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VISIBILITY OF POINT CLOUDS AND EXPLORATORY PATH

PLANNING IN UNKNOWN ENVIRONMENTS∗

YANINA LANDA† AND RICHARD TSAI‡

Abstra
t. We present an algorithm for interpolating the visible portions of a point 
loud
that are sampled from opaque obje
ts in the environment. Our algorithm proje
ts point 
louds
onto a sphere 
entered at the observing lo
ation and performs essentially non-os
illatory (ENO)
interpolation of the proje
ted data. Curvatures of the o

luding obje
ts 
an be approximated and
used in many ways. We demonstrate how our visibility formulation 
an be in
orporated into novel
algorithms for mapping unknown environments with single or multiple observers, and target �nding
problems. A 
onvergen
e proof is provided indi
ating suitability of our algorithm for some 
anoni
al
types of environments. Various postpro
essing optimization te
hniques are 
onsidered to obtain a
more uniform exposure of the region along the path.
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1. Introdu
tion

The problem of visibility involves the determination of regions in spa
e visible to

a given observer when obsta
les are present. When the observer is repla
ed by a light

sour
e in the simpli�ed geometri
al opti
s setting with a perfe
tly absorbing bound-

ary 
ondition at the obsta
les, the problem translates to that of �nding illuminated

regions. In this regard, the visibility problem is highly related to high frequen
y wave

propagation problems and is needed for many 
omputational high frequen
y wave

approa
hes. We will inter
hange the term visibility with illumination, and o

lusion

with shadow freely in this paper.

In visualization, visibility information 
an be used to make 
ompli
ated rendering

pro
essing more e�
ient by skipping over o

lusion. In roboti
s mission planning,

a
hieving 
ertain visibility obje
tives may be part of the mission. Video 
amera

surveillan
e design is one su
h example.

Visibility problems have also been studied by geometers. For example, [8℄ studies

the 
onne
tedness of the surfa
e shadow and the 
onvexity of the o

luding surfa
e.

In general, one may 
onsider the following 
lasses of visibility problems:

1. Given o

luders, 
onstru
t shadow volume and its boundary.

2. Given a proje
tion of visible regions, 
onstru
t the o

luders.

3. Find vantage lo
ation(s) that maximize visibility using a 
ertain prede�ned

metri
.

In many visualization appli
ations, (1) is solved by proje
ting triangles. The

question studied in [8℄ 
an be viewed as in 
ategory (2). The surveillan
e problems
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are related to (3). We will present an algorithm for a problem related to both (1),

(2), and (3).

In the following, we summarize the main problems under 
onsideration of this

paper.

Problem 1.1. We are given a vantage point and a set of points (a point 
loud) that

are evenly distributed over solids with pie
ewise smooth surfa
es.

Constru
t a high order a

urate representation of the portions of the solid

surfa
es that are visible to the vantage point and also the 
orresponding

o

lusion volume.

Problem 1.2. We are given a bounded domain with unknown solid obsta
les and a

vantage point. Assume an evenly distributed set of points 
an be sampled from the

portions of the unknown solids that are visible to a given vantage lo
ation.

Constru
t a pie
ewise linear path so that (a) any point on the solid surfa
es

is seen by at least one vertex of the path, and (b) an a

urate representa-

tion of the solids is 
onstru
ted from the point 
louds that are 
olle
ted at

the verti
es of the path.

In pra
ti
e this data 
ould be obtained from sensors su
h as LIDAR or even from

triangulated surfa
es (here the point 
loud would be the set of verti
es).

The outline of the paper is as follows. In Se
tion 2 we de�ne the visibility of

point 
louds along with ENO interpolation for smoother visibility approximation.

Error analysis of the resulting interpolant is performed in Appendix A, whereas in

Appendix B we derive the dynami
s of the visibility fun
tion with respe
t to observer's

motion. Se
tion 3 is devoted to appli
ation of our visibility formulation to motion

planning in an unknown environment. We propose a navigation algorithm for a single

and multiple observers. We furthermore present an appli
ation of the exploration

algorithm to a target-�nding problem in an unknown environment, given a target

lo
ation. Simulation results and statisti
s demonstrate robustness of our algorithm in

di�erent types of environments. A rigorous 
onvergen
e proof of our single observer

algorithm in an environment with an arbitrary number of disjoint 
onvex obsta
les

is provided Appendix C. Finally, in Se
tion 4 we 
onsider postpro
essing of the

exploration path via optimization with respe
t to uniform illumination of the region

of interest.

1.1. Representations of visibility. Today 
omputational geometry and 
om-

binatori
s are the primary tools to solve visibility problems [9, 26, 4℄. The 
ombina-

torial approa
h is mainly 
on
erned with de�ning visibility on polygons and more

general planar environments with spe
ial stru
ture. All the results are based on an

underlying assumption of straight lines of sight. The simpli�ed representation of the

environment is a major limitation of this methodology. Furthermore, the extension

of these algorithms to three dimensional problems may be extremely 
ompli
ated.

We de�ne a representation of visibility in a regime, where visible lights are mod-

eled a

urately by rays, and with it, we solve the problems in
luding but not limited

to those 
onsidered in 
omputational geometry [9℄, on general environments in two

or three dimensions. We require this representation of visibility to utilize minimum

information about the environment, be e�
ient to 
ompute, and to allow for a

urate


omputations of geometri
al quantities su
h as 
urvature of the o

luding surfa
e.

One approa
h is to introdu
e a level set representation of the o

luding obje
ts

and the visibility fun
tion, de�ned in [24℄. This formulation 
an be applied to general

types of environments and easily extended to three dimensions and 
urved lines of
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sight. However, it requires a priori knowledge of the o

luding obje
ts to 
onstru
t

the level set representation of the environment. This information may not be available

in some important real life appli
ations, e.g. navigation in an unknown environment,

or if the o

luding obje
ts are represented by open surfa
es.

Another method for visibility representation was developed by LaValle et al. in

[14, 19, 20, 21, 22℄, and [23℄. This is a rather minimal framework based on dete
ting

dis
ontinuities in depth information (
alled gaps) and their topologi
al 
hanges in

time (referred to as gap 
riti
al events). The �visible� environment is represented

by a 
ir
le 
entered at the vantage point, with gaps marked on the 
ir
umferen
e

in the order of their appearan
e to the observer. Note that no distan
e or angular

information is provided. As with most 
ombinatorial approa
hes, LaValle's method

works only on regions having spe
ial geometries.

Our new model 
an handle 
ompli
ated geometries and has been extended to

three dimensions [11℄, and 
urved lines of sight [13, 11℄, in a similar fashion as the

level set representation [24℄. Furthermore, unlike [24℄, it does not require any a priori

information about the environment. In 
ontrast to LaValle's representation, we utilize

distan
e and angular information, whi
h, in pra
ti
e, 
an be easily provided by the

sensor.

1.2. Roboti
 path planning with visibility 
onsiderations. Consider

a bounded region whi
h may 
ontain an unknown number of arbitrary positioned

obsta
les of unknown general shapes. Our goal is to obtain an algorithm that would

utilize visibility information to allow an autonomous observer(s) equipped with a range

sensor to fully explore the region and map the obsta
les' boundaries. The latter refers

to the 
onstru
tion of an a

urate mathemati
al representation of the obsta
les.

In [27℄, an algorithm extra
ting planar information from point 
louds is introdu
ed

and is used in mapping an outdoor environment. In [15℄, depth to the o

luding

obje
ts is estimated by a trino
ular stereo vision system and is then 
ombined with a

predetermined �potential� fun
tion so that a robot 
an move to the desired lo
ation

without 
rashing into obsta
les.

A wall-following 
urvature-based 
ontrol algorithm is introdu
ed in [28℄ and eval-

uated with real-life robots equipped with range sensors in [29℄. Even with high sensor

pre
ision, 
urvature estimates have signi�
ant ina

ura
ies in the absen
e of �ltering.

The noise in 
urvature 
omputations is related to the 
omputation of derivatives of the

range data whi
h are prone to noise. To deal with this problem, we employ essentially

non-os
illatory interpolation (ENO) from [10℄ to obtain high order interpolation of the

range data, so that derivatives 
an be easily estimated away from dis
ontinuities.

The motivation for our navigation algorithm 
omes from work of Tovar et al. [19,

20, 21, 22℄, and [23℄. In [23℄, a single robot (observer) must be able to navigate through

an unknown simply or multiply 
onne
ted pie
ewise-analyti
 planar environment.

The robot is equipped with a sensor that maps onto a 
ir
le relative lo
ations of

dis
ontinuities in depth information, i.e., gaps, in the order of their appearan
e with

respe
t to the robot's heading. Ea
h gap 
orresponds to a 
onne
ted portion of spa
e

that is not visible to the robot.

To navigate the environment the observer approa
hes one of the gaps. The visi-

bility map is then updated and the pro
ess is repeated until the whole region has been

explored. Criti
al events su
h as appearan
e and disappearan
e of gaps are tra
ked by

the dynami
 data stru
ture. As a result of exploration, the region is 
hara
terized by

the number of gaps and their relative positions. No distan
e or angular information

is a

umulated.
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In 
ontrast, our algorithm maps the obsta
les in 
artesian 
oordinates as the

observer pro
eeds through the environment, and utilizes the re
overed information for

further path planning. At the termination of the path all the obsta
les' boundaries

are re
onstru
ted. Thus we obtain a 
omplete representation of the environment.

The algorithm is easily s
alable to allow for multiple observers. We rigorously prove

that for a general 
lass of environments our algorithm maps the entire region in �nite

number of steps. Furthermore, we present the statisti
s of the number of dis
rete

steps used by our algorithm for the exploration of the entire given region.

