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Abstract. The equation describing the non-stationary flow of an incompressible non-Newtonian
fluid is approximated by the fully- and semi-implicit two-step backward differentiation formula
(BDF). The stress tensor is assumed to be of p-structure such that the usual coercivity, growth,
and monotonicity condition is fulfilled. Convergence of a piecewise polynomial prolongation of the
discrete solution towards an exact weak solution is shown for the case p≥1+2d/(d+2), where d
denotes the spatial dimension.
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1. Introduction

Let Ω⊂R
d (d∈{2,3}) be an open bounded set with boundary ∂Ω of class C0,1,

and let (0,T ) be the time interval under consideration. The flow of an incompressible
fluid can be described by the initial-boundary value problem

∂tu−∇·σ+(u ·∇)u+∇p=f, ∇·u=0 in Ω×(0,T ),

u=0 on ∂Ω×(0,T ), u(·,0)=u0 in Ω,
(1.1)

where u=u(x,t) denotes the velocity field with the prescribed initial velocity u0 =
u0(x), p=p(x,t) is the pressure, and f =f(x,t) is an external force per unit mass.
The symmetric stress tensor σ =σ(e) is assumed to be a continuous function in the
symmetrized velocity gradient e(u)=

(

∇u+(∇u)T
)

/2 and is assumed to fulfill the
following structural assumption: There are numbers p>1, µ, c>0 such that for all
y,z∈R

d×d
sym

σ(z) ·z≥µ|z|p, |σ(z)|≤ c(1+ |z|)p−1, (σ(z)−σ(y)) ·(z−y)≥0. (1.2)

Note that y ·z :=
∑d

i,j=1yijzij for y,z∈R
d×d, |z| := (z ·z)1/2, and y ·z =y ·zT if yT =y.

Typical examples are

• the Stokes law with σ(z)∼z that leads (with p= q =2) to the Navier-Stokes
equation,

• power-law fluids with σ(z)∼|z|p−2z that describe so-called shear thickening
if p>2 and shear thinning if 1<p<2, respectively, and

• variants of the power-law such as σ(z)∼ (1+ |z|2)(p−2)/2z.

A discussion of the non-Newtonian model can be found in standard monographs
as e.g. [4, 7, 27]. Other than the model above, other descriptions of complex fluid
flow that do not follow Newton’s linear relation between stress and strain have been
studied. Examples are viscoelastic fluid flow such as the Oldroyd model (see [14, 22,
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828 TIME DISCRETIZATION FOR NON-NEWTONIAN FLUID FLOW

28] and the references cited therein) and, more recently, the coupling of macroscopic
and microscopic models for a multiscale description of polymeric liquids (see [5, 6,
19, 20, 25] and the references cited therein). Some numerical analysis is available for
these models but it is more focused on the spatial approximation.

Results on the (weak and measure-valued) solvability of the above model (1.1),
(1.2) have been presented in detail in [23], see also the references cited therein. Re-
cently, existence of weak solutions for p>2/(d+2)+2d/(d+2) has been shown in [31]
and for p>2d/(d+2) in [10]. In the case

p≥1+
2d

d+2
, (1.3)

existence of a weak solution can be proven by employing Minty’s trick for monotone
operators (see also [21, pp. 207ff.]). This is, indeed, the method of proof, which we
adapt here in order to prove convergence of a time discretization of (1.1), (1.2) under
the restriction (1.3). The attempt of this paper is rather not to provide new results
on existence but rather convergence of a numerical approximation in time.

Error estimates in the context of strong solutions (in the space-periodic case) have
been obtained in [9, 26] for the fully- and semi-implicit Euler scheme combined with
a finite element method. The analysis there relies upon the reasonable assumption
that the stress tensor is the derivative of a potential. Moreover, the focus is on the
interesting case p≤2. Semi-implicit methods may have some additional stabilizing
impact (especially for small p), as is discussed in [9]. Indeed, only the diffusion term
needs to be dealt with implicitly in order to cope with its stiffness (see [17, 30] for a
discussion of stability requirements for dealing with stiff problems, see also [24, 29]
in the context of the Navier-Stokes problem). Approximating the convection term
explicitly may be advantageous, not only because the scheme then guarantees unique
solvability but also due to lower computational costs. Implicit-explicit schemes have
also been studied for other nonlinear evolution problems (see [1, 2, 3] and the references
cited therein).

