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GAUSSIAN BEAM METHODS FOR THE SCHRÖDINGER
EQUATION IN THE SEMI-CLASSICAL REGIME:

LAGRANGIAN AND EULERIAN FORMULATIONS∗

SHI JIN† , HAO WU‡ , AND XU YANG§

Abstract. The solution to the Schrödinger equation is highly oscillatory when the rescaled
Planck constant ε is small in the semiclassical regime. A direct numerical simulation requires the
mesh size to be O(ε). The Gaussian beam method is an efficient way to solve the high frequency
wave equations asymptotically, outperforming the geometric optics method in that the Gaussian
beam method is accurate even at caustics.

In this paper, we solve the Schrödinger equation using both the Lagrangian and Eulerian formu-
lations of the Gaussian beam methods. A new Eulerian Gaussian beam method is developed using
the level set method based only on solving the (complex-valued) homogeneous Liouville equations. A
major contribution here is that we are able to construct the Hessian matrices of the beams by using
the level set function’s first derivatives. This greatly reduces the computational cost in computing
the Hessian of the phase function in the Eulerian framework, yielding an Eulerian Gaussian beam
method with computational complexity comparable to that of the geometric optics but with a much
better accuracy around caustics.

We verify through several numerical experiments that our Gaussian beam solutions are good
approximations to Schrödinger solutions even at caustics. We also numerically study the optimal
relation between the number of beams and the rescaled Planck constant ε in the Gaussian beam
summation.
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1. Introduction

We are interested in the Gaussian beam methods for the numerical approximation
of the Schrödinger equation:

iε
∂Ψε

∂t
+

ε2

2
∆Ψε−V (x)Ψε =0, x∈R

n, (1.1)

with the WKB initial data,

Ψε(0,x)=A0(x)eiS0(x)/ε. (1.2)

Here Ψε(x,t) is the wave function, ε is the re-scaled Plank constant, and V (x) is a

∗Received: August 22, 2008; accepted (in revised version): October 12, 2008. Communicated by
Olof Runborg.
This work was partially supported by NSF grant No. DMS-0608720, NSF FRG grant DMS-0757285,
AFOSR grant No. FA9550-04-1-0143, NSFC Projects 10676017, and the National Basic Research
Program of China under the grant 2005CB321701. SJ was also supported by a Van Vleck Distin-
guished Research Prize from University of Wisconsin-Madison.

†Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA (jin@math.
wisc.edu).

‡Department of Mathematical Sciences, Tsinghua University, Beijing, 10084, China (hwu04@
mails.tsinghua.edu.cn).

§Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA (xyang@math.
wisc.edu).

995



996 GAUSSIAN BEAM METHODS FOR SCHRÖDINGER EQUATION

smooth potential. The physical observables can be defined in terms of Ψε(x,t):

position density nε = |Ψε|2 , (1.3)

density flux Jε =
ε

2i
(Ψε∇Ψε−Ψε∇Ψε), (1.4)

kinetic energy Eε =
ε2

2
|∇Ψε|2 . (1.5)

The wave function Ψε(x,t) and the related physical observables become oscillatory
of wave length O(ε) when ε is small — in the so-called semiclassical regime. A mesh
size of O(ε) is required when using the time-splitting spectral method [1] to simulate
(1.1)–(1.2) directly. The mesh size (and the time step as well) becomes even worse,
since they need to be as small as o(ε), if finite difference methods are used [21, 22]. The
mesh and time step restrictions of these methods make the computation of (1.1)–(1.2)
extremely expensive, especially in high dimensions.

One alternative efficient approach is to solve the equation asymptotically by the
classical WKB method. Applying the ansatz

Ψε(t,x)=A(t,x)eiS(t,x)/ε (1.6)

to (1.1), one obtains the eikonal equation for the phase S(t,x) and the transport

equation for the amplitude ρ(t,x)= |A(t,x)|2([34]):

St +
1

2
|∇S|2 +V (x)=0, (1.7)

ρt +∇·(ρ∇S)=0. (1.8)

Since the eikonal equation is of the Hamilton-Jacobi type, the solution becomes sin-
gular after caustic formation. Beyond caustics, the correct semiclassical limit of the
Schrödinger equation becomes multivalued. The multivalued solution can be com-
puted by ray tracing methods [6, 2, 3], wave front methods [32, 9], moment methods
[11, 14] and level set methods [16, 5, 15, 17]. We also refer the readers to the review
paper on computational high frequency waves [8].

A problem with WKB or geometric optics based methods is that the asymptotic
solution is invalid at caustics, since the amplitude ρ(x,t) blows up there. None of
the aforementioned methods could give accurate solutions near caustics. But, on the
other hand, accurately computing the solutions around the caustics is important in
many applications, for example, in seismic imaging [12, 13].

The Gaussian beam method, developed for high frequency linear waves, is an
efficient approximate method that allows accurate computation of the wave amplitude
around caustics [28]. Similar to the ray tracing method, the Gaussian beam solution
also has a WKB form of (1.6). The ray determined by (1.7)–(1.8) is the center of
the Gaussian beam. The difference lies in that the Gaussian beam allows the phase
function S(x,t) to be complex off its center, and the imaginary part of S(x,t) is chosen
so that the solution decays exponentially away from the center. The Lagrangian
formulation consists of the ray tracing equations determined by (1.7)–(1.8), which
describe the trajectory of the beam center, and the Riccati equation, which describes
the Hessian of the phase S(x,t). The validity of this construction at caustics is
analyzed by Ralston in [29].

Lagrangian numerical methods of Gaussian beams are usually developed based
on the Taylor expansion and superposition principle. The accuracy of the beam off
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the central ray is determined by the truncation error of Taylor expansion, and the
approximate solution is given by a sum of all the beams (see [4, 13, 25]). The accuracy
of the Taylor expansion was studied by Motamed and Runborg [24], and Tanushev
[30] developed and analyzed higher order Gaussian beams giving better accuracy of
the approximations.

Compared to Lagrangian methods based on ray tracing, which lose accuracy when
the ray diverges and need re-interpolation to maintain the numerical accuracy, which
can be very complicated, Eulerian methods based on solving PDEs on fixed grids have
the advantage of a uniform accuracy. Here we remark that the Lagrangian methods
based on wave front constructions [32, 9, 25] do not suffer from the issue of ray diver-
gence. Recently, motivated by the work of Tanushev, Qian and Ralston [31], Leung,
Qian and Burridge [19] designed an Eulerian Gaussian beam summation method for
the Helmholtz equations. In their formulation for n space dimensions, the Hessian
matrix of the phase was solved by 2n2 complex-valued inhomogeneous Liouville equa-
tions.1 They also introduced the semi-Lagrangian method to numerically evaluate
the singular Eulerian beam summation integral.

