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VANISHING VISCOSITY AND THE ACCUMULATION OF

VORTICITY ON THE BOUNDARY∗

JAMES P. KELLIHER†

Abstract. We say that the vanishing viscosity limit holds in the classical sense if the velocity
for a solution to the Navier-Stokes equations converges in the energy norm uniformly in time to the
velocity for a solution to the Euler equations. We prove, for a bounded domain in dimension 2 or
higher, that the vanishing viscosity limit holds in the classical sense if and only if a vortex sheet
forms on the boundary.
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1. Introduction

It is well known that for radially symmetric initial vorticity in a disk, the velocity
for a solution to the Navier-Stokes equations converges in the energy norm uniformly
in time to the velocity for a solution to the Euler equations. It was shown recently in
[8] that for such initial data in a disk, it also happens that a vortex sheet forms on the
boundary as the viscosity vanishes. By a vortex sheet, we mean a velocity field whose
vorticity, as a finite Borel signed measure (an element of the dual space of C(Ω)), is
supported along a curve—the boundary, in this case.

It turns out that this phenomenon is in a sense more universal: either both types
of limits hold or neither holds for an arbitrary bounded domain in R

d, d≥2, with
C2-boundary and with no particular assumption on the symmetry of the initial data.
More precisely, the vanishing viscosity limit in the classical sense (condition (B) of
Sec. 3) holds if and only if a vortex sheet of a particular type forms on the boundary
(conditions (E) and (E2) of Sec. 3). Now, however, the vortex sheet has vorticity
belonging to the dual space of H1(Ω) rather than C(Ω). We show this in Thm. 3.1
for no-slip boundary conditions and in Thm. 5.1 for characteristic boundary conditions
on the velocity.

2. Background

Let Ω be a bounded domain in R
d, d≥2, with C2-boundary Γ, and let n be the

outward unit normal vector to Γ. A classical solution (u,p) to the Euler equations
satisfies

(EE)

{

∂tu+u ·∇u+∇p=f and divu=0 on [0,T ]×Ω,

u ·n=0 on [0,T ]×Γ and u=u0 on {0}×Ω.

These equations describe the motion of an incompressible fluid of constant density
and zero viscosity. The initial velocity u0 must at least lie in

H =
{

u∈ (L2(Ω))d : divu=0 in Ω, u ·n=0 on Γ
}
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endowed with the L2-norm, which, along with

V =
{

u∈ (H1(Ω))d : divu=0 in Ω, u=0 on Γ
}

endowed with the H1-norm, are the classical spaces of fluid mechanics.

We assume that u0 is in Ck+ǫ(Ω)∩H, ǫ>0, where k =1 for two dimensions and
k =2 for 3 and higher dimensions, and that f is in C1([0,t]×Ω) for all t>0. Then as
shown in [7] (Thm. 1 and the remarks on p. 508-509), there is some T >0 for which
there exists a unique solution,

u in C1([0,T ];Ck+ǫ(Ω)), (2.1)

to (EE). In two dimensions, T can be arbitrarily large, though it is only known that
some nonzero T exists in three and higher dimensions.

The Navier-Stokes equations describe the motion of an incompressible fluid of
constant density and positive viscosity ν. A classical solution to the Navier-Stokes
equations with no-slip boundary conditions can be defined in analogy to (EE) by

(NS)

{

∂tu+u ·∇u+∇p=ν∆u+f and divu=0 on [0,T ]×Ω,

u=0 on [0,T ]×Γ and u=u0
ν on {0}×Ω,

where u0
ν is in H and f is in L1([0,T ];L2(Ω)). We will work, however, with weak

solutions to the Navier-Stokes equations. (See, for instance, Chapter III of [10].)
Such weak solutions lie in L∞([0,T ];H)∩L2([0,T ];V ).

In Sec. 3 we prove various equivalent forms of the vanishing viscosity limit for no-
slip boundary conditions, including the formation of a vortex sheet on the boundary,
and remark briefly on their derivation in Sec. 4. In Sec. 5 we extend the results of Sec.
2 to characteristic boundary conditions. We discuss, in Sec. 6, our results in relation
to those in [8] on vortex sheet formation for a disk. Finally, in Sec. 7, we include some
technical lemmas employed in Sec. 3.

