−

i+1−bi+1, (4.19)

and a similar result holds if f and b are exchanged.

Proof. Obviously the set of such i’s is not empty because there are c′ >0 and
c′′ >0 so that fn >c′ >c′′h>bn if h is small enough. Let i be such that fi ≥ bi. By
definition we have

fi +
1
2 (f−

i+1−fi)+F (k−
i )−gi+ 1

2
=0,

bi +
1
2 (bi+1−bi)+F (κ−

i )−gi+ 1
2
=0.

Subtracting these two equations gives

F (k−
i )−F (κ−

i )= bi−fi +
1
2 (κ−

i −k−
i )hi.

If κ−
i ≤k−

i , there is nothing to prove. Otherwise, k−
i ≤κ−

i <0 and the convexity
assumptions (4.2)–(4.4) imply that

(k−
i −κ−

i )|F ′(−kmin)|≤ bi−fi +
1
2 (κ−

i −k−
i )hi ≤ 1

2kmaxh.

This proves (4.18). To prove the second inequality, we proceed as follows:

f−
i+1−bi+1 =f−

i+1−fi +fi−fi−1 +fi−1−f−
i +f−

i −bi +bi−bi+1

=k−
i hi +k+

i−1hi−1−k−
i−1hi−1−κ−

i hi +f−
i −bi

=(k−
i −κ−

i )hi +(k+
i−1−k−

i−1)hi−1 +f−
i −bi

≥−c′h2 +c′′h+f−
i −bi ≥ ch+f−

i −bi,

where we used (4.18), Lemma 4.1, and Lemma 4.2.

The main result of this section is the following:

Lemma 4.5. Assume that the hypotheses (4.1)–(4.7) hold. Let i be the index of the
breakdown cell. Assume that vl :=fl for all 0≤ l≤ i and vl := bl for all i+1≤ l≤n+1.
Using the notation (4.10), if the mesh is fine enough and f−

i ≥ bi (resp. b+
i ≥fi),

Algorithm 2 updates the value of vi to bi (resp. vi+1 to fi+1).
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fi−2

fi−1

fi
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b+
i

bi+1

bi+2

bi+3

Figure 4.1. Notation for the proof of Lemma 4.5

Proof. We do the proof assuming f−
i ≥ bi; the other case is similar. The proof is

divided into five steps.

Step 1. We start by introducing some notation and definitions. Let us recall that
Λi :={0}× ti,i(vi)∪ ti,i+1(vi+1)×{0} where ti,i(vi)={f+

i+1,f
−
i+1} and ti,i+1(vi+1)=

{b+
i ,b−i }. For all z := (z1,z2)∈Λi we define the function w(z)∈Xh whose points values

are

(v0,... ,vi−1,vi,z2,vi+2,... ,vn+1) if z1 =0,

(v0,... ,vi−1,z1,vi+1,vi+2,... ,vn+1) if z2 =0.

Let z̄∈Λi be such that z̄ :=argminz∈Λi
Jh(w(z)). Then Algorithm 2 takes w(z̄) as the

new update if Jh(w(z̄))<Jh(v). Now we need to show that z̄ =(b−i ,0) and Jh(z̄) is
less than Jh(v), where v is the current update.

To simplify notation, whenever there is no confusion we use w(f+
i+1), w(f−

i+1),

w(b+
i ), w(b−i ) instead of the tensor product notation w((0,f+

i+1)), w((0,f−
i+1)),

w((b+
i ,0)), w((b−i ,0)). With this notation we need to show that the function w(b−i )

has the smallest functional among the four possible candidates w(z) and the current
update v; see figure 4.1.

Step 2. We first prove that Jh(w(f+
i+1))≥Jh(w(f−

i+1)). Using the notation de-

fined in (4.15), we need to compare Ji+1(w(f+
i+1))≥Ji+1(w(f−

i+1)).

Step 2.a. We first compare the residuals. Clearly Ri(w(f±
i+1))=0 and

∆R :=Ri+1(w(f+
i+1))−Ri+1(w(f−

i+1))

=hi+1|12 (f+
i+1 +bi+2)+F ((bi+2−f+

i+1)h
−1
i+1)−gi+ 3

2
|

−hi+1| 12 (f−
i+1 +bi+2)+F ((bi+2−f−

i+1)h
−1
i+1)−gi+ 3

2
|.