In [12℄, our algorithm has been validated on a group of autonomous vehi
les

equipped with range-sensors whose task is to explore an unknown bounded region

and 
onstru
t the map of the explored environment. Satisfa
tory results have been

obtained in mapping an unknown environment using multiple mobile inexpensive

sensors where noise is an issue.

2. Visibility of point 
louds and surfa
e re
onstru
tion

Our approa
h is based on the observation that visibility along ea
h ray emanating

from the vantage point satis�es a 
ausality 
ondition: if a point is o

luded, then all

other points farther away from the vantage point along the same ray are also o

luded.

The �rst step of our algorithm, in some sense, 
an be viewed as the reverse a
tion

of ray tra
ing, where dis
rete rays are sent out from the origin to sample given surfa
es.

However, instead of assuming a 
omplete expli
it or impli
it representation of the

surfa
es, we assume that a set of points is �uniformly� sampled from the o

luding

surfa
es. In pra
ti
e this data 
ould be obtained from range sensors su
h as LIDAR

or from triangulated surfa
es (here, the set of verti
es 
an be regarded as the points

sampled from the surfa
es).

Given a vantage point, our algorithm retains a subset of visible data points and


onstru
ts a pie
ewise polynomial interpolation of the visible portions of the surfa
es.

Unlike the level set representation [24℄, our algorithm 
an handle open surfa
es and

does not require a priori knowledge of o

luding surfa
es to 
onstru
t visibility. Our

s
heme 
an be regarded as a surfa
e re
onstru
tion s
heme for the portions of surfa
es

that are visible to the given vantage point.

The algorithm 
onsists of the following steps:

1. Begin with the point 
loud P sampled from the o

luding surfa
es.

2. Proje
t P onto a unit sphere 
entered at the vantage point x0.

3. Filter out portions of P visible to the observer at x0.
1

4. Interpolate visible data to obtain a pie
ewise smooth re
onstru
tion.

Details are presented in the following subse
tions.

2.1. Proje
tion and �ltering of data points. Let Sd−1 be the unit sphere

in R
d, 
entered at the origin. We set up a spheri
al 
oordinate system 
entered at x0

by y =x0 +rν, where ν ∈Sd−1 and r= |y−x0|.
De�ne the proje
tion operator πx0

:Rd 7→Sd−1, mapping a point onto the unit

sphere 
entered at x0, by πx0
(x0 +rν)=ν. Let Ω be a subset of R

d. De�ne ρx0
:

Sd−1 7→ [0,M) by

ρx0
(ν) := min

x0+rν∈Ω̄
S

∂B(x0,M)
r, (2.1)

where B(y,M)={y′∈R
d : |y−y′|<M} is the unit dis
 with radius M 
entered at y.

1Note that this step is optional if P has only been sampled from x0.
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The points ỹ = ỹ(r̃,ν)=x0 + r̃ν ∈Ω are 
lassi�ed as o

luded for all r̃ >ρx0
(v). A

point y(r,ν)=x0 +rν ∈∂Ω is 
alled a horizon point if and only if ν ·n(y)=0, where
n(y) is the outer normal of ∂Ω at y. A point y(r,ν) is 
alled a 
ast horizon point if

and only if there exists a horizon point y(r∗,ν∗) su
h that ν =ν∗ and r∗ = r.
Given the set of data points {yj} and a partition of the unit sphere Sd−1 =

∪N
i=0K̄i, where Ki are open regions with diameter ǫ. We de�ne a pie
ewise 
onstant

interpolation of ρx0
by

ρ̃x0
(y)=min

yj

|x0−yj |, for every y, πx0
y∈Ki,i=0,··· ,N. (2.2)

Consequently, we 
lassify y as o

luded if ρ̃x0

(

πx0
(y)

)

< |y−x0|. Thus we may

de�ne the visibility indi
ator

Ξ(y) :=ρx0

(

πx0
(y)

)

−|y−x0|, (2.3)

su
h that {Ξ≥0} is the set of visible regions and {Ξ<0} is the set of regions invisible

from x0.

In 
ase the surfa
e normals are available for ea
h data point, we 
an use an ellipse

instead of a ball in the above 
onstru
tion. A similar approa
h is also used by QSplat

in rendering of the digitized data of Mi
helangelo's statues [17℄.

In the 
ase where light rays are 
urved, the term |x0−yj | in (2.2)�(2.3) is repla
ed

by the ar
 length of the ray 
onne
ting x0 and yj . This 
an easily be 
omputed by

solving an eikonal equation (see [13℄ for more details).

2.2. Smoother re
onstru
tion by ENO interpolation. Note that, analyt-

i
ally, the visibility fun
tion ρx0
is pie
ewise 
ontinuous with jumps 
orresponding to

the lo
ations of horizons. Smoothness of ρx0
in ea
h of its 
ontinuous pie
es is related

to the smoothness of the 
orresponding visible part of ∂Ω. In the previous se
tion we

obtained a pie
ewise 
onstant approximation ρ̃x0
to ρx0

using formula (2.2). Along

the way, we also extra
t a subset of visible data points P̃ ⊆P serving as �originators�

of ea
h 
onstant value of ρ̃x0
.

The edges, or dis
ontinuities in the visibility fun
tion ρ typi
ally o

ur near the

lo
ations of horizons. A standard 
hoi
e in image pro
essing for the edge-dete
tion

fun
tion g :R 7→ (0,1], is g(s)=1/
(

1+s′2
)

[1℄. If the value of g(s) is below some

threshold value, we get an edge. The threshold value depends on the sampling of s.
We implement a modi�ed version of the edge-dete
tion fun
tion. Using the pie
e-

wise 
onstant values of the visibility fun
tion ρ̃x0
, we substitute a �nite di�eren
e ap-

proximation for the derivative of ρ. The resulting edge-dete
tion fun
tion g :S1 7→ [0,1)
maps θ onto

g (ρ̃x0
(θ))=1/

(

1+

(

ρ̃x0
(θi+1)− ρ̃x0

(θi)

θi+1−θi

)2
)

,θi ≤θ<θi+1. (2.4)

Periodi
 boundary 
onditions are used in this formulation. A natural 
hoi
e of the

threshold value is the polar grid size δθ. The need for Gaussian smoothing of the

derivatives is needed when strong noise in present in the data as in [12℄. In our

appli
ations, where the data 
ame from, e.g., LIDAR, noise is insigni�
ant.

We 
an then use ρ̃x0
to 
onstru
t a pie
ewise polynomial approximation ρint

x0
to

the visibility fun
tion, whi
h preserves the jumps. Essentially non-os
illatory (ENO)

interpolation is used to 
ompute su
h ρint
x0

away from dis
ontinuities. ENO interpo-

lation is a nonlinear polynomial interpolation that has been widely and su

essfully
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used in sho
k problems of 
omputational �uid dynami
s. We refer the readers to the

seminal paper [10℄ for more detail.

Below we des
ribe the interpolation pro
edure on S1 for two dimensional prob-

lems. Possible extension of the strategies to the three dimensional problems will be

des
ribed in a forth
oming publi
ation.

2.2.1. The two-dimensional 
ase. Denote the extra
ted visible data points

by pi ∈ P̃ . Sin
e S1 
an be parameterized by angles θ∈ [−π,π), we 
an sort the

points in P̃ in the in
reasing order of the angle they form with respe
t to our 
hosen

spheri
al 
oordinate system; that is, points in P̃ are sorted in the in
reasing order of

ρ̃−1
x0

(pi)=arg(pi−x0). Note that the restri
tion of the angle of visualization is typi-


ally a 
onsequen
e of the hardware. In this paper, we assume an idealized situation,

parameterizing the entire S1, similar to previous work in roboti
s su
h as LaValle's

work [14℄.

We 
an then 
onstru
t ρ
(1)
x0

by linearly interpolating between ea
h su

essive pair

of pi and pi+1 if ρ̃x0
(θ) 6=M for θ∈

[

ρ̃−1
x0

(pi), ρ̃
−1
x0

(pi+1)
)

.

Instead of linear interpolation, we use ENO interpolation to 
onstru
t ρ
(p)
x0

, a

pie
ewise p-th order approximation of ρx0
. We use the pie
ewise p-th order approxi-

mation ρ
(p)
x0

to 
ompute derivatives on the o

luding surfa
es (away from the edges)

and to extra
t various geometri
 quantities. We only 
onsider uniform dis
retization

of S1. The ENO interpolation uses Newton's divided di�eren
es and does not re-

ally require uniform grids. The requirement of uniform grids for ENO s
hemes for


onservation laws is due to the spe
ial way the 
onservative s
hemes are built up.

In our algorithm, we only use ENO interpolations, whi
h are not the s
hemes for


onservation laws. In Figure 2.1 (a) we illustrate visibility from the vantage point at

(−0.2,0.6). A 
orresponding visibility fun
tion ρ, its derivatives, and 
urvature κ are

displayed in Figure 2.1 (b). As one 
an see, we obtain a high order approximation

of the derivatives and, subsequently, 
urvature along the visible o

luding boundaries

away from the dis
ontinuities 
orresponding to horizons in Figure 2.1.

The error of this pro
edure is analyzed in Appendix A.

We refer the reader to [13℄ for the details and examples of 
onstru
ting visibility

in 
urved lines of sight, i.e. when the index of refra
tion varies a
ross the domain.

These examples further demonstrate the �exibility of our formulation.

2.2.2. Conversion to Cartesian level set formulation. The pie
ewise poly-

nomial re
onstru
tion of the visibility fun
tion ρ may be used to obtain a smooth level

set visibility fun
tion φ de�ned on a Cartesian 
oordinate system. The following 
on-

stru
tion yields a level set visibility fun
tion that is smooth a
ross the dis
ontinuities.