3. Equivalent forms of the vanishing viscosity limit

Let u be a classical solution to (EE) in Ω and let u=uν be a weak solution to
(NS) in Ω as in Sec. 2, and assume that u0

ν →u0 in H and f →f in L1([0,T ];L2(Ω))
as ν→0.

Let γn be the boundary trace operator for the normal component of a vector field
(see Lem. 7.1). Let M(Ω) be the space of finite Borel signed measures on Ω. Note
that M(Ω) is the dual space of C(Ω). Let µ in M(Ω) be the measure supported on
Γ for which µ|Γ corresponds to Lebesgue measure on Γ (arc length for d=2, area for
d=3, etc.). Then µ is also a member of H1(Ω)′.

We define the vorticity ω(u) to be the d×d antisymmetric matrix

ω(u)=
1

2

[

∇u−(∇u)T
]

. (3.1)

When working specifically in two dimensions, we can alternately define the vorticity
as the scalar curl of u:

ω(u)=∂1u
2−∂2u

1. (3.2)
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Letting ω =ω(u) and ω =ω(u), we define the following conditions:

(A) u→u weakly in H uniformly on [0,T ],

(A′) u→u weakly in (L2(Ω))d uniformly on [0,T ],

(B) u→u in L∞([0,T ];H),

(C) ∇u→∇u−〈γn·,uµ〉 in ((H1(Ω))d×d)′ uniformly on [0,T ],

(D) ∇u→∇u in (H−1(Ω))d×d uniformly on [0,T ],

(E) ω→ω−
1

2

〈

γn(·−·T ),uµ
〉

in ((H1(Ω))d×d)′ uniformly on [0,T ].

In conditions (C), (D), and (E), the convergence is in the weak∗ topology of the
given spaces. In (C) and (E), ((H1(Ω))d×d)′ is the dual space of (H1(Ω))d×d; in (D),
(H−1(Ω))d×d is the dual space of (H1

0 (Ω))d×d. Thus, condition (C) means that

(∇u(t),M)→ (∇u(t),M)−

∫

Γ

(M ·n) ·u(t) in L∞([0,T ])

for any M in (H1(Ω))d×d, condition (D) means that

(∇u(t),M)→ (∇u(t),M) in L∞([0,T ])

for any M in (H1
0 (Ω))d×d, and condition (E) means that

(ω(t),M)→ (ω(t),M)−
1

2

∫

Γ

((M −MT ) ·n) ·u(t) in L∞([0,T ])

for any M in (H1(Ω))d×d.
In two dimensions, defining the vorticity as in Equ. (3.2), we also define the

following two conditions:

(E2) ω→ω−(u ·τ )µ in (H1(Ω))′ uniformly on [0,T ],

(F2) ω→ω in H−1(Ω) uniformly on [0,T ].

Here, τ is the unit tangent vector on Γ that is obtained by rotating the outward unit
normal vector n counterclockwise by 90 degrees.

Condition (E2) means that

(ω(t),f)→ (ω(t),f)−

∫

Γ

(u(t) ·τ )f in L∞([0,T ])

for any f in H1(Ω), while condition (F2) means that

(ω(t),f)→ (ω(t),f) in L∞([0,T ])

for any f in H1
0 (Ω).

Theorem 3.1. Conditions (A), (A′), (B), (C), (D), and (E) are equivalent. In two
dimensions, conditions (E2) and (F2) are equivalent to the other conditions.

Proof. (A) ⇐⇒ (A′): Let v be in (L2(Ω))d. By Lem. 7.3, v =w+∇p, where w is
in H and p is in H1(Ω). Then assuming (A) holds,

(u(t),v)=(u(t),w)→ (u(t),w)=(u(t),v)
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uniformly over t in [0,T ], so (A′) holds. The converse is immediate.

(A) ⇐⇒ (B): The forward implication is proved in Thm. 1 of [4]. The backward
implication is immediate.
(A′) =⇒ (C): Assume that (A′) holds and let M be in (H1(Ω))d×d. Then

(∇u(t),M)=−(u(t),divM)→−(u(t),divM) in L∞([0,T ]).