In this paper, we consider the temporal semi-discretization of (1.1) by means of
the widely used two-step BDF on an equidistant time grid. Let ∆t=T/N (N ∈N) be
the time step size. We then seek approximations un ≈u(·,tn) (tn =n∆t, n=2,3,... ,N)
by replacing the time derivative by a divided difference,

∂tu(·,tn)≈ 1

∆t

(

3

2
un−2un−1 +

1

2
un−2

)

.

The diffusion term is dealt with implicitly whereas the convection term can also be
dealt with explicitly. Note that the method is G-stable (see [17, p. 332]) and thus
allows us to cope with stiff problems. Our proof, however, relies essentially on the
algebraic relation from which the G-stability follows (see (3.5) below).

We prove convergence of piecewise polynomial prolongations of the discrete so-
lution {un} towards a weak solution to (1.1). It is obvious from the proof that the
Euler scheme can be handled similarly, albeit somewhat easier. We shall not give the
details here.

Standard references for time discretization methods are, e.g., [17, 30]. A detailed
discussion of the literature on the analysis of the time discretization of nonlinear
evolution equations of first order can be found in [13]. In [24, 29], the analysis of simple
one-step methods applied to the Navier-Stokes problem is studied. A comparison
of different numerical schemes for the approximation in time of the Navier-Stokes
problem has recently been given in [18].
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Recently, we were able to prove convergence of the two-step BDF for a rather
large class of evolution equations governed by a monotone operator with a moderate,
strongly continuous perturbation (see [13]). Unfortunately, the results cannot be
applied directly to the problem under consideration here. This is due to the convection
term. However, a modification of the method of proof allows us to study the problem
considered here. Unlike [13], here we analyze the combination of the two-step BDF
with an initial Euler step and also study a semi-implicit variant of this numerical
scheme.

As in [13], we adapt Minty’s monotonicity trick, and so we need that the time
derivative is in the dual of the space in which the weak solution lies. This leads to
the restriction (1.3) that p has to be large enough. For the semi-implicit variant, we
then also have uniqueness of the discrete solution.

Unfortunately, (1.3) does not include the case p=2 for d=3. However, in [11], we
were able to prove convergence of the two-step BDF for the incompressible Navier-
Stokes problem (with p=2 and d∈{2,3}). As the diffusion term then is linear, it is
much easier to prove that convergence takes place in this term, and Minty’s trick is not
needed there. It remains open whether, e.g., the truncation technique used in [10, 31]
can also be employed for proving convergence of a temporal semi-discretization of
(1.1) if (1.3) is violated, especially in the interesting case p≤2.

Let us finally remark that we only consider the question of convergence and do
not derive estimates for the error, as those estimates always rely upon the regularity
of the exact solution (which is not known so far). This is different from the approach
in [9, 26] for the Euler scheme applied to (1.1) and the approach in [12] for the two-
step BDF applied to the Navier-Stokes problem relying upon its parabolic smoothing
property. Convergence can already be shown in the framework of a weak solution,
so we do not need to assume any further regularity. This is also the reason why
we do not have to assume a potential structure for the stress tensor as in [26]. As
the pressure then appears to be a distribution only, we do not consider its numerical
approximation and only work in solenoidal function spaces.

Nevertheless, it is of interest to consider an efficient higher-order method (the two-
step BDF is of second order when applied to, e.g., a linear parabolic problem with
sufficiently smooth solution, and its computational costs are not much higher than for
the Euler scheme) as the exact solution to (1.1) may exhibit some (local) regularity
depending on the smoothness and compatibility of the problem data. It would be
favorable to have results for a variable step size/variable order BDF implementation
(see [15, 16]) that can adaptively deal with local regularity. This is, however, out
of scope so far. In this regard, the results of the paper in hand may be seen as
preliminary results.