Begin by de�ning

G :={(θ,r) : r<ρ(θ)} (2.5)

the set 
ontaining the visible points on polar 
oordinates. We pro
eed to 
onstru
t

a smooth signed distan
e fun
tion φ to the shadow boundary ∂G using redistan
ing

[2℄:







φ(θ,r)>0, if (θ,r)∈G,
φ(θ,r)<0, if (θ,r)∈GC ,
φ(θ,r)=0, if (θ,r)∈∂G.

(2.6)
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Fig. 2.1. (a) Visibility map generated from arti�
ial data: dark regions - invisible, light regions
� visible, red star � vantage point (−0.2,0.6), magenta 
ir
les � visible boundary, yellow outline
� a
tual boundary, 
yan 
ir
les � horizon points. (b) Fourth order interpolation of the visibility

fun
tion ρ 
orresponding to (a). Computation of dρ
dθ

, d2ρ

dθ2 and the 
urvature κ=
ρ2+2ρ2

θ−ρρθθ

(ρ2+ρ2
θ
)
3
2

away

from dis
ontinuities (verti
al dashed lines).

The resulting signed distan
e fun
tion may then be easily 
onverted from polar

to 
artesian 
oordinates

φ(x,y)=φ(x(θ,r),y(θ,r)).

On the grid level, this is done by interpolation. Thus the obtained level set visibility

representation is 
onsistent with the one obtained in [24℄. In Figure 2.2 we present

the smooth level set visibility fun
tion 
orresponding to the vantage point marked by

the red star.

The level set formulation on a �xed Cartesian 
oordinate system allows for easy

Boolean operations on visibility of di�erent vantage lo
ations. For example, the joint

visibility from two vantage points x1 and x2 may be de�ned on 
artesian grid as

φx1,x2
=max{φx1

,φx2
}. (2.7)

This property 
an be used to 
onstru
t a level set map of the visible region from

multiple view points as in Figure 3.1.

2.3. Pro
essing and Denoising. In real-life appli
ations we frequently deal

with noisy data. There are di�erent sour
es of noise. For example, noise may be
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Fig. 2.2. (a) Environment with obsta
les (green 
ontour), observer (red star), and shadow
boundary (blue 
ontour). (b) Visibility level set fun
tion φ.

introdu
ed by the measuring devi
e as in [12℄ and [29℄. As one 
an see from [29℄, even

a high a

ura
y sensor produ
es signi�
ant error in 
urvature 
omputations. Filtering

is used in [29℄ to 
lean up the sensor data. In addition to sensor error, noise in the

data 
an be introdu
ed from an uneven terrain and/or presen
e of foliage, 
ars, and

people in the s
ene, as in [27℄. We 
onsider appli
ations using high pre
ision LIDAR,

where virtually no angular error is present.

We propose the use of a simple edge-preserving total variation based noise removal

algorithm [16℄, whi
h 
an be applied to the interpolated data to redu
e the e�e
t of

noise in the s
ene. In Figure 2.3 (a), we plot visibility based on the denoised visibility

fun
tion ρ depi
ted with bla
k diamonds in Figure 2.3 (b). Here, an arti�
ial noise

of varian
e σ =0.05 is added to the proje
ted point 
loud. The obtained data is then

�ltered and interpolated. Afterwards we apply the denoising algorithm from [16℄.

We would like to remark that appli
ation of ROF denoising may lead to loss of


ontrast and stair
asing, both be
oming more pronoun
ed under severe noise in the

data. The loss of 
ontrast will result in an under-approximation of the obje
ts that

are 
loser to the observer and an over-approximation of farther obsta
les. So, for the

obje
ts 
loser to the observer, the re
onstru
ted obsta
le may appear further from the

observer than it a
tually is. And this may 
ause a 
ollision of observer into the obje
t.

As in any image pro
essing problem, one may obtain some estimate of the lost of 
on-

trast and modify the algorithm a

ordingly. We refer the reader to [18℄ for an example.

To be very 
onservative, one may modify the navigation algorithm presented below

(similar to the proof in Appendix C) so that one more observation/re
osntru
tion

is made before passing the edge point. The over-approximation for farther obje
ts

a
tually helps avoid the 
ollision.

Stair
asing, on the other hand, may result in identi�
ation of false edge points

for the algorithm to pursue. We re
ommend enfor
ing a larger threshold on the edge

dete
tion algorithm to identify dis
ontinuities in the fun
tion ρ. There are re
ent de-
velopments in image pro
essing te
hniques that greatly redu
e both typi
al problems

related to the ROF algorithm. We point out the nonlo
al means te
hniques of Morel
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Fig. 2.3. (a) Visibility map generated from noisy data. Magenta 
ir
les � noisy visible bound-
ary, bla
k 
ir
les � denoised visible boundary, yellow outline � a
tual boundary, 
yan 
ir
les �
horizon points, dark regions � invisible with respe
t to the denoised visibility fun
tion, light regions
� visible. (b) Visibility fun
tion ρ 
orresponding to (a). Green 
ir
les � edges (horizon points).

[5℄, Osher [7℄, and Bregman iteration te
hniques [6℄. One sees that the problems of

loss of 
ontrast and stair
asing 
an be 
onsidered almost solved for a wide range of

noise.

3. Exploratory path for mapping unknown environments

Here we 
onsider the appli
ation of visibility to the problem of exploration of

an unknown bounded two-dimensional region whi
h may 
ontain many dis
onne
ted

obsta
les. Our obje
tive is to 
onstru
t a path for an observer, so that at the ter-

mination of the path the observer will have seen the entire domain. In addition, a

map (or an a

urate des
ription) of the domain representing the boundaries of the

obsta
les would be 
onstru
ted. Our algorithm is designed with the 
onsideration of

handling general geometries. For pra
ti
ality, we set the following 
onstraints on the

observer's path:

1. The path is 
ontinuous and 
onsists of dis
rete steps.

2. The number of steps is �nite.

3. The total distan
e traveled is �nite.

The intuition behind our algorithm is the following. Assume some portions of the

obsta
les' boundaries are visible to the observer from a given vantage point. Ea
h


ontinuous portion of the visible boundary terminates with the horizon points, or

edges on the visibility map, as in Figure 2.1. These horizon points are similar to

an edge of the door that is ajar. One must pro
eed beyond the edge of the door

to see more. Similarly, an observer must pro
eed beyond the horizon point to gain

new information about the environment. At this point, we need to de
ide how far

the observer should mar
h beyond the 
hosen horizon point. Our strategy relies on

the geometry of the obsta
le near the horizons. Brie�y, if the obsta
le is a simple


ir
le, then naturally the mar
h distan
e should depend on the radius of the 
ir
le;

this 
orresponds dire
tly to the 
urvature at horizon points. These simple insights

allow us to 
onstru
t a path 
onsisting of dis
rete steps.
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A related approa
h is des
ribed in [19℄. At ea
h step of the navigation algorithm,

the observer randomly 
hooses to approa
h one of the gaps, i.e. depth dis
ontinuities

proje
ted onto S1. However, in 
ontrast to our dis
rete approa
h, a pra
ti
al imple-

mentation of the algorithm from [19℄ requires 
onstant gap tra
king. Furthermore, a

pra
ti
al implementation of this algorithm requires a wall-following pro
edure. Ad-

ditional modi�
ations of the algorithm are required when dealing with multiply 
on-

ne
ted environments, i.e. markings of on
e visited gaps. Meanwhile, our algorithm

does not require any spe
ial treatment of 
ertain types of environments.

In the following subse
tions we are going to des
ribe our horizon-
hasing algorithm

for a single observer and its extension to the 
ase of multiple observers. We also

provide the results of navigation simulations in sample environments. In Se
tion 3.3.2,

we provide the statisti
s of our algorithm for some general types of environments.

Appendix C 
ontains the 
onvergen
e proof of the algorithm in multiply 
onne
ted

regions. A pra
ti
al implementation of this algorithm on an e
onomi
al 
ooperative


ontrol tank-based platform is des
ribed in [12℄.

3.1. Chasing the horizons. In this se
tion we provide the navigation algo-

rithm for a single observer operating in two dimensions. The key idea behind our

algorithm is to pro
eed in the environment Ω by approa
hing one of the 
urrently

visible horizons. On
e a new horizon appears, it is stored in a list. On
e the hori-

zon has been explored, it is removed from the list. The observer must explore every

horizon in the list before the algorithm terminates. The observer is allowed to return

and inspe
t previously skipped horizons if no more new horizons are available. The

exploration is 
omplete on
e there are no more horizons left to approa
h. The details

are provided in Algorithm 1 below. The following dis
ussion in this subse
tion applies

to Algorithm 1.

As a result of the navigation algorithm, we obtain a 
omplete map of the en-

vironment, i.e. polynomial interpolated boundaries of the obsta
les along with the

visibility indi
ator fun
tion Ξ whi
h marks the interior and exterior of the obsta
les.

In addition, we may easily 
onstru
t the level set representation of the re
onstru
ted

environment map via (2.7). The use of the level set maps in postpro
essing algo-

rithms will be presented in the next se
tion. Further appli
ations of the level set

representation of visibility are des
ribed in [24℄ and [3℄.

Note that in steps 21 and 25, the observer must pro
eed beyond the horizon in

order to see more new environment. We 
hoose the overshoot step size to be inversely

proportional to the 
urvature κ of the obsta
le's boundary near the horizon. High

order ENO interpolation allows us to 
ompute 
urvature at the obsta
le's boundary

with desired a

ura
y. Our 
hoi
e of the overshoot step size is further explained in

Appendix C.