But,

−(u(t),divM)=(∇u(t),M)−

∫

Γ

(M ·n) ·u,

giving (C).
(C) =⇒ (D): This follows simply because H1

0 (Ω)⊆H1(Ω).
(D) =⇒ (A): Assume (D) holds, and let v be in H. Then v =divM for some M in
(H1

0 (Ω))d×d by Corollary 7.5, so

(u(t),v)=(u(t),divM)=−(∇u(t),M)+

∫

Γ

(M ·n) ·u(t)

=−(∇u(t),M)→−(∇u(t),M)

uniformly over [0,T ]. But,

−(∇u(t),M)=(u(t),divM)−

∫

Γ

(M ·n) ·u(t)=(u(t),v),

from which (A) follows.
Now assume that d=2.

(A′) =⇒ (E2): Assume that (A′) holds and let f be in H1(Ω). Then

(ω(t),f)=−(divu⊥(t),f)=(u⊥(t),∇f)=−(u(t),∇⊥f)

→−(u(t),∇⊥f) in L∞([0,T ]),

where u⊥ =−
〈

u2,u1
〉

and we used the identity ω(u)=−divu⊥. But,

−(u(t),∇⊥f)=(u⊥(t),∇f)=−(divu⊥(t),f)+

∫

Γ

(u(t)⊥ ·n)f

=−(divu⊥(t),f)−

∫

Γ

(u(t) ·τ )f =(ω(t),f)−

∫

Γ

(u(t) ·τ )f,

giving (E2).
(E2) =⇒ (F2): Follows for the same reason that (C) =⇒ (D).
(F2) =⇒ (A): Assume (F2) holds, and let v be in H. Then v =∇⊥f for some f in
H1

0 (Ω) (f is called the stream function for v), and

(u(t),v)=(u(t),∇⊥f)=−(u⊥(t),∇f)=(divu⊥(t),f)

=−(ω(t),f)→−(ω(t),f) in L∞([0,T ]).

But,

−(ω(t),f)=(divu⊥(t),f)=−(u⊥(t),∇f)=(u(t),∇⊥f)

=(u(t),v),
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which shows that (A) holds.
What we have shown so far is that (A), (A′), (B), (C), and (D) are equivalent, as

are (E2) and (F2) in two dimensions. It remains to show that (E) is equivalent to these
conditions as well. We do this by establishing the implications (C) =⇒ (E) =⇒ (A).
(C) =⇒ (E): Follows directly from Equ. (3.1).
(E) =⇒ (A): Let v be in H and let x be the vector field in (H2(Ω)∩H1

0 (Ω))d solving
∆x=v on Ω (x exists and is unique by standard elliptic theory). Then, utilizing
Lem. 7.6 twice (and suppressing the explicit dependence of u and u on t),

(u,v)=(u,∆x)=−(∇u,∇x)+

∫

Γ

(∇x ·n) ·u=−(∇u,∇x)

=−2(ω(u),ω(x))−

∫

Γ

(∇ux) ·n=−2(ω(u),ω(x))

→−2(ω(u),ω(x))+2
1

2

∫

Γ

((ω(x)−ω(x)T ) ·n) ·u

=−2(ω(u),ω(x))+2

∫

Γ

(ω(x) ·n) ·u

=−(∇u,∇x)+

∫

Γ

(∇ux) ·n+2

∫

Γ

(ω(x) ·n) ·u

=−(∇u,∇x)+2

∫

Γ

(ω(x) ·n) ·u

=(u,∆x)−

∫

Γ

(∇x ·n) ·u+2

∫

Γ

(ω(x) ·n) ·u

=(u,v)−

∫

Γ

((∇x)T ·n) ·u.

(3.3)

Thus, (E) =⇒ (A) if and only if

∫

Γ

((∇x)T ·n) ·u=0. (3.4)

But, (div(∇x)T )i =∂j∂ix
j =∂idivx or div(∇x)T =∇divx. Similarly, div(∇u)T =

∇divu=0. It follows that
∫

Γ

((∇x)T ·n) ·u=((∇x)T ,∇u)+(∇divx,u)

=(∇x,(∇u)T )−(divx,divu)+

∫

Γ

u ·ndivx=((∇u)T ,∇x)

=−(div(∇u)T ,x)+

∫

Γ

((∇u)T ·n)x=0.