Now we use the fact that gi+ 3
2
= 1

2 (bi+1 +bi+2)+F ((bi+2−bi+1)h
−1
i+1). Then

∆R :=hi+1| 12 (f+
i+1−bi+1)+F ((bi+2−f+

i+1)h
−1
i+1)−F ((bi+2−bi+1)h

−1
i+1)|

−hi+1|12 (f−
i+1−bi+1)+F ((bi+2−f−

i+1)h
−1
i+1)−F ((bi+2−bi+1)h

−1
i+1)|.
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The assumption f−
i ≥ bi together with (4.19) implies that f+

i+1 >f−
i+1 >bi+1 >bi+2.

This in turn, together with the property F (X)>F (Y )>0, for all X <Y <0, which is
a consequence of (4.2)–(4.4), implies that we can remove the absolute values:

∆R=hi+1(
1
2 (f+

i+1−f−
i+1)+F ((bi+2−f+

i+1)h
−1
i+1)−F ((bi+2−f−

i+1)h
−1
i+1)≥0.

Step 2.b. Next we compare the entropies. Note that Ei+1(w(f+
i+1))=0,

Ei(w(f−
i+1))=0. We also have Ei+1(w(f−

i+1))=0, since

(bi+2−f−
i+1)h

−1
i+1−k−

i =κ−
i+1 +(bi+1−f−

i+1)h
−1
i+1−k−

i

=κ−
i+1−κ−

i +κ−
i −k−

i +(bi+1−f−
i+1)h

−1
i+1

≤ c′h−c′′ <0,

where c′ and c′′ are two positive constants and we used (4.18) and (4.19). The above
observations imply that

∆E :=Ei(w(f+
i+1))+Ei+2(w(f+

i+1))−Ei+2(w(f−
i+1))

≥Ei+2(w(f+
i+1))−Ei+2(w(f−

i+1)).

Now we evaluate the weights ωi+2(w(f−
i+1)) and ωi+2(w(f+

i+1)). Note that owing to

(4.19) and the assumption f−
i ≥ bi, we have

(bi+2−f+
i+1)h

−1
i+1 < (bi+2−f−

i+1)h
−1
i+1 =κi+1−κi+2 +κi+2 +(bi+1−f−

i+1)h
−1
i+1

≤κi+2 +c′h−c′′ <κi+2 <0,

where c′ and c′′ are two positive constants. This implies ωi+2(w(f+
i+1))=hp

i+1 =

ωi+2(w(f−
i+1)). The above observations yield

∆E≥hp
i+1(κi+2−(bi+2−f+

i+1)h
−1
i+1)

p−hp
i+1(κi+2−(bi+2−f−

i+1)h
−1
i+1)

p−ch2p

≥hp
i+1((f

+
i+1−f−

i+1)h
−1
i+1)

p−ch2p ≥ (2kmin)php
i −ch2p,

≥ chp,

where we used the inequality Xp−Y p ≥ (X−Y )p, for all X, Y ≥0, and the mesh
regularity assumption. Steps 2.a and 2.b prove that Jh(w(f+

i+1))≥Jh(w(f−
i+1)).

Step 3. Similar arguments as in Step 2 can be used to prove that Jh(w(b+
i ))≥

Jh(w(b−i )). We omit the details.

Step 4. The remainder of the argument now consists of proving that
Jh(w(f−

i+1))≥Jh(w(b−i )).

Step 4.a. Let us start by comparing the entropies. Observe first that
Ei(w(f−

i+1))=0 and Ei−1(w(b−i ))=0. We also have Ei+1(w(f−
i+1))=0, as shown in

Step 2.b. Also note that Lemma 4.2 implies

Ei−1(w(f−
i+1))+Ei+1(w(b−i ))+Ei+2(w(b−i ))≤ ch2p.