A parameter λ introdu
ed in step 20 provides extra bu�er spa
e between the

observer and the obsta
le's boundary. It may depend on the observer's size and

mobility. If appli
ation allows, λ may 
hange in the pro
ess of exploration. For

example, a smaller λ would allow the observer to explore narrow regions of high


urvature. When the 
urvature of the o

luding surfa
e is large, a bigger λ would be

more suitable.

In step 21, we de�ne an intermediate position xk+ 1
2
. Motivation for this additional

step is to have a homogeneous 
overage of the obsta
les' boundaries. By keeping the

observer a uniform distan
e away from the boundary, we are able to obtain the same

level of detail everywhere in the region. Additionally, the step xk+ 1
2
is motivated by



YANINA LANDA AND RICHARD TSAI 891

Algorithm 1 Single observer

1: k =0
2: L: list of unexplored edges, initially empty

3: repeat

4: xk: vantage point outside the o

luding obje
ts

5: ρxk
: visibility fun
tion 
orresponding to xk

6: update the map Ξ of the explored region {Ξ was de�ned in (2.3)}

7: �nd all the edges (horizons) on the
(

θ,ρxk
(θ)

)

map

8: if an edge is found then

9: 
hoose the edge to approa
h, say, in the dire
tion θe {
hoi
e depends on

parti
ular aspe
ts of the problem and will be dis
ussed below}

10: store the rest of the edges in a list L
11: remove those edges from L that are 
urrently visible

12: else {no edges found}

13: pi
k an edge θe from the list of unexplored edges L
14: ba
ktra
k xk to one of the previous positions 
orresponding to the 
hosen

edge

15: end if

16: if ρxk
(θe)<ρxk

(θe +δ) then
17: 
hoose the dire
tion Θ=θe +δ
18: else

19: 
hoose the dire
tion Θ=θe−δ
20: end if{here δ is 
hosen so that there is always a bu�er of size λ between the

observer and any obsta
le boundaries. For example, λ may depend on the

robot's size to avoid 
ollisions.}

21: xk+ 1
2
is obtained by moving xk in the 
hosen dire
tion Θ by amount

r1 =min{ρxk
(Θ),ρxk

(θe)−tan
(π

3

) 1

κ
}

{κ is the 
urvature near the edge (if κ=0 shift xk by small amount to see the

next edge)}

22: ρx
k+ 1

2

: visibility fun
tion 
orresponding to xk+ 1
2

23: update the map Ξ of the explored region

24: remove those edges from L that are 
urrently visible

25: xk+1 is obtained by overshooting from xk+ 1
2
by

r2 =min{ρxk
(Θ)−r1,2tan

(π

3

) 1

κe

}

26: until L 6={∅}
27: have explored the entire environment

the 
onvergen
e proof in
luded in the Appendix C. An alternative algorithm is to

introdu
e an intermediate position xk+ 1
2
only when approa
hing a 
ast horizon. We

use this modi�ed version of Algorithm 1 to obtain all the results in this paper.

Now let us dis
uss the 
hoi
e of horizon in step 9. In our experiments the observer

approa
hes the nearest previously unexplored horizon. Intuitively, this 
hoi
e would

minimize the length of the path. The 
onvergen
e proof in Appendix C is based on the
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nearest edge approa
h. However, other 
hoi
es may be more appli
able under di�erent


ir
umstan
es. For example, one may 
hoose to approa
h a random horizon as was

done in [19℄ or a horizon with the largest 
urvature κ (so that the overshoot step size

is the smallest). In [12℄, the 
hoi
e of the next horizon is di
tated by the spe
i�
s of

sensor design: to minimize the errors produ
ed by the sensors in the experiments, it

is always preferable to navigate around the obje
ts in the 
ounter
lo
kwise fashion.

Thus, the observer always prefers to approa
h the right-most edge of the obsta
le.

3.2. Multiple observers. The extension of the navigation algorithm for mul-

tiple observers is straightforward. Let {xj}n
j=1 be a set of observing lo
ations. Similar

to (2.3), de�ne the visibility indi
ator Ξj(y) :=ρxj

(

ν(y)
)

−|y−xj |, su
h that {Ξj ≥0}
is the set of visible regions and {Ξj <0} is the set of invisible regions from xj . In

addition, let Θj ={θj,1,... ,θj,k} be the set of edges visible from the vantage point xj .

The algorithm for multiple observers is as follows.

Algorithm 2 Multiple observers (based on Algorithm 1)

1: N : number of observers

2: xj : vantage points outside the o

luding obje
ts, j =1,...,N
3: ρxj

: visibility fun
tion 
orresponding to xj

4: 
ompute Ξ=maxj{Ξj}
5: �nd all the edges (horizons) Θj 
orresponding to ea
h observer xj

6: ex
lude those θj,k for whi
h Ξ≥0
7: if found an edge then

8: pro
eed as in Algorithm 1 for ea
h individual observer

9: else {no edges found}

10: move observer at xj in the dire
tion orthogonal to the dire
tion of the nearest

xi to see new edges;

11: end if

12: pro
eed as in Algorithm 1 until no more new edges

13: have explored the entire environment

Note that in step 6 of Algorithm 2 we ex
lude those edges 
orresponding to xj ,

whi
h are visible by another observer xi and thus do not need to be further explored.

The orthogonal move in step 10 is 
hosen to maximize the 
han
e of �seeing� more

new area.

We would like to remark on di�erent modes of exe
ution of Algorithm 2. In


on
urrent mode all observers pro
ess sensor data simultaneously. This way, the next

vantage point of ea
h observer depends only on their previous positions. In sequential

mode the observers are ordered as a sequen
e, and only one may move at a time.

In this situation, the position of the next observer depends on new positions of the

previous observers. The ordering may 
hange a

ording to the de
ision to optimize

joint visibility. In some appli
ations the 
on
urrent mode would be more desirable

sin
e this mode allows for more autonomous maneuvering for ea
h observer. Of 
ourse,

in pra
ti
e the usage of one mode or swit
hing from one to the other depends on the

data 
ommuni
ation model as well as the routing algorithm. In the experiments in [12℄

the 
on
urrent mode has been implemented.

3.3. Results. In this se
tion we present some simulation results for environ-

ment exploration in 
ase of single and multiple observers. We also present the statis-

ti
s of some extensive simulations whi
h demonstrate the stability of our algorithm
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in terms of step sizes and path lengths.

3.3.1. Single observer. In Figure 3.1 we demonstrate the paths generated

using Algorithm 1 in di�erent environments. In Figure 3.1 (a), the test environ-

ment 
onsists of non-
onvex obsta
les. The observer is able to explore the entire

environment in seven dis
rete steps without having to ba
ktra
k and 
lear previously

unexplored edges. In 
ontrast, in Figures 3.1 (b) and (
), the observer must return to

one of its previous lo
ations to 
lear the unexplored edges. In the 
ase of two spirals

in Figure 3.1 (b), the observer �rst explores the interior of one spiral, then returns to

pro
eed inside the se
ond spiral.

The environment in Figure 3.1 (
) is generated by taking a level set of a portion

of the Grand Canyon elevation data.2 The non-uniform 
hange of 
urvature of the

visible boundary makes it di�
ult to explore fra
tal-like portions of the boundary.

A 
onstant parameter λ, whi
h 
ontrols how 
lose an observer may approa
h an

obsta
le, does not allow for a more detailed exploration of the narrow regions. As this

parameter may depend on the physi
al size of the observer, the result is an illustration

of a realisti
 exploration out
ome. If the size and mobility of the observer allows for it,

an algorithm with λ varying as a fun
tion of 
urvature may be implemented. Another

approa
h would be to utilize optimization te
hniques to 
onstru
t a new path based

on the results of the initial �rough� exploration as in Se
tion 4.

The se
ond row in Figure 3.1 depi
ts the level set representations based on the

re
onstru
ted environments from the �rst row. The zero level set 
orresponding to

the boundaries of the obsta
les is marked on ea
h �gure.

(a) (b) (c)

(d) (e) (f)

Fig. 3.1. Top row: results of exploration algorithm with a single observer (dark 
ir
le � initial
observer position, star � �nal observer position, white line with 
ir
les � observer's path); bottom
row: impli
it level set re
onstru
tion of the explored regions, zero level set 
orresponds to the obje
ts'
boundaries.

2The terrain data was obtained from ftp://ftp.resear
h.mi
rosoft.
om/users/hhoppe/data/
g
anyon/.
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3.3.2. Statisti
s. Figure 3.3 depi
ts the statisti
s of environment exploration

simulations using Algorithm 1 and simulations using a random walk strategy, whi
h

serve as 
ontrol experiments. In the random walk strategy, the next position of the

observer is randomly 
hosen from the 
urrently visible region. We 
ompare the distri-

butions of the number of steps required to explore a sample environment 
ontaining

twelve non
onvex disjoint obje
ts. The statisti
s are 
olle
ted from 1000 independent

runs with random initial positions of the observer and non-overlapping random pla
e-

ment of the obsta
les. A sample obsta
le 
on�guration is illustrated in Figure 3.2.

The initial positions of the observer are 
onstrained to be outside of the obsta
les.

Histograms of the total number of steps required to explore the environment are

presented in Figures 3.3 (a) and (b). Figure 3.3 (a) 
ontains the 
loseup version of the

histogram 
orresponding to the nearest edge approa
h (Figure 3.3 (
)). From it, one


an see that Algorithm 1 requires no more than 26 steps to explore the environment.

Furthermore, the exploration most frequently terminates in 19 or 20 steps. The

minimum number of steps required to explore this type of environment is 11. We

would like to remark that the 
orresponding path lengths 
an be inferred taking into

a

ount the size of the exploration domain.