In this paper we systematically study the Gaussian beam method for solving
the Schrödinger equation in the semiclassical regime using both the Lagrangian and
the Eulerian formulations. The Lagrangian formulation follows the classical work for
linear hyperbolic equations [29]. The main contribution of this paper is a new Eulerian
Gaussian beam method using the level set function. To compute the velocity and the
Hessian of the phase, we only use n complex valued homogeneous level set Liouville
equations, rather than 2n2 inhomogeneous complex valued Liouville equations for
the Hessian in addition to n real-valued homogeneous Liouville equations for the
velocity as in [19]. The Hessian of the phase is evaluated from the first derivatives
of the level set functions. This new formulation significantly reduces the number
of Liouville equations used to construct the Hessian of the phase. As a matter of
fact, the computational method for the (complex-valued) phase and amplitude is not
much different from the level set method used for geometric optics computations as
in [5, 16, 15]. In addition, we also evaluate the Gaussian beam summation integral
using the semi-Lagrangian method of [19] only near caustics, thus largely maintain
the accuracy of the Eulerian method. This new method will be tested for its accuracy
and efficiency by comparing with the solution of the Schrödinger Equation (1.1)–(1.2).

Note that when there are many caustics, which make the velocity contours rather
complicated, the implementation of this local semi-Lagrangian method is difficult. In
these cases we refer to a discretized delta function method [33] for numerically com-
puting the Gaussian beam summation integral, which will be studied in a forthcoming
work.

The paper is organized as follows. In Sec. 2, we introduce the Lagrangian Gaus-
sian beam formulation and summarize its properties. In Sec. 3, we give a detailed
derivation of the new level set formulations for the Eulerian Gaussian beam method.
We also discuss how to implement the summation of the Eulerian Gaussian beams,
with an analysis of the computational complexity of this new method at the end.
The numerical examples are given in Sec. 4 to test the accuracy and efficiency of the
Gaussian beam methods. We make some conclusive remarks in Sec. 5.

1After we completed this manuscript, we received reference [18], where the Eulerian Gaussian
beam method of [19] was extended to the semiclassical Schrödinger equation still using the same
formulations for the Hessian of the phase as in [19].
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2. The Lagrangian formulation

In this section, we adopt the Gaussian beam approximation to the Schrödinger
equation (1.1). Let

ϕε
la(t,x,y0)=A(t,y)eiT (t,x,y)/ε, (2.1)

where y =y(t,y0) and T (t,x,y) is given by the Taylor expansion

T (t,x,y)=S(t,y)+p(t,y) ·(x−y)+
1

2
(x−y)⊤M(t,y)(x−y)+O(|x−y|3), (2.2)

in which (x−y)⊤ is the transpose of (x−y). Here S∈R, p∈R
n, A∈C, M ∈C

n×n.
The imaginary part of M will be chosen so that (2.1) has a Gaussian beam profile.
We call (2.1) the beam-shaped ansatz.

The difference from the WKB ansatz is that, in (2.1)–(2.2), a free parameter y

is used to control the domain where the WKB analysis is applied. Actually, y plays
the role of the beam center, chosen as

dy

dt
=p(t,y), y(0)=y0. (2.3)

2.1. Formulation for the beam-shaped ansatz. We first derive the for-
mulation for the beam-shaped ansatz (2.1). Plugging (2.1) into (1.1) and equating
the first two leading orders of ε, one obtains the following equations for T and A

∂T

∂t
+

∂y

∂t
·∇yT +

1

2
|∇xT |2 +V =0, (2.4)

∂A

∂t
+

∂y

∂t
·∇yA+

1

2
(△xT )A=0. (2.5)

Taking the first and second derivatives with respect to x in (2.4) gives

∂(∇xT )

∂t
+

∂y

∂t
·∇yxT +∇xT ·∇2

xT +∇xV =0, (2.6)

∂(∇2
xT )

∂t
+

∂y

∂t
·∇yxxT +

(
∇2

xT
)2

+∇xT ·∇3
xT +∇2

xV =0. (2.7)

Using (2.2) and evaluating (2.4)–(2.7) at x=y yield (after ignoring the O(|x−y|3)
term)

∂S

∂t
+

∂y

∂t
·(∇yS−p)+

1

2
|p|2 +V =0, (2.8)

∂A

∂t
+

∂y

∂t
·∇yA+

1

2

(
Tr(M)

)
A=0, (2.9)

∂p

∂t
+

∂y

∂t
·(∇yp−M)+p ·M +∇yV =0, (2.10)

∂M

∂t
+

∂y

∂t
·∇yM +M2 +∇2

yV =0, (2.11)

where Tr(M) is the trace of the matrix M .
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Considering the y-trajectory given by (2.3), then (2.8)-(2.11) can be written as a
set of ODEs:

dy

dt
=p, (2.12)

dp

dt
=−∇yV, (2.13)

dM

dt
=−M2−∇2

yV, (2.14)

dS

dt
=

1

2
|p|2−V, (2.15)

dA

dt
=−1

2

(
Tr(M)

)
A. (2.16)

Here y =y(t,y0), p=p(t,y(t,y0)), V =V (y(t,y0)), M =M(t,y(t,y0)), and
S =S(t,y(t,y0)), A=A(t,y(t,y0)).

Equations (2.12)–(2.16) are the Lagrangian formulation of the Gaussian beam
method. (2.12)-(2.13) are called the ray-tracing equations, and (2.14) is a Riccati
equation for the Hessian M , which will be solved by the dynamic first order system
of ray tracing equations (2.17).

We summarize some properties of these ODEs in Theorem 2.1. The results and
proofs of Parts 1, 2 and 3 essentially follow those in [29].

Theorem 2.1. Let P (t,y(t,y0)) and R(t,y(t,y0)) be the (global) solutions of the
equations

dP

dt
=R,

dR

dt
=−(∇2

yV )P, (2.17)

with initial conditions

P (0,y0)= I, R(0,y0)=M(0,y0), (2.18)

where matrix I is the identity matrix and Im(M(0,y0)) is positive definite. Assume
M(0,y0) is symmetric. Then for each initial position y0, we have the following.

1. P (t,y(t,y0)) is invertible for all t>0.

2. The solution to equation (2.14) is given by

M(t,y(t,y0))=R(t,y(t,y0))P
−1(t,y(t,y0)). (2.19)

3. M(t,y(t,y0)) is symmetric and Im(M(t,y(t,y0))) is positive definite for all
t>0.

4. Not only is the Hamiltonian V +
1

2
|p|2 conserved along the y-trajectory, an-

other quantity A2detP is also conserved, which means A(t,y(t,y0)) can also
be computed by

A(t,y(t,y0))=
[
(detP (t,y(t,y0)))

−1A2(0,y0)
]1/2

, (2.20)

where the square root is taken as the principal value.