The entropy variation is then

∆E :=Ei−1(w(f−
i+1))+Ei+2(w(f−

i+1))−Ei(w(b−i ))−Ei+1(w(b−i ))−Ei+2(w(b−i ))

≥Ei+2(w(f−
i+1))−Ei(w(b−i ))−ch2p.
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We have already computed Ei+2(w(f−
i+1)) in Step 2.b. Let us now compute the weight

ωi(w(b−i )). If κi ≤ (bi−fi−1)h
−1
i−1, then Ei(w(b−i ))=0 and the conclusion is evident

since Ei+2(w(f−
i+1))≥ chp. Otherwise, ωi(w(b−i ))=hp

i−1 and

∆E≥hp
i+1(κ

−
i+2−κ−

i+1−(bi+1−f−
i+1)h

−1
i+1)

p−hp
i−1(κ

−
i −(bi−f−

i )h−1
i−1−k−

i )p−ch2p

≥ ((κ−
i+2−κ−

i+1)hi+1−(bi+1−f−
i+1))

p−((κ−
i −k−

i )hi−1−(bi−f−
i ))p−ch2p.

Let X =(κ−
i+2−κ−

i+1)hi+1−(bi+1−f−
i+1) and Y =(κ−

i −k−
i )hi−1−(bi−f−

i ), then us-
ing Lemma 4.2 and (4.18)–(4.19), we deduce X−Y ≥ c′h−c′′h2 >0. Using the in-
equality Xp−Y p ≥ (X−Y )p, this implies that

∆E≥ (X−Y )p ≥ c′hp−c′′h2p >chp >0. (4.20)

Step 4.b. Let us now compare the residuals. We have

∆R :=Ri+1(w(f−
i+1))−Ri−1(w(b−i ))

=hi+1|12 (f−
i+1 +bi+2)+F ((bi+2−f−

i+1)h
−1
i+1)−gi+ 3

2
|

−hi−1| 12 (b−i +fi−1)+F ((b−i −fi−1)h
−1
i−1)−gi− 1

2
|.

Using the definition of bi+1 and f−
i and recalling that bi := b−i , the residual variation

can also be recast into

∆R=hi+1| 12 (f−
i+1−bi+1)+F ((bi+2−f−

i+1)h
−1
i+1)−F ((bi+2−bi+1)h

−1
i+1)|

−hi−1| 12 (bi−f−
i )+F ((bi−fi−1)h

−1
i−1)−F ((f−

i −fi−1)h
−1
i−1)|

=hi+1(
1
2 (f−

i+1−bi+1)+F ((bi+2−f−
i+1)h

−1
i+1)−F ((bi+2−bi+1)h

−1
i+1)

−hi−1(
1
2 (bi−f−

i )+F ((bi−fi−1)h
−1
i−1)−F ((f−

i −fi−1)h
−1
i−1).

The absolute values have been removed since the arguments are nonnegative. It is
clear for the first argument, but for the second one we proceeded as follows:

I := 1
2 (bi−f−

i )+F ((bi−fi−1)h
−1
i−1)−F ((f−

i −fi−1)h
−1
i−1)

≥ 1
2 (bi−f−

i )+ |F ′(−kmin)|(f−
i −bi)h

−1
i−1

≥(− 1
2 +ch−1)(f−

i −bi)≥0.

If the mesh is uniform, ∆R can be recast into

h−1∆R= 1
2 (f−

i+1 +bi+2−b−i −fi−1)

+F ((bi+2−f−
i+1)h

−1)−F ((b−i −fi−1)h
−1)−gi+ 3

2
+gi− 1

2

≥−ch+ |F ′(−kmin)|(b−i −fi−1−bi+2 +f−
i+1)h

−1

=−ch+ |F ′(−kmin)|(bi−bi+1 +bi+1−bi+2−fi−1 +fi−fi +f−
i+1)h

−1

=−ch+ |F ′(−kmin)|(−κi−κi+1 +ki−1 +k−
i )

≥−ch+ |F ′(−kmin)|(−c′h+2kmin)≥ c′′ >0,

where we used g∈C0,1[0,1], (4.14), and (4.18).
Now let us consider the case when the mesh is only quasi-uniform. In that case,

we are not capable of proving that ∆R≥0, but if we assume some maximum growth
condition on F at infinity we will be able to dominate |∆R| by the entropy variation,



230 L1-MINIMIZATION FOR STATIONARY HAMILTON-JACOBI EQUATIONS

i.e., h2−2p∆E. Let us assume the growth condition F (k)≤ cg(|k|θ +1). We bound
∆R as follows:

|∆R|≤h
(

2‖g‖L∞ +F (‖g‖L∞(cmh)−1)
)

≤ ch(1+h−θ)≤ c′h1−θ.

Then, provided h is small enough and p>1+θ,

∆R+h2−2p∆E≥ c(h2−p−h1−θ)>0.

where we used (4.20).