In the simulations using the random walk strategy des
ribed above, a limit of 400

steps is imposed, regardless of whether the environment has been entirely explored

or not. One 
an see that about a quarter of experiments terminate before the entire

region has been explored.

Note that if the 
urvature 
hanges its sign 2m times along the boundary of a single

star-shaped obsta
le, the number of steps required to explore the entire boundary is

3+m. Here, 3 steps are needed to see the 
onvex hull of the obje
t and m steps are

required to explore ea
h 
on
ave part. The 
omplexity estimates for our algorithm

are dis
ussed in detail in Appendix C. For now, we would like to remark that if ea
h

obje
t is treated independently, the number of steps required to explore a region with

n disjoint star-shaped obsta
les is n(3+m). For our parti
ular experiment setup, this

amounts to 48 steps. Note that Algorithm 1 allows to explore the entire environment

in half as many steps.

Clearly, Algorithm 1 provides a superior strategy for environment exploration


ompared to the random walk strategy. The statisti
s also provide an estimate on

path length and the number of steps required to explore the region with twelve non-


onvex obsta
les. In Appendix C we prove that our proposed algorithm would always

terminate in �nite number of steps in any bounded region 
ontaining an arbitrary

�nite number of disjoint 
onvex obsta
les.

3.3.3. Multiple observers. In Figures 3.4, 3.5, and 3.6 we illustrate environ-

ment exploration with multiple observers in 
on
urrent mode a

ording to Algorithm

2. The experiment with two robots navigating in the environment in sequential mode

is des
ribed in [12℄. The two observers in Figure 3.4 are initially positioned so that

Observer 1, whi
h is 
loser to the obsta
le, does not see any new horizons that are

invisible to Observer 2, whi
h is farther away. In this situation, Observer 1 makes a

move in the dire
tion orthogonal to Observer 2, a

ording to step 4 of Algorithm 2.

Thus it takes three steps by ea
h of the two observers to explore the region with a

single obsta
le.

In Figure 3.5 we have two observers in a more 
omplex environment 
onsisting

of three non
onvex shapes. Two observers explore su
h an environment in four steps.

Finally, in Figure 3.6, we have three observers in the environment with four 
ir
les.

This time it takes only three steps to 
omplete the exploration.
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Fig. 3.2. Sample environment used in statisti
s experiments using Algorithm 1.
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Fig. 3.3. Statisti
s experiment using Algorithm 1: (a) Number of steps histogram for the
nearest edge approa
h; (b) number of steps histogram for the random walk; (
) 
loseup of the number
of steps histogram for the nearest edge approa
h. The random walk simulation is terminated if the
step 
ount is greater than 400.

3.3.4. Target �nding. To demonstrate the versatility of the proposed Algo-

rithm 1, we show how it 
an be applied towards the problem of sear
hing for a target

in an unknown environment. Assume the target 
oordinates are given. The observer

is equipped with a range sensor and must �nd a path through the unknown environ-

ment, so that at the termination of the path, the target is visible. If desired, the

observer 
an then mar
h along the line of sight 
onne
ting it to the target to rea
h it.

The proposed dis
rete strategy is to approa
h the nearest edge to the target at
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Stage 1 Stage 2 Stage 3

Fig. 3.4. Stages of environment exploration with two observers. Red stars � 
urrent observers'
position.

Stage 1 Stage 2 Stage 3 Stage 4

Fig. 3.5. Stages of environment exploration with two observers. Red stars � 
urrent observers'
position.

Stage 1 Stage 2 Stage 3

Fig. 3.6. Stages of environment exploration with three observers. Red stars � 
urrent observers'
position.

every step. Figure 3.7 illustrates sample paths to the target (marked by the yellow

diamond) in an environment 
ontaining multiple disk-shaped obsta
les. The initial

position of the observer is marked by the red square and the �nal position by the

star. The green regions are visible from the �nal position of the observer. Figures

3.7 (a) and (
) illustrate the paths resulting from the proposed algorithm, while Fig-

ures 3.7 (b) and (d) depi
t the optimal paths to see the target, 
omputed using the

algorithm for known environments introdu
ed in [3℄.

The length of the path in Figure 3.7 (a) is 2.6215, while the optimal path length

in the 
urrent 
on�guration is 2.2033. The se
ond row depi
ts a slightly di�erent

observer-target 
on�guration, with the resulting path length 6.0557 and the 
orre-

sponding optimal path length 2.0349.

A forth
oming publi
ation will address appli
ation of visibility to other types of

target �nding problems, su
h as looking for di�usive or wave sour
es in known and
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unknown environments.
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(a) (b)

(c) (d)

Fig. 3.7. (a) and (
): Target �nding in an unknown environment. Yellow diamond � target,
red square � initial observer's position, red 
ir
les � dis
rete observers' positions along the path, red
star � �nal position. The green region is 
urrently visible to the observer. (b) and (d): Optimal
paths to see the target, 
omputed using [3℄. Path lengths: (a) 2.6215, (b) 2.2033, (
) 6.0557, (d)
2.0349.

4. Postpro
essing of the path: illumination optimization

On
e we have 
onstru
ted a route to explore an unknown environment, we 
an

apply optimization te
hniques to post-pro
ess the obtained path in order to obtain a

more uniform illumination/exposure of the explored region. In what follows, let Ω be

the region of exploration and D be the obsta
les. Then the region dis
overed along

the path is Ω\D.

Let γ ={z0,z1,...,zN} be the positions returned by the exploration algorithm. Let

φ(·;zk) be the visibility level set fun
tion 
orresponding to observer at zk:







φ(x;zk)>0, if x is visible from zk,
φ(x;zk)<0, if x is invisible from zk,
φ(x;zk)=0, if x is on the shadow boundary with respe
t to zk.

(4.1)
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De�ne the total illumination of a point x∈Ω\D due to γ by

I(x;γ) :=

N
∑

k=0

H(φ(x;zk)), (4.2)

where H is the one-dimensional Heaviside fun
tion. Note that I re
ords the number

of observers that 
an view x, and so 0≤ I(x;γ)≤N +1.
From a given set of observing lo
ations {zk}, we seek a set of nearby {z∗k}, so

that on average points outside obsta
les are viewed in a more uniform manner � the

deviation of illumination from a pres
ribed illumination level is small.

In 
ertain appli
ations, a higher priority may be pla
ed on viewing a spe
i�


region in spa
e, while lower priority is pla
ed on other regions. In our formulation

we simulate this e�e
t through the use of weights. Let w :Ω→R
+ be a positive real-

valued fun
tion de�ned over Ω. We relate the magnitude of w to the importan
e

of a given point x∈Ω to be visible, with larger magnitude asso
iated with greater

importan
e. By in
luding w in the measure used in spatial integration, we atta
h

importan
e weights to the visibility of spa
e.

More pre
isely, we formulate the variational problem as follows:

Problem 4.1. Given a positive 
onstant C and a weight fun
tion w(x), �nd γ∈R
2N

that minimizes

E(γ;C)=
1

2

N−1
∑

k=0

|zk+1−zk|2 +
λ

2

∫

Ω\D

(

I(x;γ)−C
)2

w(x)dx

+µ

N−1
∑

k=0

(

|zk+1−zk|−ρzk
(θ)

)

. (4.3)

The �rst term in the above fun
tional seeks to stabilize the problem, by penalizing

against fra
tal or spa
e �lling paths. The 
onstant C in the se
ond term is related to

the desired exposure of the region. Thus, large C 
auses the largest possible number

of observers to see any given point x∈Ω\D, taking into a

ount other 
onstraints.

More dis
ussion on the 
hoi
e of C 
an be found in [2℄. In the meantime, the last

term in (4.3) prevents the 
ontinuous path 
onne
ting the dis
rete lo
ations in γ from

a

identally 
rossing the obsta
les' boundary. If θ is the dire
tion of zk+1 when looking

out of zk, the boundary non-
rossing 
ondition is equivalent to keeping |zk+1−zk|<
ρ(θ) for all k. The 
oe�
ients λ and µ serve as parameters for the penalty terms.

Using summation by parts and �xing z0 and zN , we arrive at the following Euler-

Lagrange equation:

żk =(zk+1−2zk +zk−1)

−λ

∫

Ω\D

(

N
∑

j=0

H
(

φ(x;zj)
)

−C
)

δ
(

φ(x;zk)
)

∇zk
φ(x;zk)w(x)dx

−µ
[( zk+1−zk

|zk+1−zk|
− zk−zk−1

|zk−zk−1|
)

−∇zk
ρ(θ)

]

, 1≤k≤N −1. (4.4)

Using the path γ0 
onstru
ted via Algorithm 1 as an initial guess, Equation (4.4) 
an

be solved by simple integration te
hniques.

Unless stated otherwise, in the following dis
ussion we take w≡1. In Figure

4.1 (a) we have two 
ir
ular obje
ts. The dashed green line segments join the
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four vantage points forming initial exploration path γ0 obtained via Algorithm 1.

This path is then deformed using the �ow (4.4), resulting in a new path γ repre-

sented in solid red. To maximize the total illumination of the region we set 
on-

stant C =15, so that the desired exposure is always greater then maximum possible

C =4. The �ow eventually rea
hes a steady state. In Figure 4.1 (b) we plot the ratio
∫

Ω\D
I(x;γ;t)dx/

∫

Ω\D
I(x;γ;0)dx of total exposure at time t to the initial total expo-

sure. One 
an see that the total in
rease in the exposure for this simple geometry is

only roughly 1%.