Proof. Since y(t,y0) is not involved in the proof, we drop it for conve-
nience and simply write M(t,y(t,y0)), A(t,y(t,y0)), P (t,y(t,y0)), and R(t,y(t,y0))
as M(t), A(t), P (t), and R(t), respectively.
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(1) For any vector η∈C
n, by (2.17), z1 =P (t)η and z2 =R(t)η satisfy

dz1

dt
=z2,

dz2

dt
=−(∇2

yV )z1. (2.21)

Define

σ(P,R,η)=z1 ·z2−z1 ·z2. (2.22)

Note that ∇2
yV is real and symmetric. Then by differentiating (2.22) with respect to

t and using (2.21), one has

d

dt
σ(P,R,η)=

dz1

dt
·z2 +z1 ·

dz2

dt
− dz1

dt
·z2−z1 ·

dz2

dt

=z2 ·z2 +z1 ·
(
(−∇2

yV )z1

)
−z2 ·z2−z1 ·

(
(−∇2

yV )z1

)

=0.

Assume that P (t) is singular at t= t0. Then there exists a non-zero vector l∈C
n

such that P (t0)l=0. So, we have

0=P (t0)l ·R(t0)l−P (t0)l ·R(t0)l

=σ(P (t0),R(t0),l)=σ(P (0),R(0),l)

=P (0)l ·R(0)l−P (0)l ·R(0)l

= l ·M(0)l− l ·M(0)l=2il · Im[M(0)]l,

which is a contradiction since Im[M(0)] is positive definite and l0 is non-zero. In the
last identity we used the symmetry of M(0).

This proves the invertibility of P (t).

(2) Let M =RP−1. Using (2.17), one obtains

dM

dt
+M2 +∇2

yV =
dR

dt
P−1 +R

dP−1

dt
+RP−1RP−1 +∇2

yV

=−(∇2
yV )PP−1−RP−1 dP

dt
P−1 +RP−1RP−1 +∇2

yV

=−RP−1RP−1 +RP−1RP−1 =0.

Thus M satisfies (2.14).

(3) First, since both M(t) and its transpose M⊤(t) satisfy the same equation (2.14),
the uniqueness (for example, Theorem 1 in [7]) implies that M(t)=M⊤(t) for all t>0,
when the initial condition M(0) is symmetric.

Since we already proved that P (t) is invertible, ∀l′∈C
n there exists an l that

satisfies l′ =P (t)l. Then

2il′ · Im[M(t)]l′ =2iP (t)l · Im[M(t)]P (t)l

=P (t)l ·M(t)P (t)l−P (t)l ·M(t)P (t)l

=P (t)l ·R(t)l−P (t)l ·R(t)l

=σ(P (t),R(t),l)=σ(P (0),R(0),l)

=P (0)l ·R(0)l−P (0)l ·R(0)l

=P (0)l ·M(0)P (0)l−P (0)l ·M(0)P (0)l

=2il · Im[M(0)]l.
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The second and last identities are obtained by the symmetries of M(t) and M(0).
Because Im[M(0)] is positive definite, Im[M(t)] is also positive definite.

(4) Along the y-trajectory,

d

dt

(
A2detP

)
=2A

dA

dt
detP +A2 d(detP )

dt

=−2A

[
1

2

(
Tr(M)

)
A

]
detP +A2Tr

(
P−1 dP

dt

)
detP

=−A2Tr
(
RP−1

)
detP +A2Tr

(
P−1R

)
detP =0.

Hence A2detP is conserved.

2.2. The Lagrangian Gaussian beam summation. In this subsection, we
introduce the Lagrangian Gaussian beam summation formula (for example [12]). The
approximation of the WKB initial data (1.2) is shown in the next theorem proved by
Tanushev in [30]. Note that the regularities of the initial conditions are modified to
be specific here.

Theorem 2.2. Let A0∈C1(Rn)∩L2(Rn) and S0∈C3(Rn), and define

Ψε
0(x)=A0(x)eiS0(x)/ε,

ϕε
0(x,y0)=A0(y0)e

iT0(x,y0)/ε,

where

T0(x,y0)=Tα0(y0)+Tβ0 ·(x−y0)+
1

2
(x−y0)

⊤Tγ0(x−y0),

Tα0(y0)=S0(y0), Tβ0(y0)=∇xS0(y0), Tγ0(y0)=∇2
xS0(y0)+ iI .

Then
∥∥∥∥∥

∫

Rn

(
1

2πε

)n
2

rθ(x−y0)ϕ
ε
0(x,y0)dy0−Ψε

0(x)

∥∥∥∥∥
L2

≤Cε
1
2 ,

where rθ ∈C∞
0 (Rn), rθ ≥0 is a truncation function with rθ ≡1 in a ball of radius θ>0

about the origin, and C is a constant related to θ.

By Theorem 2.2 we specify the initial data for (2.12)–(2.16) as

y(0,y0)=y0, (2.23)

p(0,y0)=∇xS0(y0), (2.24)

M(0,y0)=∇2
xS0(y0)+ iI, (2.25)

S(0,y0)=S0(y0), (2.26)

A(0,y0)=A0(y0). (2.27)

Then the Gaussian beam summation solution which approximates the Schrödinger
Equation (1.1) is constructed as:

Φε
la(t,x)=

∫

Rn

(
1

2πε

)n
2

rθ(x−y(t,y0))ϕ
ε
la(t,x,y0)dy0. (2.28)
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The discrete form of (2.28) in a bounded domain is given by

Φε
la(t,x)=

Ny0∑

j=1

(
1

2πε

)n
2

rθ(x−y(t,yj
0))ϕ

ε
la(t,x,yj

0)∆y0, (2.29)

where y
j
0 are the equidistant mesh points, and Ny0

is the number of the beams initially

centered at y
j
0.

Note that rθ works as a cut-off function, and the cut-off error becomes large when
the truncation parameter θ is taken too small. On the other hand, a large θ, for wide
beams, makes the Taylor expansion error large. As far as we know, it is still an open
question how large θ should be chosen when the beams spread. However, for narrow
beams one could take fairly large θ, which makes the cut-off error almost zero. For
example, a one-dimensional constant solution could be approximated by

1=

∫

R

1√
2πε

exp

(−(x−y0)
2

2ε

)
dy0≈

∑

j

∆y0√
2πε

exp

(
−(x−yj

0)
2

2ε

)
,

in which rθ ≡1.