Step 5. Now we prove that Jh(w(b−i ))<Jh(v). We evaluate the entropy variation
as follows:

∆E :=Ei−1(v)+Ei+1(v)+Ei+2(v)−Ei(w(b−i ))+Ei+1(w(b−i ))+Ei+2(w(b−i ))

≥−ch2p +Ei+1(v)−Ei(w(b−i )).

If Ei(w(b−i ))=0 then ∆E≥ chp since Ei+1(v)≥ chp as can be shown using arguments
similar to those in Step 2.b. Otherwise ωi(w(b−i ))=hi−1 and we obtain

∆E≥−ch2p +hp
i

(

κ−
i+1−κ−

i −(bi−f−
i )h−1

i +hi−1(k
+
i−1−k−

i−1)h
−1
i

)p

−hp
i−1

(

κ−
i −(bi−f−

i )h−1
i−1−k−

i

)p

=−ch2p +
(

f−
i −bi +hi−1(k

+
i−1−k−

i−1)+hi(κ
−
i+1−κ−

i )
)p

−
(

f−
i −bi +hi−1(κ

−
i −k−

i )
)p

.

Let X =f−
i −bi +hi−1(k

+
i−1−k−

i−1)+hi(κ
−
i+1−κ−

i ) and Y =f−
i −bi +hi−1(κ

−
i −k−

i ).

It is easy to see that X ≥0 and by our assumption Ei(w(b−i ))>0 we have Y >0.
Now, we consider the difference

X−Y =hi−1(k
+
i−1−k−

i−1)+hi(κ
−
i+1−κ−

i )−hi−1(κ
−
i −k−

i )

≥2hi−1kmin−c′h2−c′′h2 >ch

for h small enough, where in the above inequality we used (4.18) and the properties
of forward and backward characteristics. We use the inequality Xp−Y p ≥ (X−Y )p

and conclude that

∆E≥−c′h2p +c′′hp >chp >0. (4.21)

Let us now compare the residuals of v and w(b−i ). We have

∆R :=Ri(v)−Ri−1(w(b−i ))

=hi|12 (fi +bi+1)+F ((bi+1−fi)h
−1
i )−gi+ 1

2
|

−hi−1|12 (fi−1 +bi)+F ((bi−fi−1)h
−1
i−1)−gi− 1

2
|

=hi|12 (fi−bi)+F ((bi+1−fi)h
−1
i )−F ((κ−

i )|
−hi−1|12 (bi−f−

i )+F ((bi−fi−1)h
−1
i−1)−F (k−

i−1)|.

Proceeding as in Step 4.b, we can remove the absolute values and we obtain

∆R=hi(
1
2 (fi +bi+1)+F ((bi+1−fi)h

−1
i )−gi+ 1

2
)

−hi−1(
1
2 (fi−1 +bi)+F ((bi−fi−1)h

−1
i−1)−gi− 1

2
).
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If the mesh is uniform the above equality simplifies as follows:

∆R= 1
2h(k+

i−1 +κ−
i )+h(gi− 1

2
−gi+ 1

2
)+F ((bi+1−fi)h

−1
i )−F ((bi−fi−1)h

−1
i−1)

≥−c′h+2|F ′(−kmin)|kmin >0

when h is small. This proves that Jh(w(b−i ))<Jh(v) in the uniform case. Now let
us consider the case when the mesh is only quasi-uniform. In that case, we use the
growth assumption (4.7) and estimate |∆R| as follows:

|∆R|≤ c′h+c′′h1−θ ≤ ch1−θ.

Therefore,

Jh(v)−Jh(w(b−i ))=∆R+h2−2p∆E≥ c′h2−p−c′′h1−θ >0

provided h is small enough and p>1+θ. This concludes the proof.

4.5. The final argument. We prove in this section that the combination of
Algorithm 1 and Algorithm 2 give a sequence of almost minimizers for (2.13) and is
optimally complex.

Theorem 4.6. Assume (4.1)–(4.7) and assume that the initial guess for Algorithm 2
is the field computed by Algorithm 1. Then

(i) Algorithm 2 gives an almost minimizer for (2.13), vh, after at most n steps;

(ii) the algorithm stops after at most 2n steps;

(iii) the sequence (vh)h>0 converges to the unique viscosity solution to (2.1) in
W 1,1(0,1)∩C0[0,1].