4. Remarks

The equivalent conditions of Thm. 3.1 complement those of [4, 11, 12], and [6].
It is only in the proof of (A) =⇒ (B), in which we quote a result of Kato’s in

[4], where the requirement that u be a classical solution to the Euler equations and
that f →f in L1([0,T ];L2) is used; in fact, it is the only place where the fact that
u and u are solutions to the Navier-Stokes and Euler equations, respectively, appear
in the proof at all. That is, assuming only that u is a vector field parameterized
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by ν that lies in L∞([0,T ];H)∩L2([0,T ];V ) and that u is a vector field lying in
L∞([0,T ];H∩H1(Ω)), all of the implications in the proof of Thm. 3.1 remain valid
except for (A) =⇒ (B).

The proof of (A) =⇒ (B) in [4] consists, using our terminology, of proving (B) =⇒
(A) =⇒ (i) =⇒ (ii) =⇒ (B), where (i) and (ii) are the conditions,

(i) ν

∫ T

0

‖∇u‖
2
L2(Ω)→0,

(ii) ν

∫ T

0

‖∇u‖
2
L2(Γcν)→0,

with Γcν a boundary layer of width proportional to ν.
If we weaken the regularity of Γ from C2 to only locally Lipschitz, then the proof

of (E) =⇒ (A) fails because we would only have x in (H1
0 (Ω))d. Kato’s proof that

(A) =⇒ (B) also requires a C2 boundary.
In two dimensions, we need only have convergence of the vorticity away from

the boundary (condition (F2)) to ensure that the vanishing viscosity limit holds. In
particular, it follows that formation of a vortex sheet on the boundary of a type other
than that given in (E2) is inconsistent with u being a solution to (NS). In higher
dimensions it is an open problem whether the analogous statement is true; that is,
whether (F ) =⇒ (A), where (F ) is the condition,

(F ) ω→ω in (H−1(Ω))d×d uniformly on [0,T ].

The remarks that follow attempt to give some insight into the nature of this problem.
One approach to proving that (F ) =⇒ (A) is to prove that (F ) =⇒ (D), since we

have (D) =⇒ (A). So suppose that (F ) holds, and let M be in (H1
0 (Ω))d×d. For any

vector field v,

(∇v,M)=(∇v−(∇v)T ,M)+((∇v)T ,M)=2(ω(v),M)+(∇v,MT ).

Thus,

(∇u,M −MT )=2(ω(u),M)→2(ω(u),M)=(∇u,M −MT ).

If M is antisymmetric then M −MT =2M and we conclude that (D) holds for anti-
symmetric matrix fields in (H1

0 (Ω))d×d. But if M in (H1
0 (Ω))d×d is symmetric,

2(ω(u),M)=(∇u,M)−((∇u)T ,M)=(∇u,M −MT )=0,

so (ω(u),M)=(ω(u),M)=0, and we can conclude nothing from this approach.
But some use can still be made of this observation. Let v be any element of H.

Then from Corollary 7.5, for some M in (H1
0 (Ω))d×d,

(u,v)=(u,divM)=−(∇u,M).

Now, if we could ensure that M can be chosen to be antisymmetric, then if (F ) holds
for M so does (D), as we just showed, and

−(∇u,M)→−(∇u,M)=(u,v),

and (A) would follow.
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In two dimensions, we can choose

M =

(

0 −f

f 0

)

, (4.1)

where f is the stream function for v as in the proof of (F2) =⇒ (A), which gives a
slight variation on the proof of that same implication.

In three dimensions, however, it is not possible to find such an M . To see this,
suppose that M in (H1

0 (Ω))d×d is antisymmetric. Then can write M as

M =





0 a b

−a 0 c

−b −c 0





with a= b= c=0 on Γ. In this form the condition divu=divdivM =0 is automatically
satisfied, and letting ω̃ be the vector 〈c,−b,a〉, we see that

u=divM =curlω̃, (4.2)

where curl is the usual three-dimensional operator. But curl maps H∩C∞(Ω) bijec-
tively onto itself when Γ is C∞ (see, for instance, [2]), so in general we only have
ω̃ ·n=0 on Γ. That is, the condition that M be antisymmetric is not compatible with
the condition that it vanish on Γ.