3. The Eulerian formulation
In the last few years, the level set method has been developed to compute the

multi-valued solution of (1.7)–(1.8) which gives the correct semiclassical limit of the
Schrödinger solution [16, 5, 15] away from the caustics. The idea is to build the velocity
u=∇yS into the intersection of zero level sets of phase-space functions φj(t,y,ξ), j =
1,··· ,n, i.e.,

φj(t,y,ξ)=0, at ξ =u(t,y), j =1,··· ,n. (3.1)

If we define φ=(φ1,··· ,φn), then by differentiating (3.1) with respect to y for each
j, the Hessian ∇yu satisfies

∇2
yS =∇yu=−∇yφ(∇ξφ)−1. (3.2)

Comparing (3.2) with (2.19), we conjecture that

R=−∇yφ, P =∇ξφ. (3.3)

Note that this conjecture does not violate the symmetry of the Hessian ∇yu by the
second and third parts of Theorem 2.1. Moreover, it also implies the divergence-free
condition

∇ξR+∇yP =0, (3.4)

which actually holds initially (2.18).
In this section, we first review the level set formulations developed in [15, 16, 19]

for geometrical optics, and then prove that the conjecture (3.3) is true under an
appropriate initial condition for φ. We then describe the level set algorithm for the
Eulerian Gaussian beam method and the construction of the wave function for the
Schrödinger equation. Although our new formulations are consistent with the Eulerian
Gaussian beam method constructed in [19] for the Helmholtz equations, by making
use of observation (3.3) we introduce a much simpler and efficient numerical method
than [19].
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3.1. Verification of (3.3) Define the linear Liouville operator as

L=∂t +ξ ·∇y −∇yV ·∇ξ.

As shown in [15, 16], the level set equations for the velocity, phase and amplitude
are given by

Lφ=0, (3.5)

LS =
1

2
|ξ|2−V, (3.6)

LA=
1

2
Tr

(
(∇ξφ)−1∇yφ

)
A. (3.7)

If one introduces the new quantity ([15])

f(t,y,ξ)=A2(t,y,ξ)det(∇ξφ), (3.8)

then f(t,y,ξ) satisfies the Liouville equation

Lf =0. (3.9)

For the Gaussian beam method in [19], two more inhomogeneous Liouville equa-
tions, which are the Eulerian formula of (2.17) for P and R, were introduced to
construct the Hessian matrix

LR=−(∇2
yV )P, (3.10)

LP =R. (3.11)

Note that the equations (3.5)–(3.9) are real, while (3.10)–(3.11) are complex and con-
sist of 2n2 equations.

By taking the gradient of equation (3.5) with respect to y and ξ separately, we
have

L(∇yφ)=∇2
yV ∇ξφ, (3.12)

L(∇ξφ)=−∇yφ. (3.13)

Comparing (3.10)–(3.11) with (3.12)–(3.13), we observe that −∇yφ and ∇ξφ

satisfy the same equations as R and P . Since the Liouville equations are linear, the
conjecture (3.3) is true by letting φ be complex and by enforcing that −∇yφ, ∇ξφ

have the same initial conditions as R and P respectively.
From (2.18) and (2.25), this suggests the following initial condition for φ:

φ0(y,ξ)=−iy+(ξ−∇yS0). (3.14)

With this observation, we can now solve (3.5) for complex φ, with initial data (3.14).
Then the Hessian M is constructed by

M =−∇yφ(∇ξφ)−1, (3.15)

where velocity u=−∇yS is given by the intersection of the zero-level contours of the
real part of φ, i.e., for each component φj ,

Re[φj(t,y,ξ)]=0, at ξ =u(t,y)=∇yS. (3.16)
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Note that to compute u,S and M we just need to solve n complex-valued homo-
geneous Liouville Equation (3.5), while in the formulation of [19], one needs to solve n
real-valued homogeneous Liouville Equation (3.5) and 2n2 complex-valued inhomoge-
neous Liouville equations (3.10) and (3.11). Our new formulation has a computational
complexity comparable to that of the level set methods for geometrical optics [15, 17].
The only difference here is that (3.5) is complex-valued while in the geometrical optics
computation one solves the real part.

3.2. The level set algorithm. In this subsection, we give the implementation
details of the new level set method. We will also prove its validity at caustics.

• Step 1. Solve (3.5) for complex φ, with initial condition (3.14), then obtain
the velocity u by the intersection of the zero-level sets of Reφj , j =1,··· ,n.

• Step 2. Use −∇yφ and ∇ξφ to construct the Hessian matrix by (3.15) (note
these quantities actually are already available from the first step when one
discretizes the Liouville equation for φ).

• Step 3. One can integrate the velocity u along the zero-level sets ([10, 17])
to get the phase S. The idea is to do numerical integration following each
branch of the velocity. The integration constants are obtained by both the
boundary condition and the fact that the multivalued phase is continuous
when it passes from one branch to the other. For example, if we consider a
bounded domain [a,b] in one space dimension, the phase function is given by

S(t,x)=−V (a)t− 1

2

∫ t

0

u2(τ,a)dτ +

∫ x

a

u(t,s)ds+S(0,a). (3.17)

Because

∫ x

a

u(t,s)ds is the only term in (3.17) which affects the quadratic

physical observables for fixed time t, one could take

S(t,x)=

∫ x

a

u(t,s)ds (3.18)

as the phase value in the numerical simulations of (1.3)-(1.5). For more details
and in higher dimensions, see [17]. (One could also solve (3.6) directly.)

• Step 4. Solve (3.9) with the initial condition

f0(y,ξ)=A2
0(y,ξ).

The amplitude A is given by

A=(det(∇ξφ)−1f)1/2, (3.19)

in which the square root is taken as the principal value.

Remark 3.1. All of the functions in Steps 2–4 only need to be solved locally around
the zero-level sets of Reφj , j =1,··· ,n. Namely, the entire algorithm can be imple-
mented using the local level set methods [26, 27], thus the computational cost for
mesh size ∆y is O((∆y)−n ln(∆y)−1), about the same as the local level set methods
for geometrical optics computations [15, 17].

The well-definedness of (3.15) and (3.19) is justified by the following theorem,
which is the Eulerian version of Theorem 2.1.

Theorem 3.2. Let φ=φ(t,y,ξ)∈C be the solution of (3.5) with initial data (3.14).
Then we have the following properties:
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1. ∇ξφ is non-degenerate for all t>0.

2. Im
(
−∇yφ(∇ξφ)−1

)
is positive definite for all t>0, y,ξ∈R

n.