For a full discretization, we need to combine the two-step BDF with an ap-
propriate spatial approximation scheme. As long as the spatial approximation is
a conforming method, it is expected that the techniques employed here carry over.
Non-conforming methods surely require a detailed study of their own. See [26] for
a detailed error analysis in the spatially periodic case of both conforming and non-
conforming finite element methods. See [29] for convergence results of internal and
external approximation schemes for the Navier-Stokes problem.

The paper is organized as follows. In section 2 we present the notation and auxil-
iary results concerning the functional analytic framework. In section 3, we introduce
the numerical scheme and study its properties. The main part is section 4, in which
we prove the convergence of the method.
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2. Notation and auxiliary results

Throughout this paper, we make use of the standard notation for Lebesgue,
Sobolev, Bochner-Lebesgue spaces and spaces of continuous functions.

Let V and H be the closure of V :={v∈C∞
0 (Ω)d :∇·v =0} with respect to the

W 1,p-norm and L2-norm, respectively. If ∂Ω is of class C0,1, we have

V ={v∈W 1,p
0 (Ω)d :∇·v =0}, H ={v∈L2(Ω)d :∇·v =0, γnv =0},

where γn denotes the trace in the normal direction (see [21, p. 209], [29, pp. 13ff.]).
The norm in V shall be denoted by ‖·‖, whereas | · | denotes the norm in H. We
always assume p>2d/(d+2) as then V, H, and the dual space V ∗ (with ‖·‖∗ and
〈·,·〉 denoting the dual norm and pairing, respectively) form a Gelfand triple with
compact embeddings. We denote the exponent conjugated to p by p∗ :=p/(p−1).
Note that

Lp(0,T ;V )⊂L2(0,T ;H)⊂Lp∗

(0,T ;V ∗)

also forms a Gelfand triple if p≥2.
For Lebesgue exponents p,q∈ [1,∞], we set

Wp,q(0,T ) :={v∈Lp(0,T ;V ) :v′∈Lq(0,T ;V ∗)},

which is a Banach space when equipped with the norm ‖v‖Wp,q(0,T ) :=‖v‖Lp(0,T ;V ) +
‖v′‖Lq(0,T ;V ∗). By v′, we denote the distributional time derivative. Note that

W1,1(0,T ) →֒C([0,T ];V ∗), Wp,p∗

(0,T ) →֒C([0,T ];H).

As V
c→֒H, we also know by the compactness theorem of Lions-Aubin (see [21, Thm.

5.1 on p. 58]) that

Wp,q(0,T )
c→֒Lp(0,T ;H), p>1, q≥1.

The following interpolatory inequalities are rather well known and can be proved
by employing Hölder’s inequality and Sobolev’s embedding theorem (see [8, pp. 194f.]).

Lemma 2.1. Let r≥2. If p≥d then, for any θ∈
[

2
(

1
2 − 1

r

)

,1
]

, there is a constant
c>0 such that for all v∈V

‖v‖0,r ≤ c|v|1−θ‖v‖θ.

If rd
d+r ≤p<d then there is a constant c>0 such that for all v∈V

‖v‖0,r ≤ c|v|1−θ‖v‖θ with θ =

(

1

2
+

1

d
− 1

p

)−1(

1

2
− 1

r

)

.

Here and in what follows, c denotes a generic positive constant. Also well known
is Korn’s first inequality (see [23, Thm. 1.10 on p. 196]).

Lemma 2.2. There is a constant c>0 such that for all v∈W 1,p
0 (Ω)d (p∈ (1,∞))

‖v‖1,p ≤ c‖e(v)‖0,p.
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With the diffusion term, we associate the nonlinear operator

A :V →V ∗, 〈Av,w〉=
∫

Ω

σ(e(v)) ·∇wdx=

∫

Ω

σ(e(v)) ·e(w)dx, v,w∈V.

Lemma 2.3. For the symmetric, continuous stress tensor function σ, assume (1.2).
Then A :V →V ∗ is monotone, hemicontinuous, coercive, and fulfills a growth condi-
tion. There are constants µ,c>0 such that for all v∈V

〈Av,v〉≥µ‖v‖p, ‖Av‖∗≤ c(1+‖v‖)p−1.