Finally, let

E(Ω)=
{

u∈ (L2(Ω))d : divu∈L2(Ω),u ·n=0 on Γ
}

,

with ‖u‖E(Ω) =‖u‖L2(Ω) +‖divu‖L2(Ω). It is easy to see from the proofs of (A′) =⇒

(C) and (D) =⇒ (A) that condition (D) can be weakened from convergence in the
dual space of (H1

0 (Ω))d×d to convergence in the dual space of (E(Ω))d. (This is
advantageous as a sufficient condition, though not as a necessary one.)

Returning to Equ. (4.2), the condition ω̃ ·n=0 on Γ does not translate to M ·n=0
on Γ. Hence, M does not lie in (E(Ω))d so we cannot use this weakening of condition
(D) to conclude that (A) holds.

5. Characteristic boundary conditions on the velocity

We modify (NS) by allowing the velocity on the boundary to be equal to a
nonzero time-varying vector field b, which is required, however, to be tangential to
the boundary. This gives

(NSb)

{

∂tu+u ·∇u+∇p=ν∆u+f and divu=0 on [0,T ]×Ω,

u= b on [0,T ]×Γ and u=u0
ν on {0}×Ω,

where, as before, u0
ν is in H.

We require sufficient regularity on b so that (NSb) is well-posed. For simplicity,
we will assume that b ·n=0 on Γ with

b∈L∞([0,T ];H3/2(Γ)), ∂tb∈L2([0,T ];H−1/2(Γ)), (5.1)

so that b lifts (extends) to a vector field, which we also call b, with

b∈L∞([0,T ];H∩H2(Ω)), ∂tb∈L2([0,T ];L2(Ω)).
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The assumption on b in Equ. (5.1) is not the weakest possible, but the assumption on
∂tb can probably not be weakened.

We can then use the equation that corresponds to u−b (which lies in
L∞([0,T ];H)∩L2([0,T ];V ) for classical solutions) to define a weak solution to (NSb).
(This is essentially what is done in Sec. 4 of [12].)

With such solutions to (NSb) in place of those for (NS), but without changing
the formulation of (EE), we define the conditions

(Cb) ∇u→∇u−〈γn·,(u−b)µ〉 in ((H1(Ω))d×d)′ uniformly on [0,T ],

(Eb) ω→ω−
1

2

〈

γn(·−·T ),(u−b)µ
〉

in ((H1(Ω))d×d)′

uniformly on [0,T ],

and in two dimensions, the condition,

(Eb
2) ω→ω−((u−b) ·τ )µ in (H1(Ω))′ uniformly on [0,T ].

Thm. 3.1 then becomes:

Theorem 5.1. Let u be a solution to (NSb) and u be a solution to (EE). Conditions
(A), (A′), (B), (Cb), (D), and (Eb) are equivalent. In two dimensions, conditions
(Eb

2) and (F2) are equivalent to the other conditions.

Proof. The proof of (A′) =⇒ (Cb) is identical to the proof of (A′) =⇒ (C) except
that a boundary term is included in the first step; this term leads to the “−b” in
condition (Cb). A similar comment applies to the proof of (A′) =⇒ (Eb

2) and (C) =⇒
(Eb). The proof of (C) =⇒ (D) and (E2) =⇒ (F2) are unaffected by the presence of
the vector field b, as are all other implications except for (A) =⇒ (B) and (Eb) =⇒
(A).

(A) =⇒ (B): In [12] it is shown, using our terminology, that (B) =⇒ (i) =⇒ (ii′) =⇒
(B), where (ii′) is the condition

(ii′) ν

∫ T

0

‖∇τ uτ ‖
2
L2(Γδ(ν))

→0 or ν

∫ T

0

‖∇τ un‖
2
L2(Γδ(ν))

→0.

Here, ∇τ is the gradient only in the direction tangential to the boundary, uτ and un

are the components of the velocity tangential and normal to the boundary, respec-
tively, and Γδ(ν) is a boundary layer whose width δ(ν) is of arbitrary order larger than
ν.