Proof. First observe that the field generated by Algorithm 1, say v, is such that
vl =fl for all 0≤ l≤ i and vl = bl for all i+1≤ l≤n, where the index of the breakdown
cell is either i := [12 (n+1)] or i :=n− [ 12 (n+1)] depending whether the algorithm starts
on the left side or the right side of the domain. In other words, the first set of
hypotheses of Lemma 4.5 is satisfied.

After initialization, we are in one of the following four possible situations:

case 1: bi ≤f−
i , case 2: f−

i <bi ≤fi,

case 3: b+
i <fi ≤ bi, case 4: fi ≤ b+

i .

The rest of the proof is divided into four steps. In Steps 1 to 3 we prove that the
algorithm stops in at most 2n iterations and Jh(v)≤ ch. We prove in Step 4 that the
field v produced by Algorithm 2 gives an almost minimizer. We abuse the notation
by always denoting by v the current field produced by Algorithm 2.

Step 1. Assume that we are in case 1 or 4. Let us consider case 1, as the other
case is symmetric. Then we are under the conditions needed to apply Lemma 4.5,
and Algorithm 2 pushes the breakdown cell to the left and reduces the gap f−

i −bi.
The new breakdown cell is i−1 and

b+
i−1 =fi−1−fi−1 +f−

i −f−
i +bi−bi +b+

i−1

=fi−1 +k−
i−1hi−1−κ+

i−1hi−1 +bi−f−
i

≤fi−1−2kminhi−1 +bi−f−
i <fi−1,
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i.e., the new update cannot satisfy the condition of case 4. As a result jumping from
case 1 to case 4 is impossible in one step. After each iteration, the new update v either
satisfies the condition of case 1, in which case the breakdown cell moves further to the
left, or v satisfies the conditions of case 2 or 3. In conclusion, Algorithm 2 produces
an update that satisfies the conditions of case 2 or 3 in less than n/2 iterations (it
can be shown that when the distance of the breakdown cell to the boundary is less
than ch we are in case 4).

Step 2. Now assume that we are in case 2 or 3. Then, in only one step, Algo-
rithm 2 produces an update v so that Jh(v)≤ ch with c uniform in h. To convince
ourselves that this is true, assume that we are in case 2, as the other case is symmet-
ric. Let i be the index of the breakdown cell. Algorithm 2 compares five fields among
which is the following w, with wl =fl, 0≤ l≤ i−1 and wl = bl, i≤ l≤n+1. It clear
that

Jh(w)≤Ri(w)+h2−2p(Ei−1(w)+Ei(w))+ch.

A simple computation shows Ri(w)≤ ch. Also, using bi ≥f−
i , we infer that

Ei(w)=ωi(w)(κ−
i −(bi−fi−1)h

−1
i−1)

p
+

=ωi(w)(κ−
i −(f−

i −fi−1)h
−1
i−1−(bi−f−

i )h−1
i−1)

p
+

≤ωi(w)(κ−
i −k−

i )p
+.

Using arguments similar to those in the proof of (4.18) we can prove that |κ−
i −k−

i |≤
c1h, which means that Ei(w)≤ c2h

2p. To compute Ei−1(w) we use Lemma 4.2 as
follows:

Ei−1(w)=ωi−1(w)((bi−fi−1)h
−1
i−1−ki−1)

p
+

≤ωi−1(w)((fi−fi−1)h
−1
i−1 +(bi−fi)h

−1
i−1−ki−1)

p
+

≤ωi−1(w)(ki−ki−1)
p
+≤ ch2p.

In conclusion, recalling that the update v computed by Algorithm 2 has the smallest
functional, we infer that Jh(v)≤Jh(w)≤ ch.

The above arguments prove that Jh(v)≤ ch after at most n/2 steps in Algorithm 2.
We now need to prove that Algorithm 2 stops after at most 2n iterations.