Proof. (1) For ∀η∈C
n, by using (3.12)-(3.13) we have

L
(
(∇ξφ)η ·(∇yφ)η−(∇ξφ)η ·(∇yφ)η

)

=L
(
(∇ξφ)η

)
·(∇yφ)η+(∇ξφ)η ·L

(
(∇yφ)η

)

−L
(
(∇ξφ)η

)
·(∇yφ)η−(∇ξφ)η ·L

(
(∇yφ)η

)

=−(∇yφ)η ·(∇yφ)η+(∇ξφ)η ·
(
(∇2

yV ·∇ξφ)η
)

+(∇yφ)η ·(∇yφ)η−(∇ξφ)η ·
(
(∇2

yV ·∇ξφ)η
)

=0.

The last equality is true because ∇2
yV is symmetric and real.

If ∇ξφ is singular at (t2,y2,ξ2), there exists a non-zero l∈C
n such that

(∇ξφ)l|(t2,y2,ξ2)
=0. Then we have

(
(∇ξφ)l ·(∇yφ)l−(∇ξφ)l ·(∇yφ)l

)∣∣∣
(t2,y2,ξ2)

=0.

Since L
(
(∇ξφ)l ·(∇yφ)l−(∇ξφ)l ·(∇yφ)l

)
=0, there exists (0,y1,ξ1) that connects

(t2,y2,ξ2) by a characteristic such that

(
(∇ξφ)l ·(∇yφ)l−(∇ξφ)l ·(∇yφ)l

)∣∣∣
(0,y1,ξ1)

=
(
(∇ξφ)l ·(∇yφ)l−(∇ξφ)l ·(∇yφ)l

)∣∣∣
(t2,y2,ξ2)

=0.

This implies, by taking account of the initial condition (3.14),

−2il · l=0.

This is a contradiction, which proves ∇ξφ is not degenerate for all t>0.

(2) Since we already proved that ∇ξφ is non-degenerate, ∀l′∈C
n there exists

an l that satisfies l′ =(∇ξφ)l. Note that −∇yφ(∇ξφ)−1 is symmetric from (3.2),
then we have

2il′ · Im
(
−∇yφ(∇ξφ)−1

)∣∣
(t2,y2,ξ2)

l′

=2i
(
(∇ξφ)l · Im

(
−∇yφ(∇ξφ)−1

)
(∇ξφ)l

)∣∣∣
(t2,y2,ξ2)

=−
(
(∇ξφ)l ·(∇yφ)l−(∇ξφ)l ·(∇yφ)l

)∣∣∣
(t2,y2,ξ2)

=−
(
(∇ξφ)l ·(∇yφ)l−(∇ξφ)l ·(∇yφ)l

)∣∣∣
(0,y1,ξ1)

=2il · l,
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which implies that Im
(
−∇yφ(∇ξφ)−1

)
is positive definite.

Remark 3.3. Although det
(
Re[∇ξφ]

)
=0 at caustics, the complexified φ makes ∇ξφ

non-degenerate, and the amplitude A, defined in (3.19), does not blow-up at caustics!

So far we have obtained the phase S, the velocity u, the Hessian M , and the
amplitude A. We show how to construct the wave function from these quantities in
the next subsection.

3.3. The Eulerian Gaussian beam summation. Define

ϕε
eu(t,x,y,ξ)=A(t,y,ξ)eiT (t,x,y,ξ)/ε, (3.20)

where

T (t,x,y,ξ)=S(t,y,ξ)+ξ ·(x−y)+
1

2
(x−y)⊤M(t,y,ξ)(x−y).

Then the wave function is constructed via the following Eulerian Gaussian beam
summation formula:

Φε
eu(t,x)=

∫

Rn

∫

Rn

(
1

2πε

)n
2

rθ(x−y)ϕε
eu(t,x,y,ξ)Πn

j=1δ(Re[φj ])dξdy, (3.21)

in which rθ ∈C∞
0 (Rn), rθ ≥0 is a truncation function with rθ ≡1 in a ball of radius

θ>0 about the origin and δ is the Dirac delta function. The choice of rθ is the same
as the one in the Lagrangian formulation.

We show in the Appendix that (3.21) is consistent to the Lagrangian summation
formula (2.28). (3.21) could be evaluated as a single integral about y. Since the
velocity becomes multivalued after caustic formation, we denote uk, k =1,··· ,K as
the k-th branch of the velocity and write

Φε
eu(t,x)=

∫

Rn

(
1

2πε

)n
2

rθ(x−y)
∑

k

ϕε
eu(t,x,y,uk)

|det(Re[∇ξφ]ξ=uk
)|dy. (3.22)

Since det
(
Re[∇ξφ]

)
=0 at caustics, a direct numerical integration of (3.22) loses accu-

racy around singularities (see Example 3 in Sec. 5 for the detailed numerical demon-
strations). To get a better accuracy, we split (3.22) into two parts

I1 =
∑

k

∫

L1

(
1

2πε

)n
2

rθ(x−y)
ϕε

eu(t,x,y,uk)

|det(Re[∇ξφ]ξ=uk
)|dy, (3.23)

I2 =
∑

k

∫

L2

(
1

2πε

)n
2

rθ(x−y)
ϕε

eu(t,x,y,uk)

|det(Re[∇ξφ]ξ=uk
)|dy, (3.24)

where

L1 =
{

y

∣∣∣
∣∣det(Re[∇pφ](t,y,pj))

∣∣≥ τ
}

,

L2 =
{

y

∣∣∣
∣∣det(Re[∇pφ](t,y,pj))

∣∣<τ
}

,

with τ being a small parameter. In the numerical simulation one needs to consider
two facts about choosing the parameter τ :
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1. to reduce the computational complexity one needs to make τ as small as
possible to minimize the cost of computing (3.24);

2. for convenience, one needs to evaluate (3.23) easily by some quadrature rule
using the mesh grid points.

See figure 4.7 (bottom) for example. The circles are the grid points we need to
compute (3.23) and the cross points are the points we need to evaluate (3.24).