But, (B) =⇒ (A) is immediate, and (A) =⇒ (i) follows from combining the argu-
ment on pages 232 through 233 of [12] with the proof of the implication (A) =⇒ (i) on
page 90 of [4] (in Kato’s terminology, this is (ii) implies (iii)). This gives (A) =⇒ (B).

(Eb) =⇒ (A): Adapting the argument of (E) =⇒ (A), we see that the first boundary
integral in Equ. (3.3) does not vanish, since now u= b on Γ. Also, u becomes u−b in
the boundary integrals involving ω(x). This leads to

(u,v)=(u,∆x)+

∫

Γ

(∇x ·n) ·b−

∫

Γ

(∇x ·n) ·u+2

∫

Γ

(ω(x) ·n) ·(u−b)

=(u,v)−

∫

Γ

((∇x)T ·n) ·(u−b).

The last boundary integral vanishes for the same reason that Equ. (3.4) holds, u−b

being in H, completing the proof.
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6. Radially symmetric initial vorticity in a disk

We assume, in this section only, that Ω is the unit disk D and that the initial
vorticity ω0 is radially symmetric. In this case, the solution to (EE) is stationary:
ω(t)=ω0 for all time t.

The vanishing viscosity limit in the classical sense of condition (B) holds in this
setting under fairly general circumstances. Under the assumptions of Sec. 2 on the
regularity of the initial velocity, and assuming that b=0, this convergence is implicit
in [4] at least for zero forcing (see [5]), but was first explicitly proved by Matsui (see
[9]). For nonzero b having the regularity assumed in Equ. (5.1), the convergence is
a simple consequence of the condition (ii′) in the proof of Thm. 5.1 as observed by
Wang in [12]. For substantially lower regularity on u0 and on b than we assume, the
convergence is established in [8].

More precisely, the authors of [8] assume that u0 =u0 and f =f =0 (which are
not significant limitations, since one can handle u0→u0 in H by using the triangle
inequality, and nonzero forcing presents no real difficulties), with

u0∈R1(D)=
{

v∈ (L2(D))2 : v(x)=s(|x|)x⊥ for some s, ω(v)∈L1(D)
}

=
{

v∈H : ω(v)∈L1(D), ω(v) radially symmetric
}

.

They assume that b(t,·)=α(t), that is, b(t) is constant on the boundary, and that
α∈BV([0,T ]), the space of bounded variation functions. They prove (combining
Prop. 9.6 and 9.7 of [8]) that

ω→ω−(B(2π)−1−b ·τ )µ in M(D) uniformly on [0,T ], (6.1)

where

B =

∫

D

ω0.

But, on Γ, u0 ·τ is constant, so by Green’s theorem,

B =

∫

Γ

u0 ·τ =2πu0(x) ·τ (x)

for any point x on Γ, and we see that Equ. (6.1) is the same as condition (Eb
2), except

that the convergence is stronger.
That is, both conditions (B) and (Eb

2) hold for a disk, except that the convergence
in (Eb

2) is in M(Ω), which is stronger convergence than that of (Eb
2). What we have

shown is that either both conditions (B) and (Eb
2) hold or neither condition holds for

a given initial velocity in a general bounded domain in the plane, and in the analogous
sense, in R

d. It was the question of whether this was, in fact, the case that motivated
this paper.

The regularity we assume in Equ. (5.1) corresponds to α lying in H1([0,T ]), which
is considerably stronger than the assumption in [8] that α lie in BV([0,T ]). And their
assumption on the regularity of u0 is far lower than our assumption that u0 lies in
C1+ǫ(Ω)∩H. Without the assumption of radial symmetry, however, it seems unlikely
that one can weaken our assumptions in Equ. (5.1) on b to any significant degree, since
these assumptions go to the heart of establishing the existence of the corresponding
weak solutions of (NSb). Weakening the regularity assumptions on u0 would seem
equally impossible, since the boundedness of ∇u on [0,T ]×Ω is indispensable in Kato’s
argument showing that (A) =⇒ (B).
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7. Some technical lemmas

In this section we assume only that Ω is bounded and that Γ is locally Lipschitzian,
which of course includes the case that Γ is C2.