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0  0.05 0.1 0.15
1

1.005

1.01

1.015

t

I(
  ,

t)
/ 

I(
  ,

0
)

(a) (b)

Fig. 4.1. Path postpro
essing 
orresponding to Problem 4.1, obsta
les � two 
ir-

les (blue 
urves): (a) initial path (dashed green) and optimized path (solid red); (b)
R

Ω\D
I(x;γ;t)dx/

R

Ω\D
I(x;γ;0)dx. Here C =15,λ=0.1,µ=1.

In 
ontrast to the previous example, the gain in exposure in our se
ond experiment

is around 23%, see Figure 4.2 (b). Here the region is 
onstru
ted from a sli
e of

Grand Canyon elevation data, whi
h has a mu
h more 
omplex geometri
al stru
ture


ompared to the example with two 
ir
les. We further in
rease the 
omplexity of the

Grand Canyon terrain by adding holes shaped as 
ir
les to the interior of the explored

region. The initial and optimized paths are depi
ted in Figure 4.2 (a). The original

exploration path (dashed green) bran
hes out to explore the regions o

luded by the


ir
les. Note that the optimized path (solid red) is shorter than the original and has

fewer kinks. Here, we again 
hoose the desired exposure 
onstant C =20.
Figure 4.3 shows the evolution of the path along the Grand Canyon terrain and the

resulting exposure of the region where the Gaussian importan
e weights are 
entered

at (0.9,0) and (−0.5,0.25). We see an in
rease of about 30% in total illumination

of the region in Figure 4.3 (b). The resulting optimized path (solid red) in Figure

4.3 (a) is shorter than the original path (dashed green), with the observers' positions


on
entrated near the regions of in
reased importan
e (magenta diamonds).

It may be desirable in some appli
ations to in
rease the number of observing

lo
ations along the path. Our goal is to arrange the new observers in an optimal

way with respe
t to total illumination of the region. Starting with an initial path γ
obtained by our algorithm, we 
an insert points along the line segments 
onne
ting zk

and zk+1 for ea
h k to obtain a new set γ̃ ={Z0,Z1,...,ZM}, su
h that γ⊂ γ̃. Given
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Fig. 4.2. Path postpro
essing 
orresponding to Problem 4.1, obsta
les � Grand Canyon
terrain (blue 
urves): (a) initial path (dashed green) and optimized path (solid red); (b)
R

Ω\D
I(x;γ;t)dx/

R

Ω\D
I(x;γ;0)dx. Here C =20,λ=0.1,µ=1.
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Fig. 4.3. Path postpro
essing 
orresponding to Problem 4.1, obsta
les � Grand Canyon terrain
(blue 
urves), the weights are 
entered at (0.9,0) and (−0.5,0.25) (magenta diamonds); (a) initial
path (dashed green) and optimized path (solid red); (b)

R

Ω\D
I(x;γ;t)dx/

R

Ω\D
I(x;γ;0)dx. Here

C =20,λ=0.1,µ=1.

a parameter ds>0, we optimize the positions of thus obtained vantage points with

additional 
onstraint |Zk+1−Zk|=ds. Pre
ise variational formulation of the problem

is provided below:

Problem 4.2. Given {zk}N
k=0, a 
onstant C >0, and a parameter ds>0, �nd γ̃∈R

2M
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that minimizes

E(γ̃;C)=
1

2

M−1
∑

k=0

(|Zk+1−Zk|−ds)2

+
λ

2

∫

Ω\D

(

I(x; γ̃)−C
)2

dx

+µ

M−1
∑

k=0

(

|Zk+1−Zk|−ρZk
(θ)

)

. (4.5)

Similar to Problem 4.1, the �rst term in the above fun
tional a
ts as a regularizer of

the path. By setting ds to be the a
tual ar
 length along the path, we additionally

enfor
e the uniform distribution of the observing lo
ations along the path. The Euler-

Lagrange equation 
orresponding to Problem 4.2 is

Żk =
(

Zk+1−2Zk +Zk−1 +ds
[ Zk−Zk−1

|Zk−Zk−1|
− Zk+1−Zk

|Zk+1−Zk|
])

−λ

∫

Ω\D

(

M
∑

j=0

H
(

φ(x;Zj)
)

−C
)

δ
(

φ(x;Zk)
)

∇Zk
φ(x;Zk)dx

−µ
[( Zk+1−Zk

|Zk+1−Zk|
− Zk−Zk−1

|Zk−Zk−1|
)

−∇Zk
ρ(θ)

]

, 1≤k≤M −1. (4.6)

In Figures 4.4 and 4.5 we present the results of exploration a

ording to Prob-

lem 4.2. In 
ase of two 
ir
les, the path expands away from the obsta
les' boundaries

whi
h provides better illumination of the region. The total gain in illumination as

a result of the �ow (4.6) is about 7%. The path, in 
ase of Grand Canyon, 
learly

smoothes out and 
ontra
ts as a result of postpro
essing as 
an be seen from Figure

4.5 (a). Note that in order to have a 
ontinuous path, the observer has to ba
ktra
k

in pla
es where the path bran
hes out. The exposure of the region keeps in
reasing

with the total gain slightly under 15%. We remark that more 
omplex environments,

e.g., the Grand Canyon, allow for greater improvement in illumination through post-

pro
essing of the path as opposed to simpler environments like the one with two


ir
les.

Other types of visibility optimization problems are 
onsidered in [3℄.

Appendix A. Error analysis. In this se
tion we dis
uss the a

ura
y of the

visibility fun
tion resulting from the proje
tion method that uses ENO interpolation.

For simpli
ity, we 
onsider sample environments 
ontaining a �nite number of disjoint

stri
tly 
onvex obje
ts. The observer is positioned outside the obsta
les. We demon-

strate how the error relates to the distan
e from the observer, the view dire
tion, and

the size of the fan δθ. In parti
ular, we demonstrate how the quality of interpolation

deteriorates as the view dire
tion be
omes orthogonal to the outer surfa
e normal

near the horizon lo
ations.

Without loss of generality, we may assume that there are no partially o

luded

obje
ts. The analysis for the 
ase of partially o

luded obje
ts is a straightforward

generalization. Due to the 
onvexity assumption, there are exa
tly two horizons


orresponding to ea
h obje
t in the s
ene, as illustrated in Figure A.1. Let the horizon

lo
ations 
orrespond to θL and θR. Suppose Θ:={θi ∈ [θL,θR],i=0,··· ,ν}⊂ [−π,π)
are distin
t angles sorted in in
reasing order. The angles in Θ 
orrespond to view
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Fig. 4.4. Path postpro
essing 
orresponding to Problem 4.2. Obsta
les � two 
ir
les (blue

urves): (a) initial path (dashed green), four original observers' lo
ations (magenta triangles), and
optimized path (solid red); (b)

R

Ω\D
I(x;γ;t)dx/

R

Ω\D
I(x;γ;0)dx. Here C =100,λ=0.001,µ=1,ds=

0.01, and the total number of steps along the path is 26.
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Fig. 4.5. Path postpro
essing 
orresponding to Problem 4.2. Obsta
les � Grand Canyon terrain
(blue 
urves): (a) initial path (dashed green), original observers' lo
ations (magenta triangles), and
optimized path (solid red); (b)

R

Ω\D
I(x;γ;t)dx/

R

Ω\D
I(x;γ;0)dx. Here C =150,λ=0.001,µ=1,ds=

0.01, and the total number of steps along the path is 71.

dire
tions from x0 to points pi ∈ P̃ on a visible region of an o

luding surfa
e that is

bounded by two horizons. These angles and points are obtained using the proje
tion

des
ribed in Se
tion 2.1.

Assume the o

luding surfa
e between θL and θR is smooth enough, su
h that

the visibility fun
tion ρ(θ)∈Cn+1(θL,θR). Then for ea
h θ∈ [θL,θR], we have the
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standard error estimate

ρ(θ)=ρENO n(θ)+
ρ(n+1)(ξ(θ))

(n+1)!
Πn

i=0(θ−θi), for some mean value ξ(θ)∈ (θL,θR),

(A.1)

where ρENO n(θ) is the n-th order ENO polynomial approximation and

En :=
ρ(n+1)(ξ(θ))

(n+1)!
Πn

i=0(θ−θi) (A.2)

is the error term. Sin
e ρ is smooth in [θL,θR], depending on the order of approxi-

mation, the error term En is bounded a

ording to the regularity of ρ. For example,

with the third order ENO, for any θ∈ [θ3,θν−4], we have

∣

∣E3
∣

∣≤ max
ξ∈(θ3,θν−4)

∣

∣ρ(4)(ξ)
∣

∣

4!
(2δθ)

4
.

Note that in order for the above bound to hold, we have to assume that ENO

interpolation would not 
hoose a sten
il that goes a
ross the dis
ontinuities of ρ.
Otherwise, if ENO sten
il in
ludes the jump lo
ation, the remainder term (A.2) 
an

be very big. In order to avoid this problem we introdu
e the following assumption on

the size of the fan used in �ltering:

Assumption A.1. δθ is small enough, so that g(ρ(θ))<δθ implies there is a dis
on-

tinuity in the visibility fun
tion ρ at θ.

Above, g is the edge-dete
tor fun
tion de�ned in (2.4). Su
h δθ 
an always be

found in the asymptoti
 limit. However, it may not always exist in pra
ti
al ap-

pli
ations, as 
an be seen from Figure 3.1 (
), where small 
on
ave regions of the

Grand Canyon terrain are not fully resolved be
ause the above assumption on δθ is

not satis�ed.

Furthermore, we require that δθ is small enough that the ar
 
onne
ting pi and

pi+1 may be approximated by a straight line segment. This translates into the fol-

lowing assumption:

Assumption A.2. δθ2|κ|<ǫ if κ 6=0. Here 0<ǫ≪1 is a small 
onstant.