Via (Au)(t) :=Au(t) for u : [0,T ]→V , the operator A :V →V ∗ extends to an operator

A :Lp(0,T ;V )→Lp∗

(0,T ;V ∗)

that is monotone, hemicontinuous, coercive, and fulfills a growth condition such that
for all v∈Lp(0,T ;V )

〈Av,v〉≥µ‖v‖p
Lp(0,T ;V ), ‖Av‖Lp∗ (0,T ;V ∗)≤ c

(

1+‖v‖Lp(0,T ;V )

)p−1
.

Proof. The first part immediately follows from the assumptions on σ and Korn’s
first inequality (see Lemma 2.2). For the second part, we observe that A :V →V ∗

is demicontinuous and thus maps Bochner measurable functions u : [0,T ]→V into
Bochner measurable functions Au : [0,T ]→V ∗. The integrability then follows from
the growth condition. The rest of the proof follows standard arguments (see [32,
Lemma 30.2]).

For more details in the case of A being a potential operator, see also [23, pp.
193ff.].

For sufficiently smooth functions u,v,w, let

b(u,v,w) :=

∫

Ω

(u ·∇)v ·wdx.

The trilinear form b(·,·,·) fulfills the usual estimates as known from [21, 29]. We may
then define the operators

B(·,·) :V ×V →V ∗, 〈B(u,v),w〉= b(u,v,w), u,v,w∈V,

B :V →V ∗, Bv =B(v,v),

that describe the convection term. Note that b(·,·,·) is skew-symmetric in the last two
arguments if the first argument is in V . We thus have in particular

〈B(u,v),v〉= 〈Bv,v〉=0 ∀u,v∈V. (2.1)

Lemma 2.4. Let p≥ 3d
d+2 and

1

p
≤θ≤1 if p≥d, θ =

(

1

2
+

1

d
− 1

p

)−1
1

2p
if p<d. (2.2)
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Then there is a constant c>0 such that for all u,v∈V

‖Bv‖∗≤ c|v|2(1−θ)‖v‖2θ (2.3)

as well as

‖Bu−Bv‖∗≤ c|u−v|1−θ‖u−v‖θ
(

|u|1−θ‖u‖θ + |v|1−θ‖v‖θ
)

. (2.4)

The operator B :V →V ∗ is strongly continuous.
Let, in addition,

p≥ 1+
√

5

2
if d=2, p≥ 3+

√
39

5
if d=3. (2.5)

Via (Bu)(t) :=Bu(t) for u : [0,T ]→V , the operator B :V →V ∗ then extends to an
operator

B :L∞(0,T ;H)∩Lp(0,T ;V )→Lr(0,T ;V ∗)

with r=
p2

2
≥1 if p≥d, r=

(

1

2
+

1

d
− 1

p

)

p2≥1 if p<d.

Moreover, there is a constant c>0 such that for all v∈L∞(0,T ;H)∩Lp(0,T ;V )

‖Bv‖Lr(0,T ;V ∗)≤ c|v|2−
p

r

L∞(0,T ;H)‖v‖
p

r

Lp(0,T ;V ). (2.6)

If (1.3) holds then r≥p∗. Finally, for any q∈
(

1, p
2θ

)

(with θ as above), there is a
constant c>0 such that for all u,v∈L∞(0,T ;H)∩Lp(0,T ;V )

‖Bu−Bv‖Lq(0,T ;V ∗)≤ c‖u−v‖1−θ
Lq̄(0,T ;H)‖u−v‖θ

Lp(0,T ;V )×
(

‖u‖1−θ
L∞(0,T ;H)‖u‖

θ
Lp(0,T ;V ) +‖v‖1−θ

L∞(0,T ;H)‖v‖
θ
Lp(0,T ;V )

)

, with q̄ =
(1−θ)pq

p−2θq
>1.