In our numerical simulations, I1 is approximated by the trapezoid quadrature rule,
while the singular integral I2 is evaluated by the semi-Lagrangian method introduced
in [19]. For convenience we summarize the semi-Lagrangian method here. Suppose
we take a number of discrete beams centered at yj , j =1,··· ,My with the velocity

u
j
k on the contour. The idea is to trace each individual (yj ,uj

k) back to the initial

position (yj
0,u

j
k,0) using (2.12)-(2.13) with t→−t, then determine the weight function

ω(yj
0) for it. For example, in one space dimension if the two adjacent points yj1

0

and yj2
0 of yj

0 satisfy yj1
0 <yj

0 <yj2
0 , then ω(yj

0)=(yj2
0 −yj1

0 )/2 (see page 68 in [19] for
details). In this process one gets rid of the singular term by noticing that dy0 =

1

|det(Re[∇ξφ]ξ=uk
)|dy. The discrete form of (3.24) reads as

Ĩ2 =

My∑

j=1

∑

k

(
1

2πε

)n
2

rθ(x−yj)ϕε
eu(t,x,yj ,uj

k)ω(yj
0). (3.25)

We remark here that the semi-Lagrangian method (3.25) can be used to evaluate
(3.22), as was done in [19]. However, when the rays diverge backward in time, ω(yj

0)
becomes large. The local semi-Lagrangian method helps to reduce such errors.

Remark 3.4. When the velocity contours are complicated due to large numbers of
caustics, the implementation of this local semi-Lagrangian method is difficult. In these
cases we refer to a discritized delta function method [33] for numerically computing
(3.21) which does not contain the singular denominator. In this method, one needs
to compute (3.6) for solving the phase function since all the function values near the
support domain of the delta functions δ(Re[φj ]) are needed to evaluate (3.21). This
will be studied in a forthcoming work.

3.4. Estimates on computational complexity. Since the errors of the
Gaussian beam method were already discussed in [24, 30], we only focus on the analysis
of the computational complexity here. There are two steps for computing the Gaussian
beam solution.

1. Solving the PDEs (3.5) and (3.9).
2. Constructing the asymptotic solution using (3.22).

The numerical cost of the first step is related to the mesh size and the time
step. We will show later that the optimal mesh size is ∆y =O(ε

1
2 ) in the numerical

simulations. We denote the numerical error of solving the PDEs as Enum, which
introduces the error of Enum/ε when one constructs ϕε

eu in (3.20). For this error to be

minor, we require the time step taken as ∆t∼ε
1
2 in a fourth order time discretization.

Then the computational complexity of the first step is O(ε−
n+1

2 lnε−
1
2 ) if the local

level set method is used.
The numerical cost of the second step is related to the number of nodes Nx in the

x-mesh when we finally construct the solution by (3.22). To get the whole wave field,
one needs to resolve the wave length, which requires Nx ∼ε−n. Due to the truncation
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function rθ(x−y) and the fact that the imaginary part of the Hessian matrix M is
positive definite by Theorem 3.2, the computational cost of (3.23) is O(1) for each x.

The computational cost of each backtrace is O(ε−
1
2 ) in the semi-Lagrangian method

for solving (3.24). However, since (3.24) is an integration on a small local domain (τ
is small), the computational cost of (3.25) is negligible compared to the rest. If the
discretized delta function method [33] is used to evaluate (3.21), the computational
cost for each x is still O(1) because of the truncation function rθ(x−y) and the fact
that each beam decays exponentially. So the total computational complexity of the
second step is O(ε−n) for computing the whole wave field.

In summary, the total computational cost is O(ε−
n+1

2 lnε−
1
2 +ε−n). We remark

that the computational cost mainly comes from solving the Liouville equations, which

is O(ε−
n+1

2 lnε−
1
2 ), if only some selected points in the wave field are needed to be com-

puted. This is better than the complexity of directly solving the Schrödinger Equation
(1.1)-(1.2) using the Time Splitting Spectral Method [1], which is O(ε−n−1/2 lnε−n).

4. The numerical examples
In this section, we present several numerical examples using both the Lagrangian

and the Eulerian formulations to show the accuracy of the Gaussian beam solutions
and the numerical efficiency. We compute the solution of the Schrödinger equation
by the Strang splitting spectral method [1]. The ‘exact’ Schrödinger solution Ψε is
obtained by using a very fine mesh and a very small time step with an appropriately
large domain so that the periodic boundary condition does not introduce a significant
error to the initial value problem. Since all of the Gaussian beams are observed to be
narrow in the numerical examples, the truncation parameter θ in (2.29) and (3.22) is
chosen large enough so that the cut-off error is almost zero. We gain convergence rates
higher than O(

√
ε) in the numerical simulation because of the error cancellations in

the summation of Gaussian beams (see [24]).

4.1. The Lagrangian Gaussian beam examples. We study the La-
grangian formulation numerically in this subsection. The numerical examples are
chosen such that the fourth order Runger-Kutta scheme with the time step ∆t∼ε1/2

is good to be used for solving (2.12)–(2.16). We analyze the asymptotic expansion
error and the initial condition error in Example 1. The numerical integration errors
and the errors of the ODE solvers are discussed in Example 2.

Example 1: A free particle with zero potential V (x)=0. The initial conditions for
the Schrödinger equation are given by

A0(x)=e−25(x−0.5)2 , S0(x)=−x2.

In this example, the Gaussian beam solution (2.28) can be solved analytically

Φε
la(t,x)=

e
−6.25− x2

2ε(5t2−4t+1)
+ i

ε

(5t−2)x2

2(5t2−4t+1)
+ B2

4A

√
2Aε

(
(−2+ i)t+1

) ,

where A and B are

A=25+
(1−2t)2

2ε(5t2−4t+1)
− (1−2t)t

2ε(5t2−4t+1)
i,

B =25+
2(1−2t)x

2ε(5t2−4t+1)
− xt

ε(5t2−4t+1)
i.
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In this example the initial velocity contour is a straight line with the slope of −1.
As time increases the slope steepens and becomes infinity at t=0.5 which generates
an instantaneous caustic. After t=0.5 the slope becomes positive and the caustic
disappears. This type of caustic is different from the cusp caustic which will be
studied in Examples 2 and 3. As a consequence, we observed a higher convergence
rate in l1 norm than in the other examples.

We plot the solutions at time t=0.5 when the caustic is generated in figure 4.1.
We compare the wave amplitudes between the Gaussian beam solution Φε

la(t,x) and
the Schrödinger solution Ψε(t,x) for different ε. The error comes mostly from the
asymptotic expansion and the initial data approximation.

The l1, l2 and l∞ errors between Φε
la and Ψε for different ε are plotted in figure

4.2. One can see that the Gaussian beam solution Φε
la converges in ε with an order

of about 1.5 in the l1 norm, one in the l2 norm, and one half in the l∞ norm.

Example 2: Consider the potential V (x)=2x3, with the initial conditions

A0(x)=e−25x2

, S0(x)=
1

π
cos(πx).

This example deals with a variable potential case. Since the potential V (x)=2x3

makes the force one-directional, the wave function of (1.1)-(1.2) is asymmetric. Two
caustics form at time t=0.5.