Step 3. The first time the algorithm reaches cases 2 or 3, we have Jh(v)≤ ch and
the point values of v are (f0,f1,... ,fi,bi+1,... ,bn+1), where i is the breakdown cell. If
the algorithm does not stop after that step, the new breakdown cell c is either i−1
or i+1, and two possibilities occur. Either we keep the above pattern

(f0,f1,... ,fc,bc+1,... ,bn+1), (4.22)

or the pattern changes into one of the following two possibilities

(f0,f1,... ,fc−1,fc,f
−
c+1,bc+2,... ,bn+1), (4.23)

(f0,f1,... ,fc−1,b
+
c
,bc+1,bc+2,... ,bn+1). (4.24)

Step 3.a. If Algorithm 2 keeps producing the pattern (4.22), it eventually stops
for the following reasons. The algorithm can move the breakdown cell in one direction
only, since if the breakdown cell were the same as it was two steps back, while keeping
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Figure 4.2. Notation for the proof of Theorem 4.6 right after bifurcation

pattern (4.22), the algorithm would revisit a configuration with a strictly higher value
of Jh. Moreover, the algorithm stops after at most 2kmax

cmkmin
steps, since it would

otherwise reach configurations corresponding to case 1 or 4, which is impossible since
it would imply that the breakdown cell would have to move back.

Step 3.b. The remaining case is when the algorithm bifurcates into pattern
(4.23) or (4.24). Let us consider the bifurcation (4.23) with c= i, as the other case
is symmetric. The situation right after bifurcation is depicted in figure 4.2. The
bifurcation occurred in cell i−1 and the new breakdown cell is i. Algorithm 2 must
either stop or update v by choosing among the four possible candidates, w1, w2, w3,
w4∈Xh, whose vertex values are respectively the following:

(f0,f1,... ,fi−1,f
−
i ,f−+

i+1 ,bi+2,... ,bn+1),

(f0,f1,... ,fi−1,f
−
i ,f−−

i+1 ,bi+2,... ,bn+1),

(f0,f1,... ,fi−1,bi,bi+1,bi+2,... ,bn+1),

(f0,f1,... ,fi−1,b
+
i ,bi+1,bi+2,... ,bn+1),

where f−+
i+1 =f−

i +k−+
i hi and f−−

i+1 =f−
i +k−−

i hi. The parameters k−+
i and k−−

i are

the positive and negative roots of f−
i + 1

2khi +F (k)−gi+ 1
2
=0, respectively. Repeating

arguments similar to those in Step 2.a of the proof of Lemma 4.5, we deduce that
Jh(w1) and Jh(w4) are larger than ch2−p ≫ c′h. The only two candidates left are w2

and w3. Assume that either Jh(w3)<Jh(w2) or w3 is chosen as the update in the event
Jh(w3)=Jh(w2). Let Jold be the value of the functional Jh at the previous step. Since
the algorithm did not stop, we have Jh(w3)<Jold and the new breakdown cell is i−1.
Then the new pattern for v is exactly the same as it was right before the bifurcation.
i.e., two steps back. At the next step the algorithm will bifurcate again and we will
be back to the same situation with Jold :=Jh(w3). This is a contradiction to the fact
that the value of Jh is strictly decreasing. The conclusion of this argument is that
either the algorithm stops of it continues with v =w2. Now we start an induction
argument. Assume that current pattern is

(f0,... ,fl,f
−
l+1,f

−−
l+2 ,... ,f−−

i−1 ,f−−
i ,bi+1,... ,bn),

where i≥ l+1 is the index of the breakdown cell. The induction hypothesis is that if
i≥ l+1 then either the algorithm continues with the f−− family or stops. We verified
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Figure 4.3. Notation for the proof of Theorem 4.6. The sliding mechanism.

the induction hypothesis for i= l+1 above. Now assume that i≥ l+2. We are now
going to prove that either the algorithm stops or it continues down using the f−−

family. If the algorithm does not stop, then it updates v by choosing among the four
possible candidates, w1, w2, w3, w4∈Xh, whose vertex values are respectively the
following:

(f0,... ,fl,f
−
l+1,f

−−
l+2 ,... ,f−−

i−1 ,f−−
i ,f−+

i+1 ,bi+2 ... ,bn),

(f0,... ,fl,f
−
l+1,f

−−
l+2 ,... ,f−−

i−1 ,f−−
i ,f−−

i+1 ,bi+2 ... ,bn),

(f0,... ,fl,f
−
l+1,f

−−
l+2 ,... ,f−−

i−1 ,bi,bi+1,bi+2 ... ,bn),

(f0,... ,fl,f
−
l+1,f

−−
l+2 ,... ,f−−

i−1 ,b+
i ,bi+1,bi+2 ... ,bn),

where f−+
i+1 =f−−

i +k−+
i hi and f−−

i+1 =f−−
i +k−−

i hi. The parameters k−+
i and k−−

i

are the positive and negative roots of f−−
i + 1

2khi +F (k)−gi+ 1
2
=0, respectively. The

fact that the above equation has a unique positive and a unique negative root follows
from the observation that |f−−

i −bi|≤ ch, otherwise the algorithm would have stopped
since the value of Jh would have been large. Repeating arguments similar to those
in Step 2.a of the proof of Lemma 4.5, we deduce that Jh(w1) and Jh(w4) are larger
than ch2−p ≫ c′h. The only two candidates left are w2 and w3. Assume that w3 is
the new update. Let Jold be the value of the functional Jh at the previous step. Since
the algorithm did not stop, we have Jh(w3)<Jold. This cannot be true since w3 was
one of the four possible choices for updating v two steps back when the breakdown
cell was i−2. Therefore the new update is w2, i.e., we continue down using the f−−

family. This concludes the induction. In the worst case the algorithm stops when the
breakdown cell reaches the boundary.

Based on Steps 1 to 3, we conclude that Algorithm 2 always stops in less than
n/2+n+ 2kmax

cmkmin
<2n steps and Jh(v)≤ ch.

Step 4. We now need to prove that after Algorithm 2 stops, v is an almost
minimizer, i.e., J(v)≤ ch. The point values of v follow one of the three patterns shown
in figure 4.4. It is now clear that the following bound holds (details are omitted):

‖v‖BV[0,1]≤2‖g‖L∞ .
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f0 f0f0 bn+1bn+1bn+1

fi

fifl

f−−

i

bl

bi+1

bi+1

b++

i+1

Figure 4.4. Notation for the proof of Theorem 4.6. The BV argument.

Now we derive an upper bound on J(v) by estimating ∆J :=J(v)−Jh(v)

|∆J |≤h2−2p(E0(v)+En+1(v))

+

∣

∣

∣

∣

∣

∫ 1

0

|v+H(v′)−g|dx−
n

∑

i=0

hi|vi+ 1
2
+H(v′

i+ 1
2

)−gi+ 1
2
|
∣

∣

∣

∣

∣

≤ ch+

∣

∣

∣

∣

∣

n
∑

i=0

∫ xi+1

xi

(

|v(x)+H(v′
i+ 1

2

)−g(x)|−|vi+ 1
2
+H(v′

i+ 1
2

)−gi+ 1
2
|
)

dx

∣

∣

∣

∣

∣

≤ ch+

n
∑

i=0

∫ xi+1

xi

∣

∣

∣
v(x)−vi+ 1

2
+g(x)−gi+ 1

2

∣

∣

∣
dx

≤ ch(1+‖v‖BV[0,1] +‖g‖BV[0,1])≤ c′h.

This implies J(v)≤ ch. Let vh :=v, then owing to [10, Thm. 6.2], we conclude that
the sequence (vh)h>0 converges in W 1,1(0,1)∩C0[0,1] to the unique viscosity solution
to (2.1).

Remark 4.2. One can show that if F is homogeneous of degree 1, Assumption (4.7)
is not necessary in the proof of the above theorem. Assumption (4.7) is also not
needed to prove Theorem 4.6 if in Algorithm 1 and Algorithm 2 the functionals Jold

and Jnew are computed using the entropy terms only, i.e., leaving out the residuals.

5. Numerical illustrations

5.1. Random meshes. In this section, we illustrate the performance of the
method using random quasi-uniform meshes.

We consider the following equation:

u+H(u′)=f, on [0, 3
4 ], u(0)=−1, u( 3

4 )=−2−
1
2 , (5.1)

with H(p)=π−2p2, f(x)=−|cos(πx)|+sin2(πx). The viscosity solution is u(x)=
−|cos(πx)| (other details on this test case are given in [2]). This is a borderline case
since the conditions (4.5)–(4.6) are not satisfied, i.e., the slope of the extremal positive
solutions are zero at the boundary.