The above assumption 
an be easily derived using Taylor's expansion: for any θ∈
[θi,θi+1] we 
an write ρ(θ)=ρ(θi)+(θ−θi)ρ

′(θi)+ 1
2 (θ−θi)

2ρ′′(ξ) for some ξ between

θ and θi. A linear approximation of ρ is obtained by setting the se
ond order term in

Taylor's approximation to 0. Pre
isely, we have δθ2κ=0, where κ is the 
urvature of

the o

luding surfa
e. Then, Assumption A.2 follows.

Thus we have derived the two 
onditions on the size of the fan δθ whi
h guarantee

a bounded error term in the estimate (A.1).

Note that the a

ura
y of ENO polynomial approximation of ρ is not uniform

along the o

luding surfa
e. It depends on the view dire
tion and the proximity to

the observer. We would like to �nd an upper bound on the derivatives of ρ, and thus

obtain an expression for the remainder term En whi
h relies on the properties of the

proje
tion and �ltering method.

Without loss of generality, assume |pi+1−x0|≥ |pi−x0|. Denote the outer normal

to the surfa
e at pi+1 by ~n and let the angle between ~n and the view dire
tion θi+1 be
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π−φ. Let M =maxpi∈P̃ |x0−pi|. Using simple trigonometry, we obtain the following

bounds

|pi−pi+1|=
sin(θi+1−θi) |x0−pi|

cosφ
≤ M sin(2δθ)

cosφ
, (A.3)

|ρ(θi+1)−ρ(θi)|=
sin

(

φ− θi+1−θi

2

)

|pi+1−pi|

cos
(

θi+1−θi

2

) ≤ 2M tanφ

cosδθ
:=K. (A.4)

From the above estimates we see that the shortest distan
e between the two

neighboring sample points pi and pi+1 as well as the smallest di�eren
e in their 
or-

responding visibility values is obtained when φ=0, i.e., when the view dire
tion is

parallel to the outer normal ~n. As φ approa
hes π/2, whi
h happens near the horizon

lo
ations, both |pi+1−pi| and |ρ(θi+1)−ρ(θi)| tend to in�nity (see Figure A.1). Also,

as δθ de
reases to 0, the di�eren
e |ρ(θi+1)−ρ(θi)| de
reases to 2M tanφ. Denote the

x0

θL
θR

Fig. A.1. Filtered out visible data pi ∈ P̃ along with surfa
e normals. Error in the approxima-
tion of horizon lo
ations.

minimum distan
e to a point in P̃ by m. From the relation (A.3),

|pi−pi+1|≥
msin(2δθ)

cosφ

for any points pi and pi+1 in P̃ . Then

θi+1−θi ≥ψ :=2sin−1

(

msin(2δθ)

M cosφ

)
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for any angles θi,θi+1∈Θ. Using the estimate on divided di�eren
es

ρ[θ0,θ1,...,θn]=
ρ(n)(ξ)

n!
. (A.5)

and the relation (A.4), we obtain the following bounds on derivatives of the visibility

fun
tion

|ρ′(ξ)|= |ρ(θi+1)−ρ(θi)|
θi+1−θi

≤ 1

ψ
K,

|ρ′′(ξ)|
2!

=min{|ρ[θi,θi+1,θi+2]|,|ρ[θi−1,θi,θi+1]|}≤
2

2!ψ2
K,

∣

∣ρ(3)(ξ)
∣

∣

3!
≤ 22

3!ψ3
K,

...
∣

∣ρ(n)(ξ)
∣

∣

n!
≤ 2n−1

n!ψn
K. (A.6)

Then the error term (A.2) 
an be bounded by

|En|=
∣

∣

∣

∣

ρ(n+1) (ξ (θ))

(n+1)!
Πn

i=0 (θ−θi)

∣

∣

∣

∣

≤ 2nKΠn
i=0 |θ−θi|

(n+1)!ψn+1

≤ 2nK (θR−θL)
n+1

(n+1)!ψn+1
. (A.7)

Furthermore, in a bounded domain Ω=BR(x0), we 
an estimate the error in the

shadow boundary lo
ation near the horizon (as θ approa
hes π/2), i.e., the area of

the grey regions in Figure A.1. The maximum angle of the resulting fan is δθ. Then
the error in the shadow boundary 
orresponding to a given horizon is only linear

Ahorizon≤
δθ

2
(R2−m2). (A.8)

Appendix B. Dynami
s. Below we derive the dynami
s equations of the visi-

bility fun
tion and horizon points with respe
t to the moving vantage point. In two

dimensions let us 
onsider a 
oordinate system 
entered at x0 with the visible por-

tions of the o

luding surfa
es parameterized by polar 
oordinates. A point z on the

o

luder is visible from x0. Assume the observer moves with the velo
ity v =(v1,v2).
The value of the visibility fun
tion is ρx0

(θ)= |z−x0|. Suppose during the period

of time ∆t the observer has moved to a new lo
ation x0 +v∆t. The 
orresponding

value of the visibility fun
tion is ρ̃x0+v∆t(θ̃)= |z−(x0 +v∆t)|. The angle between the

velo
ity ve
tor v and the x-axis is ϕ=tan−1 v2

v1
. The angle between z−x0 and the

velo
ity ve
tor v is ψ. Then, the angle between z−x0 and the x-axis is θ =ϕ+ψ, see
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Figure B.1 (a). Then we 
an 
ompute

d

dt
(ρ2)= lim

∆t→0

ρ̃2−ρ2

∆t

= lim
∆t→0

|z−(x0 +v∆t)|2−|z−x0|2
∆t

=−2v ·(z−x0)

=−2ρv ·
(

cosθ
sinθ

)

. (B.1)

On the other hand,

d

dt
(ρ2)=2ρ

dρ

dt
=2ρ(ρ̇+ρθ θ̇). (B.2)

Therefore,

ρ̇+ρθ θ̇ =−v ·
(

cosθ
sinθ

)

. (B.3)

To �nd an expression for θ̇, note from Figure B.1 (a) that

ρsinψ = ρ̃sinψ̃ =L.

Sin
e L is the distan
e from z to x0 +vt, it is independent of the motion of x0 on
e

the dire
tion v is �xed. Therefore,

dL

dt
=

dρ

dt
sinψ+ ψ̇ρcosψ =0. (B.4)

Then

θ̇ = ψ̇ =−
dρ
dt

sinψ

ρcosψ
=

v

ρ
·
(

sinθ
−cosθ

)

. (B.5)

Combining (B.5) with (B.3) we �nally obtain

ρ̇=−ρθ

ρ
v ·

(

sinθ+cosθ
sinθ−cosθ

)

. (B.6)

The above Equation (B.6) des
ribes the 
hange of the visible portion of the o
-


luding surfa
e, i.e. between the horizons. In order to have a 
omplete des
ription of

the visibility we must derive the motion of horizons e1 and e2 on Figure B.1 (b) with

respe
t to the observer.

Note that (ei−x0) ·nei
=0, where nei

is the outer unit normal to the o

luding

surfa
e at the point ei for i=1,2. That is, the ve
tor ei−x0 is tangent to the o

luding

surfa
e at the horizon point. Without loss of generality, in all the 
omputations below

we will 
onsider just e1.

In the 
oordinate system de�ned as above, θ =ϕ+ψ is the angle between e1−x0

and the x-axis. The value of the visibility fun
tion is ρx0
(θ)= |e1−x0|. Now suppose

the observer moves to a new position x0 +v∆t, moving with the velo
ity v =(v1,v2).
For this new lo
ation, the position of the edge has 
hanged to ẽ1 and the 
orresponding

value of the visibility fun
tion is ρ̃x0+v∆t(θ̃)= |ẽ1−(x0 +v∆t)|. Here θ̃ =ϕ+ ψ̃ is the
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angle between ẽ1−(x0 +v∆t) and the x-axis in the 
oordinate system 
entered at

x0 +v∆t. Our goal is to �nd the 
hange in the position of horizon, i.e. ė1.

First, note that the 
urvature of the o

luding surfa
e at the point
(

ρ(θ),θ
)

is

given by

κ=
ρ2 +2ρ2

θ −ρρθθ

(ρ2 +ρ2
θ)

3
2

. (B.7)

Also, sin
e e1−x0 is tangent to the o

luder at e1, we obtain

n⊥(e1)=
e1−x0

|e1−x0|

n(e1)=
(

n⊥(e1)
)⊥

=
( e1−x0

|e1−x0|
)⊥

. (B.8)

Now we 
an plug in the above into the formula for horizon dynami
s from [24℄ to get

ė1 =
v ·n(e1)

κρ
n⊥(e1). (B.9)

Therefore, from (B.6) and (B.9) we obtain full des
ription of the 
hange in the

visible portion of the o

luder with respe
t to the observer's motion.

The 
orresponding expressions 
an also be derived in three dimensions, see [24℄.

θ = ϕ + ψ

θ = ϕ + ψ
∼ ∼

ρ
ρ
∼

ψ

ψ
∼

ϕ

ϕ

∆x  + v t0

x  0

L
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z

(a)

θ

θ 
∼

ρ
∼

ρ

e1

e1
∼

e2
∼

e2

∆x  + v t0

x  0

v

(b)

Fig. B.1. Derivation of the dynami
s equations for the visibility fun
tion (a) and the horizons
(edges) (b).

Appendix C. Complexity estimates for 2D 
ases. Let us begin by 
onsid-

ering a single obsta
le Ω bounded by a simple C2 regular 
onvex 
urve Γ.
Proposition C.1. The Gauss map S : Γ 7→S1 is monotone.