We use the fourth order Runge-Kutta method to solve the ODE system (2.12)–
(2.16) with the initial data (2.23)–(2.27) in the interval [−1.5,1.5] with periodic bound-
ary conditions. Note that the Hessian M and the amplitude A are solved via the
dynamic ray tracing system (2.17), (2.19) and (2.20). In Table 4.1, we present the
l1, l2 and l∞ errors between Φε and Ψε using different ∆t and Ny0

=200. We draw
the conclusion that the numerical errors are negligible compared to the other types
of errors when ∆t≤0.02 for ε= 1

4096 , n=1.
Next we study the error coming from evaluating the integral (2.28) numerically.

Evidently, the more nodes of y0 are used, the more accurate the numerical integration
will be; however, each node of y0 corresponds to an ODE system, thus a large number
of nodes will result in a high computational cost. In this example, we investigate the
accuracy versus Ny0

for ε≪1. We also study the optimal relation between Ny0
and

ε which ensures a good approximation and low computational cost.
We plot the solutions at time t=0.5 in figure 4.3. The wave amplitudes are

compared between the Schrödinger solution Ψε and the Gaussian beam solution Φε

using different numbers of beams Ny0
at ε= 1

4096 . The l1, l2 and l∞ errors between
Φε and Ψε are given in Table 4.2. We can see that the Gaussian beam solution
converges quickly with the increasing number of beams. In figure 4.4 (left), we show

that Ny0
∼ε−

1
2 is pretty much enough, and larger Ny0

will not reduce the error further
since the other errors start to dominate.

figure 4.4 (right) gives the l1, l2 and l∞ errors between Φε
la and Ψε for different ε

at time t=0.5, where we use Ny0
=800 and ∆t=0.001. The convergence rate of the

error in ε is about first order in l1 and l2 norms, the order of 0.7894 in the l∞ norm.
We also plot the comparisons of the position density, the density flux and the kinetic
energy for ε= 1

4096 , usingNy0
=200, t=0.5 and ∆t=0.01 in figure 4.5.

4.2. The Eulerian Gaussian beam examples. In this subsection, we
study the Gaussian beam method numerically using the Eulerian formulation. The
numerical methods to the Liouville equation are very mature. It could be solved by
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−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

x

|Ψε|

|Φε
la

|

−0.01 −0.005 0 0.005 0.01

0

5

10

15

20

25

x

|Ψε|

|Φε
la

|

(a) ε= 1
1024

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

x

|Ψε|

|Φε
la

|

−0.01 −0.005 0 0.005 0.01

0

5

10

15

20

25

x

|Ψε|

|Φε
la

|

(b) ε= 1
4096

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

x

|Ψε|

|Φε
la

|

−0.01 −0.005 0 0.005 0.01

0

5

10

15

20

25

x

|Ψε|

|Φε
la

|

(c) ε= 1
16384

Fig. 4.1. Example 1: the Schrödinger solution |Ψε| versus the Gaussian beam solution |Φε
la
| at

different ε. The left figures are the comparisons at t=0 (the initial time); the right figures are the
comparisons at time t=0.5.

∆t 0.04 0.02 0.01 0.005
‖Φε

la−Ψε‖1 7.88×10−2 4.18×10−4 4.18×10−4 4.18×10−4

‖Φε
la−Ψε‖2 3.51×10−1 1.68×10−3 1.68×10−3 1.68×10−3

‖Φε
la−Ψε‖

∞
2.58×100 1.24×10−2 1.24×10−2 1.24×10−2

Table 4.1. the l1, l2 and l∞ errors for different ∆t for Example 2.
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Fig. 4.2. Example 1: the convergence rate in ε of the l1, l2 and l∞ errors of the wave function.

Ny0
50 100 150 200

‖Φε
la−Ψε‖1 2.72×10−2 6.92×10−4 4.18×10−4 4.18×10−4

‖Φε
la−Ψε‖2 1.09×10−1 2.69×10−3 1.68×10−3 1.68×10−3

‖Φε
la−Ψε‖

∞
7.10×10−1 2.02×10−2 1.24×10−2 1.24×10−2

Table 4.2. the l1, l2 and l∞ errors at ε= 1
4096

for different Ny0 for Example 2.

either the finite difference method [16, 17] or the semi-Lagrangian method [19, 20].
We do not address the issue of an optimal Liouville solver here.

We present two numerical examples to show the effectiveness of the Eulerian
Gaussian beams method. In Example 3 (first proposed in [16]), we point out that
around the caustics one needs to take enough discrete beams to resolve the velocity
contour well to obtain a good accuracy. This is an issue not discussed in [19]. We
also study a simple two-dimensional case in Example 4 which first appeared in [26].

Example 3 (1D) : Free motion particles with zero potential V (x)=0. The initial
conditions for the Schrödinger equation are given by

A0(x)=e−25x2

, S0(x)=−1

5
log(2cosh(5x)),

which implies that the initial density and velocity are

ρ0(x)= |A0(x)|2 =exp(−50x2), u0(x)=∂xS0(x)=−tanh(5x).

The solutions of the Liouville equations (3.5), (3.6) and (3.9) can be solved by
the method of characteristics analytically:

φ(t,y,ξ)=φ0(y−ξt,ξ),

S(t,y,ξ)=S0(y−ξt)+ tu2
0(y−ξt)/2,

f(t,y,ξ)=A2
0(y−ξt,ξ).
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Fig. 4.3. Example 2: the Schrödinger solution |Ψε| versus the Gaussian beams solution |Φε
la
|

at ε= 1
4096

using different Ny0 . The left figures are the comparisons at t=0.5; the right figures plot
the errors |Ψε−Φε

la
|.

We use ∆y =∆ξ =0.002 in the mesh for the Eulerian beam simulation, and take

∆x=
1

65536
, the same mesh size as the numerical solution to the Schrödinger equation,

to construct the wave function (3.22). figure 4.6 shows the comparison of the wave
amplitude between the Schrödinger solution Ψε and the Eulerian beams solution Φε

eu

for ε=1×10−4 and at t=0.5.
From the left figures of figure 4.6(a)-(c), one can see that summing up the beams
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Fig. 4.4. Example 2. Left: the plot of the optimal beam number Ny0 for each ε. Right: the
convergence rate in ε of the l1, l2 and l∞ errors of the wave function.

centered on the mesh could only approximate the Schrödinger solution accurately
away from the caustics. In order to make good approximations around the caustics,
one has to sum up more beams whose centers better represent the velocity contour
curve. In other words, one needs to numerically resolve the singular integration (3.24)
accurately by the semi-Lagrangian method. This process could be easily implemented
by the Matlab subroutine ‘contour’. The results are shown in the right figures of figure
4.6(a)–(c). To make some comparisons we list other types of asymptotic solutions in
figure 4.6(d)–(f) given by geometric optics [16] and the corrected geometric optics with
phase shift information (Keller-Maslov index) [17]. Since both the approximations
blow up at caustics, we make some truncations when plot them. One could also notice
that the Eulerian beam solution Φε

eu naturally carries the phase shift information even
when the velocity contour is not well resolved. The error of Φε

eu is substantially smaller
than Φε

GO and Φε
PS around the caustics.