(2.7)

Proof. With b(v,v,w)=−b(v,w,v) for v,w∈V , Hölder’s inequality, and Lemma
2.1 with r=2p/(p−1), we immediately find the growth estimate (2.3). With

〈Bu−Bv,w〉=−b(u−v,w,u)−b(v,w,u−v),

Hölder’s inequality, and Lemma 2.1 with r=2p/(p−1), we obtain (2.4). The strong
continuity of B :V →V ∗ follows from (2.4) since V is compactly embedded in H.

Let u=u(t)∈L∞(0,T ;H)∩Lp(0,T ;V ). Because of the foregoing estimates, Bu :
[0,T ]→V ∗ is Bochner measurable. The integrability of t 7→‖Bu(t)‖r

∗ follows from the
growth estimate (2.3) if 2θr≤p. Here, in order to have r≥1, we need to assume (2.5).
This also yields (2.6). The estimate (2.7) follows from (2.4) and Hölder’s inequality.

3. Temporal semi-discretization

Assuming (1.3), we can now consider the weak formulation of (1.1) that, in the
usual way (see [21, 29, 32] for more details), leads to the evolution problem

u′+Au+Bu=f in Lp∗

(0,T ;V ∗), u(0)=u0∈H. (3.1)
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The main idea behind this is to have a solution u∈L∞(0,T ;H)∩Lp(0,T ;V ) (the
existence of which can be proven by means of a Galerkin method or even by a temporal
semi-discretization as done in this paper) and then to show, by employing the growth
estimates for A and B (see, in particular, estimate (2.6)), that the distributional
time derivative u′ of u is indeed an element of Lp∗

(0,T ;V ∗)∼=(Lp(0,T ;V ))
∗
. The

initial condition then makes sense because of the continuous embedding Wp,p∗

(0,T ) →֒
C([0,T ];H).

Problem (3.1) shall now be discretized in time: For N ∈N, let ∆t=T/N , tn =n∆t
(n=0,1,... ,N). Since the two-step BDF requires two starting values u0,u1, we employ
one Euler step in order to compute u1 from u0. For simplicity, we only consider the
natural restriction of f as the approximation of the right-hand side. So, for given
u0∈H and f ∈Lp∗

(0,T ;V ∗), we consider the numerical scheme

u0∈H given (with u0≈u0),

1

∆t

(

u1−u0
)

+Au1 +Bu1 =f1 :=
1

∆t

∫ t1

0

f(t)dt,

1

∆t

(

3

2
un−2un−1 +

1

2
un−2

)

+Aun +Bun =fn

with fn :=
3

2∆t

∫ tn

tn−1

f(t)dt− 1

2∆t

∫ tn−1

tn−2

f(t)dt, n=2,3,... ,N.

(3.2)

We also consider a semi-implicit variant of the scheme (3.2) in which we re-
place Bu1 =B(u1,u1) by B(u0,u1) and Bun =B(un,un) by B(2un−1−un−2,un)
(n=2,3,... ,N). Note that 2u(tn−1)−u(tn−2) is, for smooth u, a second-order ex-
trapolation to u(tn). This gives rise to the use of 2un−1−un−2 in the approximation.
For short, we denote

Bun
!B(Eun,un) with Eu1 =u0,Eun =2un−1−un−2 (n=2,3,... ,N). (3.3)

For the modified scheme, we have to require u0∈V (which is always possible for
u0∈H as V is dense in H, see also the convergence result in the next section).

Theorem 3.1. Assume (1.2) and (1.3). Then there is a solution {un}N
n=1⊂V to

(3.2) that satisfies the following a priori estimates for n=1,2,... ,N :

|un|2 + |u1−u0|2 +
n

∑

j=2

|uj −2uj−1 +uj−2|2 +µ∆t
n

∑

j=1

‖uj‖p

≤ c
(

|u0|2 +‖f‖p∗

Lp∗ (0,T ;V ∗)

)

=:M(u0,f),

∆t

∥

∥

∥

∥

1

∆t

(

u1−u0
)

∥

∥

∥

∥

p∗

∗

+∆t

n
∑

j=2

∥

∥

∥

∥

1

∆t

(

3

2
uj −2uj−1 +

1

2
uj−2

)∥

∥

∥

∥

p∗

∗

≤M ′(u0,f),

(3.4)

where M ′(u0,f) is a function in M(u0,f) that is bounded on bounded subsets. The
assertions also apply to the semi-implicit variant of (3.2) with (3.3), where M ′(u0,f)
now is a function in M(u0,f)+∆t‖u0‖p that is bounded on bounded subsets. The
semi-implicit scheme is, in addition, uniquely solvable.