Proof. Note that a simple 
losed C2 regular 
urve is 
onvex if and only if its

signed 
urvature κ does not 
hange its sign, in parti
ular, if it is never zero. But the


urvature κ is the derivative of the tangent ve
tor parameterized by the ar
 length

of a given 
urve. Sin
e the normal ve
tor is just a tangent ve
tor rotated by π
2 we



908 VISIBILITY OF POINT CLOUDS


on
lude that the angle of the normal ve
tor should be monotone along the 
urve,

otherwise κ would 
hange its sign. Thus the Gauss map of Γ is monotone.

Next we are going to use monotoni
ity of the Gauss Map to 
onstru
t a path for

the observer to see whole region, i.e. the boundary of the obsta
le Ω.

Claim C.2. At least three steps are required to explore a simply 
onne
ted region


ontaining a single 
onvex obsta
le.

Proof. Let x0 be the 
enter of mass of Ω. Sin
e the Gauss map S : Γ 7→S1 is

monotone, �seeing� Γ is equivalent to seeing the boundary of a disk C 
entered at x0

that en
loses Ω. Let z0,z1, and z2 be the verti
es of triangle that en
loses C and is

tangent to C at e0,e1, and e2. The observer pla
ed at z0 is able to see the portion of

the boundary of C between e0 and e1. Similarly, from z1 the observer is able to see

an ar
 between e1 and e2, and from z2 the remaining portion of the boundary of C
and, 
orrespondingly, Γ. Sin
e the observer's path must be �nite, we ex
lude the 
ase

of exploring the entire boundary in just two steps.

We may assume that the observer may not approa
h the obsta
le nearer than λ>0

and may not depart from the obsta
le further than η. Then the minimum number of

steps required to explore Γ is ⌊ π

cos−1 r+λ
r+η

⌋. Here, r is the radius of the smallest 
ir
le

en
losing Ω, 
entered at the 
enter of mass of Ω (see Figure C.1).

z0

z1

z2

z3

x0

r

z4

λ

η

Fig. C.1. Constru
ting a path around a 
onvex obsta
le under restri
tions.

Now we 
onsider the s
enario where the obsta
les 
onsist of �nite number of

disjoint, 
losed, stri
tly 
onvex sets as in Figure C.2. Denote ea
h 
onvex 
omponent

by Ω and denote by C the smallest disk 
entered at Ω's 
enter of mass x0 that en
loses

Ω. Let r be the radius of C. Let C ′ be the smallest disk that 
ontains an equilateral

triangle en
losing C. Let r′ be the radius of C ′. The length of a side of the equilateral

triangle ins
ribed in C ′ is L=2
√

3r=
√

3r′. Let C0 be the smallest 
ir
le of radius r0

and 
orresponding triangle side length L0. Let R=maxj,kdist{C ′
j ,C

′
k} be the largest

distan
e between any two disks in {Ck}. Then all the disks must be 
ontained in

some bounded domain BR.

Proposition C.3. Start at z0 on some C ′
1⊃C1 and overshoot the horizon e1 by L

2
to arrive at z1. Then will �see� the entire C1, i.e. the remaining ar
 between the

horizons e0 and e2 on Figure C.3, in �nite number of steps.
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Ω

Ω

Ω

C’ C’
j

k

Cj

Ck

C’0

C0

L j

Lk

L0

Fig. C.2. Sample environment with 
losed, 
onvex, disjoint sets. C0 is the smallest disk possible.

z0 z1

e0 e2

C

C’

1

1

e1

Fig. C.3. Setup for Prop. C.1. The unexplored portion of C1 is marked red.

Proof. From z1 an observer may

1. Pro
eed to see e2, so that z2∈C ′
1 and all of C1 has been explored in just three

steps: z0,z1, and z2.

2. Pro
eed to some e3∈C2 su
h that ‖z1−e3‖≤‖z1−e2‖. In this 
ase z2 is on

some C ′
2 6=C ′

1.

In 
ase (2) the following is true:

Claim C.4. If there exists k≥1, su
h that zk+1∈C ′
1 then C1 is entirely seen from

z0,z1,zk+ 1
2
and zk+1.

Proof. If zk+1∈C ′
1 then there is a horizon ek ∈ (e0,e2) on C1 whi
h is the nearest

to zk ∈C ′
j for some j. Let zk+ 1

2
∈C ′

1 be the point of interse
tion of the ray (zk,zk+1)

and C ′
1. Thus, [ek,e2] is entirely visible from zk+ 1

2
and [e0,ek] is entirely visible from

zk+1. Hen
e, the entire ar
 of C1 between e0 and e2 has been explored.

Suppose towards a 
ontradi
tion that the observer does not return to C1 at all.

Sin
e the 
olle
tion {Ck} is �nite, the observer must be then stu
k in a loop, i.e. there

exist Cj and Ck su
h that Cj is approa
hed from Ck in�nitely many times. But this

is impossible a

ording to the following 
laim.

Claim C.5. Cj may be approa
hed from Ck at most twi
e.

Proof. Note that given two disks, there exist four bitangents: ℓ1,ℓ2 and symmetri


ℓ′1 and ℓ′2 as in Figure C.4. We will only 
onsider ℓ1 and ℓ2 below unless we indi
ate
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otherwise. If there exists C ′
k 6=C ′

j su
h that C ′
k and Cj are bitangent, then there is

a ray from the 
enter of C ′
k that is perpendi
ular to some θ as in Figure C.5. Then

C ′
k tangents the ray perpendi
ular to θ±δθ. By 
onstru
tion it is obvious that all

possible return angles on Cj from zm ∈C ′
k are in θ±δθ, i.e. the observer may only

approa
h horizons on Cj that lie on an ar
 of size 2δθ. Refer to Figure C.5 for an

illustration.

l1

l2

l ’2

l ‘1

Fig. C.4. Four bitangents to two disks.

2

C j

C k

C k
‘

1
2

C j
‘

z
m

z
m+1

e
m

z
m+1

2

θ

θ

θ

δθ

Fig. C.5. Portions of Cj visible from z
m+ 1

2

∈C′
j and zm+1 ∈C′

j .

Let zm+ 1
2
=(zm,zm+1)∩C ′

j . Then let θ1 be the angle visible from zm+ 1
2
∈C ′

j and

θ2 be the angle visible from zm+1∈C ′
j depi
ted in Figure C.5. Note that θ1 =θ2 = 2π

3 .

Hen
e, 2δθ is entirely visible from zm+ 1
2
and zm+1.

Thus an observer is able to see the entire ar
 where possible horizons visible

from C ′
k are lo
ated in a single approa
h. The symmetri
al 
ase with another pair

of bitangents provides the possibility for the se
ond approa
h from C ′
k. Hen
e, an

observer may approa
h Cj from C ′
k at most twi
e.
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We have shown that it is not possible for an observer to approa
h a single disk

in�nitely many times. Therefore an observer must return to C1 in �nite number of

steps. This 
ompletes the proof of Prop. C.3.

Proposition C.6. The entire environment BR has been explored at the termination

of the exploration algorithm. In other words, the observer has seen the boundary of

every obsta
le at the termination.

Proof. We begin the proof with the de�nition:

Definition C.1. Two disks Cj and Ck are neighbors if there is no other obsta
le in

the region bounded by ar
s of C ′
j and C ′

k between the outermost bitangents to C ′
j and

C ′
k (ℓ1 and ℓ′1 in Figure C.4).

Then we make the following observations:

Claim C.7. In the pro
ess of exploring Cj the observer must dete
t at least one

horizon/edge on every neighbor of Cj.

Proof. By the de�nition of neighbors there are no other obje
ts obstru
ting the

neighbors from ea
h other. Assume, without loss of generality, that the observer visits

vantage points z0 and z1 on C ′
j during the exploration of Cj . Consider the lines ℓ1,ℓ2,

and ℓ3 whi
h are tangent to Cj at the horizon points e0,e1, and e2, as in Figure

C.6. Then every neighbor of Cj must be in one of the half-planes Ω1,Ω2,Ω3, or their

z0 z1

e0 e2

C

C’

j

j

e1

l1

l2

l3

Ω1

Ω2

Ω3

Fig. C.6. Labeling horizons on the neighbors of Cj .

interse
tion. The observer at z0 is able to see all of Ω1∪Ω2, whereas Ω2∪Ω3 is visible

from z1. Therefore, the observer is able to see at least one horizon/edge on ea
h

neighbor from just z0 and z1.

On
e a horizon has been labeled on Ck, the entire Ck will be seen 
ompletely

later on, a

ording to Prop. C.3.
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Claim C.8. Every disk in the given 
on�guration will have at least one horizon/edge

labeled on it at some stage of the algorithm.

Proof. The following proof is by indu
tion. Suppose we start the exploration at

some disk C1. Then all the neighbors {C1j
}M

j=1 of C1 will have at least one edge

marked on them a

ording to Claim C.7. Suppose at some stage of the exploration,

all the disks have at least one edge labeled on them but Ck. In the given 
on�guration

Ck has at least one neighbor Ck1
. By indu
tion assumption, Ck1

also has some edges

labeled on it. Then, at some point of the algorithm the observer must 
ome to explore

Ck1
. At that time it will label an edge on Ck, sin
e Ck and Ck1

are neighbors.

Hen
e, the entire environment will be explored at the termination of the algo-

rithm. This 
ompletes the proof of Prop. C.6.

Props. C.3 and C.6 imply that the Algorithm 1 will terminate in �nitely many

steps. At the termination of the algorithm the entire environment 
onsisting of 
losed,

disjoint, stri
tly 
onvex sets will be explored.
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