The various integrations by parts that we make are justified by Lem. 7.1, which
is Thm. 1.2 on p. 7 of [10] for locally Lipschitz domains. (Temam states the theorem
for C2 boundaries but the proof for locally Lipschitz boundaries is the same, using
a trace operator for Lipschitz boundaries in place of that for C2 boundaries: see p.
117-119 of [3], in particular, Thm. 2.1 on p. 119.)

Lemma 7.1. Let

E(Ω)=
{

v∈ (L2(Ω))d : divv∈L2(Ω)
}

with ‖v‖E(Ω) =‖v‖L2(Ω) +‖divv‖L2(Ω). There exists an extension of the trace operator

γn : (C∞
0 (Ω))d →C∞(Γ) defined by u 7→u ·n on Γ to a continuous linear operator from

E(Ω) onto H−1/2(Γ). The kernel of γn is the space E0(Ω)—the completion of C∞
0 (Ω)

in the E(Ω) norm. For all u in E(Ω) and f in H1(Ω),

(u,∇f)+(divu,f)=

∫

Γ

(u ·n)f. (7.1)

Lemma 7.2. Assume that u is in (D′(Ω))d with (u,v) = 0 for all v in V. Then u=∇p

for some p in D′(Ω). If u is in (L2(Ω))d then p is in H1(Ω); if u is in H then p is in
H1(Ω) and ∆p=0.

Proof. For u in (D′(Ω))d see Prop. 1.1 p. 10 of [10]. For u in (L2(Ω))d the result
follows from a combination of Thm. 1.1 p. 107 and Rem. 4.1 p. 55 of [3] (also see
Rem. 1.4 p. 11 of [10]).

Lemma 7.3. For any u in (L2(Ω))d there exists a unique v in H and p in H1(Ω)
such that u=v+∇p.

Proof. This follows, for instance, from Thm. 1.1 p. 107 of [3], which holds for an
arbitrary domain, along with Lem. 7.2.

Lemma 7.4. For any f in L2(Ω) and a in (H1/2(Γ))d satisfying the compatibility
condition,

∫

Ω

f =

∫

Γ

a ·n,

there exists a (non-unique) solution v in (H1(Ω))d to divv =f in Ω, v =a on Γ.

Proof. This follows from Lem. 3.2 p. 126-127, Rem. 3.3 p. 128-129, and Exercise
3.4 p. 131 of [3] (and see the comment on p. 67 of [1]).

Corollary 7.5. For any v in H there exists a matrix-valued function M in
(H1

0 (Ω))d×d such that v =divM .

Proof. Let v be in H and observe that

∫

Ω

vi =

∫

Ω

v ·∇xi =−

∫

Ω

divvxi +

∫

Γ

(v ·n)xi =0.
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Thus, we can apply Lem. 7.4 to each component vi using a≡0 to obtain a vector wi

in H1
0 (Ω) satisfying divwi =vi on Ω, wi =0 on Γ. Forming a matrix-valued function

whose rows are w1,w2,... ,wd gives M .

Lemma 7.6. Assume that u is in (H2(Ω))d or (C1(Ω))d with divu=0 and v is in
(H1(Ω))d. Then

(∇u,∇v)=2(ω(u),ω(v))+

∫

Γ

(∇uv) ·n.

Proof. Directly from Equ. (3.1),

2ω(u) ·ω(v)=
1

2
(∇u−(∇u)T ) ·(∇v−(∇v)T )

=∇u ·∇v−(∇u)T ·∇v.

(7.2)

Since divu=0, we have (∇u)T ·∇v =∂jv
i∂iu

j =∂j(v
i∂iu

j)=div(∇uv), so if u and
v are both in (C∞(Ω))d with divu=0 then

2

∫

Ω

ω(u) ·ω(v)=

∫

Ω

∇u ·∇v−(∇u)T ·∇v

=

∫

Ω

∇u ·∇v−

∫

Ω

div(∇uv)=

∫

Ω

∇u ·∇v−

∫

Γ

(∇uv) ·n.

The result then follows by the density of C∞(Ω) in H1(Ω), H2(Ω), and C1(Ω).
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