Proof. Existence of a solution to (3.2) follows step-by-step from Brézis’ theorem
on pseudomonotone operators (see [32, Thm. 27.A]) since A :V →V ∗ is monotone and
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hemicontinuous, B :V →V ∗ is strongly continuous, and the sum A+B is coercive, see
also (2.1), Lemma 2.3, 2.4.

In order to show the first a priori estimate, we test the equations with un, employ
the identities

(a−b)a=
1

2

(

a2−b2 +(a−b)2
)

,
(

3

2
a−2b+

1

2
c

)

a=
1

4

(

a2 +(2a−b)2−b2−(2b−c)2 +(a−2b+c)2
)

, a,b,c∈R,

(3.5)

the coercivity of A as well as (2.1), and apply Young’s inequality. This yields

1

2
|u1|2− 1

2
|u0|2 +

1

2
|u1−u0|2 +

µ∆t

2
‖u1‖p ≤ c∆t‖f1‖p∗

∗ (3.6)

and, for n=2,3,... ,N ,

1

4
|un|2 +

1

4
|2un−un−1|2− 1

4
|un−1|2− 1

4
|2un−1−un−2|2

+
1

4
|un−2un−1 +un−2|2 +

µ∆t

4
‖un‖p ≤ c∆t‖fn‖p∗

∗ .

We then sum up (taking twice the equation for the initial Euler step), where we
observe for the remaining initial terms that

|u1|2−|u0|2 + |u1−u0|2− 1

4

(

|u1|2 + |2u1−u0|2
)

=
1

4
|u1|2 +

1

2
|u1−u0|2− 3

4
|u0|2.

This leads, after multiplication by 4, to

|un|2 +2|u1−u0|2 +

n
∑

j=2

|uj −2uj−1 +uj−2|2 +µ∆t

n
∑

j=1

‖uj‖p

≤ c



|u0|2 +∆t
n

∑

j=1

‖f j‖p∗

∗



 .

With Hölder’s inequality, we also find

∆t

n
∑

j=1

‖f j‖p∗

∗ ≤ c

∫ tn

0

‖f(t)‖p∗

∗ dt,

which, finally, proves the first estimate.

The second estimate follows from the growth estimates for A and B together with
the first estimate. From the numerical scheme (3.2), we obtain for n=1,2,... ,N with
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Lemma 2.3 and (2.3)

∆t

∥

∥

∥

∥

1

∆t

(

u1−u0
)

∥

∥

∥

∥

p∗

∗

+∆t

n
∑

j=2

∥

∥

∥

∥

1

∆t

(

3

2
uj −2uj−1 +

1

2
uj−2

)∥

∥

∥

∥

p∗

∗

=∆t
∥

∥f1−Au1−Bu1
∥

∥

p∗

∗
+∆t

n
∑

j=2

∥

∥f j −Auj −Buj
∥

∥

p∗

∗

≤ c∆t

n
∑

j=1

‖f j‖p∗

∗ +c∆t

n
∑

j=1

‖Auj‖p∗

∗ +c∆t

n
∑

j=1

‖Buj‖p∗

∗

≤ c∆t

n
∑

j=1

‖f j‖p∗

∗ +c∆t

n
∑

j=1

(1+‖uj‖)p +c∆t

n
∑

j=1

|uj |2(1−θ)p∗‖uj‖2θp∗

with θ given by (2.2). Since 2θp∗≤p for (1.3) (if d=2 then θ can be chosen in such a
way), Hölder’s inequality together with the first a priori estimate proves the assertion.