We give the velocity contour and beam distribution around one caustic in figure
4.7. This figure shows that the contour of velocity around the caustic (near x=−0.18)
was not resolved well, which causes large errors around the caustic shown in figure
4.6(c) (left). Figure 4.8 (left) shows the convergence rates in ε of amplitude are of
order 0.9082 in the l1 norm, order 0.8799 in l2 norm and order 0.7654 in the l∞ norm.
In figure 4.8 (right), we numerically show that the optimal relationship between ∆y
and ε is ∆y∼ε1/2, which ensures a good approximation.

Example 4 (2D): Take the potential V (x1,x2)=10 and the initial conditions of the
Schrödinger equation as

A0(x1,x2)=e−25(x2
1+x2

2),

S0(x1,x2)=−1

5
(log(2cosh(5x1))+log(2cosh(5x2))).

Then the initial density and two components of the velocity are

ρ0(x1,x2)=exp(−50(x2
1 +x2

2)),

u0(x1,x2)=−tanh(5x1), v0(x1,x2)=−tanh(5x2).

This is an easily implemented two-dimensional example, since the two components
are either x1-isotropic or x2-isotropic (see figure 4.9). More complicated examples
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Fig. 4.5. Example 2: ε= 1
4096

, Ny0 =200, t=0.5 and ∆t=0.01. The left figures are the com-
parisons of the position density, the density flux and the kinetic energy of the Schrödinger solution
Ψε and the Gaussian beams solution Φε

la
at t=0.5; the right figures show the errors between them.

could be dealt with similarly, but one needs more sophisticated interpolation tech-
niques to get the intersection of the zero-level contours. We do not address this issue
here and refer to [23] for interested readers. We use ∆y1 =∆y2 =∆ξ1 =∆ξ2 =0.004
for the computation of the Liouville equations (3.5) and (3.9) by the semi-Lagrangian

method [19, 20]. The mesh size is ∆x1 =∆x2 =
1

65536
for the construction of the
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Fig. 4.6. Example 3: ε=1×10−4. The figure shows the comparison of the wave amplitudes
between the Eulerian beam solution Φε

eu and the Schrödinger solution Ψε at t=0.5. The Eulerian
beam solution on the left is obtained by the summation of all the beams centered on the mesh, and
the one on the right is obtained by the summation of the beams which better resolve the zero contour
curve around caustics.

Eulerian beam solution (3.22). We take ε=0.001 and compare the wave amplitudes
of the Schrödinger solution Ψε and the Eulerian beam solution Φε

eu in figure 4.10 at
time t=0.5. The error between them is shown in figure 4.11.
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Fig. 4.6. (continued). Left: the comparison between the geometric optics approximation Φε
GO

and the Schrödinger solution Ψε; right: the comparison between the geometric optics corrected with
phase shift (Keller-Maslov index) Φε

PS and the Schrödinger solution Ψε.

5. Conclusion

In this paper, we present the Lagrangian and Eulerian formulations of the Gaus-
sian beam method for solving the Schrödinger equation. A new Eulerian Gaussian
beam method is developed using the level set method. By using observation (3.3),
we evaluate the Hessian matrix of the phase directly from the first derivatives of the
(complexified) level set function for velocity, and thus avoid using an extra 2n2 (for
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Fig. 4.7. Example 3: t=0.5. The top figure shows the multivalued velocity; the bottom figure
shows the beams centered on the mesh and the beams needed to resolve the zero contour around the
caustic point. The former case does not resolve the caustic around x=−0.18 well, and thus causes
errors shown in figure 4.6(c) (left).
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Fig. 4.8. Example 3. Left: the convergence rates in ε of the l1, l2 and l∞ errors of the wave
amplitude; right: the plot of the optimal ∆y for each ε.

n space dimensions) complex-valued inhomogeneous Liouville equations as was done
in [19]. We verify the accuracy of the Gaussian beam solutions by several numerical
examples which show small error around caustics. We also point out that one needs
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Fig. 4.9. Example 4: the two components of the multivalued velocity at t=0.5.

Fig. 4.10. Example 4: the comparison of the wave amplitude between the Schrödinger solution
Ψε on the left and the Eulerian beams solution Φε

eu on the right for ε=0.001 and at t=0.5.

to resolve the velocity contour near caustics to obtain good approximations in the
Eulerian formulation. Moreover, we give a numerical criteria for the optimal choice
of the beam numbers in the Gaussian beam summation. We will extend this method
to other problems in high frequency waves in the near future.

Acknowledgement. Xu Yang would like to thank Prof. Björn Engquist and
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in ICES, Austin, TX, which stimulated his interest in this subject.

Appendix A. The Lagrangian summation formulation (2.28) reads as

Φε
la(t,x)=

∫

Rn

(
1

2πε

)n
2

rθ(x−y(t,y0))ϕ
ε
la(t,x,y0)dy0, (A.1)

which is equivalent to

Φε
eu(t,x)=

∫

Rn

∫

Rn

(
1

2πε

)n
2

rθ(x−y)ϕε
eu(t,x,y,p)δ(Re[φ](0,y0,p0))dp0dy0, (A.2)
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Fig. 4.11. Example 4: the error plot of ||Ψε|−|Φε
eu||.

based on Re[∇p0
φ](0,y0,p0)= I. Note that the integrated variables y0,p0 are the

initial positions of y,p. Changing variables by y,p, we get

Φε
eu(t,x)=

∫

Rn

∫

Rn

(
1

2πε

)n
2

rθ(x−y)ϕε
eu(t,x,y,p)δ(Re[φ](t,y,p))dpdy, (A.3)

in which we need detJ =1 for

J =

(
∇y0

y ∇p0
y

∇y0
p ∇p0

p

)
.

First it is easy to see detJ |t=0 =1. Moreover,

dJ

dt
=UJ,

with U =

(
0 I

−∇2
yV 0

)
. This gives

d

dt
(detJ)=tr(adj(J)

dJ

dt
)=tr(adj(J)UJ)=tr(UJadj(J))=det(J)tr(U)=0,

where adj(J)=(detJ)J−1.
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