We report in figure 5.1 the results of Algorithm 1 and Algorithm 2 on random
quasi-uniform meshes for this problem. We compare in this figure the viscosity so-
lution and approximates solutions using meshes composed of 20, 40, and 100 points.
It is clear that the method is very accurate. Our numerical tests have revealed that,
when working with non-uniform meshes, it is important to use the entropy weights
described in (3.4)–(3.5), otherwise, Algorithm 1 or Algorithm 2 may terminate before
producing an approximate minimizer. We refer to [8, 10] for convergence tests and
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Figure 5.1. Left panel: Comparison of the exact solution of (5.1) with numerical solutions using

quasi-uniform random meshes with 20, 40, and 100 points. Right panel: Close-up of solutions.

more numerical examples. The algorithm is observed therein to be second-order in
the L1-norm.

5.2. Computational complexity. From Lemma 4.3 and Theorem 4.6, we
conclude that each degree of freedom is visited at most three times and the number
of floating point operations per degree of freedom is fixed and only depends on the
Hamiltonian. Numerical experiments on various problems and random meshes (103

to 107 nodes) have showed that the CPU time per degree of freedom for the above
algorithm (Algorithm 1 and Algorithm 2) ranges between 5.0×10−6s and 10−5s on a
Dell Optiplex 740n desktop with AMD ATHLON 1640B processor (2.7GHz, 512KB)
and 3GB of RAM.

5.3. Effect of the initial guess. We what to emphasize that there is
no tuning parameter in the algorithm (Algorithm 1 and Algorithm 2) provided the
conditions (4.1)–(4.7) are satisfied. A lower bound for the initial guess uinit can easily
be evaluated (see Lemma 4.3). Once uinit is above the lower bound, the algorithm
produces the same approximate solution.

In order to illustrate how the algorithm behaves with respect to the initialization
process if the conditions (4.1)–(4.7) are not satisfied, we now consider the following
equation:

1
2π |u

′(x)|−|cos(2πx)|=0, u(0)=0, u(1)=0. (5.2)

This is a Hamilton-Jacobi equation with multiple semiconcave solutions. Its only
positive viscosity solution is given by

u(x)=



















sin(2πx) 0≤x≤ 1
4 ,

2−sin(2πx) 1
4 ≤x≤ 1

2 ,

2+sin(2πx) 1
2 ≤x≤ 3

4 ,

sin(2πx) 3
4 ≤x≤1.

(5.3)

This is again a case at the border of our theory, for there is no zero-order term in the
Hamiltonian and (4.5)–(4.5) are not satisfied, the consequence being that the slope
of the forward extremal positive solution is not uniformly positive and the slope of
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Figure 5.2. Solution to (5.2) using n+1=100. Top left: initial guess obtained after initial-

ization using uinit =2.5; Top right: initial guess after after initialization using uinit =4; Bottom:

solution delivered by Algorithm 2 for any uinit, provided uinit≥2.

the backward extremal positive solution is not uniformly negative. We nevertheless
observe that the algorithm converges to the positive viscosity solution provided uinit

is large enough.

To test the robustness of the algorithm with respect to symmetry breaking, we
modify Algorithm 1 so that the initialization process starts from cell 0 and moves
inward until breakdown, then restarts from cell n+1 and moves inward until collision.
Two tests are reported in figure 5.2 using n+1=100 cells. In the first case we start
the initialization process by setting uinit =2.5 and in the second case we start with
uinit =4. The results obtained from Algorithm 1 are shown in the top left and top
right panels of figure 5.2. These two initialization fields are clearly different and are
discontinuous; the discontinuity occurs in the breakdown cell. These two fields are
then fed into Algorithm 2 which then produces the result shown in the bottom panel
of figure 5.2. This solution is independent of uinit, provided uinit is large enough.
More precisely, systematic tests show that if we set uinit≥2=max0≤x≤1uvisc(x), then
Algorithm 2 always produces the viscosity solution.

6. Conclusions

We have shown in this paper that it is indeed possible to approximately solve
the minimization problem (2.13) in O(N) operations for one-dimensional station-
ary Hamilton-Jacobi equations. This confirms the idea that L1-based approximation
techniques are not only optimal from the theoretical point of view (i.e., they natu-
rally yield viscosity solutions without adding artificial viscosity), but they can also
be made computationally practical and optimal complexity is achievable. Of course,
this conclusion is still modest since we have dealt only with one-dimensional problems
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and piecewise linear approximations. In view of [11] though we expect the algorithm
described in the present paper to be extendable in two space dimensions at least.
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