For each time step of the semi-implicit variant, we can apply the Browder-Minty
theorem (see [32, Thm. 26.A]). Since, in particular,

〈B(Eun,v)−B(Eun,w),v−w〉= b(Eun,v−w,v−w)=0, v,w∈V, n=1,2,... ,N,

the operator appearing in each step turns out to be strictly monotone, and thus, the
solution is uniquely determined. The a priori estimates follow as before. For the
second one, note that

‖B(Euj ,uj)‖∗≤ c|Euj |1−θ‖Euj‖θ|uj |1−θ‖uj‖θ

and thus

∆t

n
∑

j=1

‖B(Euj ,uj)‖p∗

∗

≤ c max
j=1,2,...,n

|Euj |(1−θ)p∗ |uj |(1−θ)p∗

(

∆t

n
∑

j=1

‖uj‖p

)θp∗/p(

∆t

n
∑

j=1

‖Euj‖p

)θp∗/p

≤ c max
j=0,1,...,n

|uj |2(1−θ)p∗

(

∆t
n

∑

j=0

‖uj‖p

)2θp∗/p

.

4. Convergence

From the discrete solution {un} on the time grid with the time step ∆t, we now
construct piecewise polynomial functions that are defined on the whole interval [0,T ]:

u∆t(0)=u1, u∆t(t)=un if t∈ (tn−1,tn] (n=1,2,... ,N),

v∆t(t)=



















3

2
u1− 1

2
u0 +(u1−u0)

t− t1
∆t

if t∈ [0,t1]

3

2
un− 1

2
un−1 +

(

3

2
un−2un−1 +

1

2
un−2

)

t− tn
∆t

if t∈ (tn−1,tn] (n=2,3,... ,N).

(4.1)

This construction reflects the choice of the method as the slope of v∆t is just the
divided difference that is used to replace the time derivative in order to obtain the
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numerical scheme. Note, however, that the continuous function v∆t does not interpo-
late.

In the following, all quantities that are related to a time grid with the time step
∆t=T/N are denoted by a subscript ∆t (except N and the grid points tn).

The main result of this paper now reads as follows.

Theorem 4.1. Assume (1.2) and (1.3). Let {(∆t)k} be a null sequence of time steps
(∆t)k =T/Nk with {Nk}⊂N, Nk →∞, and let {u(∆t)k

},{v(∆t)k
} be the corresponding

sequences of the polynomial prolongations (4.1) of the discrete solutions to the scheme
(3.2) or its semi-implicit variant with

{u0
(∆t)k

}⊂V, u0
(∆t)k

→u0 in H, (∆t)k‖u0
(∆t)k

‖p ≤ c (4.2)

for some c>0. Then there is a subsequence, denoted by k′, such that {u(∆t)k′
} and

{v(∆t)k′
} converge weakly in Lp(0,T ;V ), weakly* in L∞(0,T ;H) as well as strongly

in Lr(0,T ;H) for any r∈ [1,∞) towards a solution u∈Wp,p∗

(0,T ) to (3.1). The
subsequence of time derivatives v′

(∆t)k′

also converges weakly in Lp∗

(0,T ;V ∗) towards

the derivative u′.

The assumption (4.2) on the corresponding sequence of initial data can always be
fulfilled since V is dense in H ∋u0. The proof of Theorem 4.1 will be prepared by the
following lemmas. An immediate consequence of the a priori estimates in Theorem
3.1 is

Lemma 4.2. Under the assumptions of Theorem 4.1, there is a function u∈
Wp,p∗

(0,T ) and a subsequence, denoted by k′, such that

u(∆t)k′
⇀u in Lp(0,T ;V ), u(∆t)k′

∗
⇀u in L∞(0,T ;H),

v(∆t)k′
⇀u in Lp(0,T ;V ), v(∆t)k′

∗
⇀u in L∞(0,T ;H),

v′
(∆t)k′

⇀u′ in Lp∗

(0,T ;V ∗), v(∆t)k′
→u in Lr(0,T ;H)∀r∈ [1,∞).

Proof. For readability, we omit the subscript k. It is straightforward to prove,
with Theorem 3.1, the boundedness of {u∆t} and {v∆t} in Lp(0,T ;V )∩L∞(0,T ;H)
and of {v′

∆t} in Lp∗

(0,T ;V ∗). In particular, we find

‖v∆t‖p
Lp(0,T ;V ) =

N
∑

n=1

∫ tn

tn−1

‖v∆t(t)‖pdt=

∫ ∆t

0

∥

∥

∥

∥

3

2
u1− 1

2
u0 +(u1−u0)

t− t1
∆t

∥

∥

∥

∥

p

dt

+

N
∑

n=2

∫ tn

tn−1

∥

∥

∥

∥

3

2
un− 1

2
un−1 +

(

3

2
un−2un−1 +

1

2
un−2

)

t− tn
∆t

∥

∥

∥

∥

p

dt≤ c∆t

N
∑

n=0

‖un‖p.

Note that the sequence of bounds M(u0
∆t,f) in (3.4) is bounded because of (4.2).

The theorems of Eberlein-Šmulyan and Banach-Alaoglu (see [8, Cor. III.26, Thm.
III.27]), density arguments, and the compactness result of Lions-Aubin (see [21, Thm.
5.1 on p. 58]) then allow us to extract a subsequence (still denoted by the subscript
∆t) such that

u∆t ⇀u in Lp(0,T ;V ), u∆t
∗
⇀u in L∞(0,T ;H),

v∆t ⇀v in Lp(0,T ;V ), v∆t
∗
⇀v in L∞(0,T ;H),

v′
∆t ⇀v′ in Lp∗

(0,T ;V ∗), v∆t →v in Lr(0,T ;H)∀r∈ [1,∞)
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with limit functions u∈Lp(0,T ;V )∩L∞(0,T ;H), v∈Wp,p∗

(0,T ).

We show that the limits u and v coincide. Inserting the definitions of u∆t and
v∆t, we find

u∆t(t)−v∆t(t)=−



























(u1
∆t−u0

∆t)
t− t1/2

∆t
if t∈ [0,t1],

(

3

2
un

∆t−2un−1
∆t +

1

2
un−2

∆t

)

t− tn−1/2

∆t

− 1

4
(un

∆t−2un−1
∆t +un−2

∆t ) if t∈ (tn−1,tn](n=2,3,... ,N),

(4.3)

where tn−1/2 =(n−1/2)∆t (n=1,2,... ,N). With the continuous embedding V →֒H
and Hölder’s inequality, we thus obtain

‖u∆t−v∆t‖p∗

Lp∗ (0,T ;V ∗)
≤ c∆t‖u1

∆t−u0
∆t‖p∗

∗ +c∆t
N

∑

n=2

∥

∥

∥

∥

3

2
un

∆t−2un−1
∆t +

1

2
un−2

∆t

∥

∥

∥

∥

p∗

∗

+ c∆t
N

∑

n=2

‖un
∆t−2un−1

∆t +un−2
∆t ‖p∗

∗

≤ c(∆t)1+p∗

∥

∥

∥

∥

1

∆t

(

u1
∆t−u0

∆t

)

∥

∥

∥

∥

p∗

∗

+ c(∆t)1+p∗

N
∑

n=2

∥

∥

∥

∥

1

∆t

(

3

2
un

∆t−2un−1
∆t +

1

2
un−2

∆t

)∥

∥

∥

∥

p∗

∗

+ c

(

∆t
N

∑

n=2

|un
∆t−2un−1

∆t +un−2
∆t |2

)p∗/2

.

The a priori estimates of Theorem 3.1 now provide the strong convergence

u∆t−v∆t →0 in Lp∗

(0,T ;V ∗),

which shows by density that u=v.

Lemma 4.3. Under the assumptions of Theorem 4.1, there is a subsequence, denoted
by k′, such that

u1
(∆t)k′

−u0
(∆t)k′

→0 in H.

Proof. We again omit the subscript k. From (3.6), we already know that

|u1
∆t|2 + |u1

∆t−u0
∆t|2 +µ∆t‖u1

∆t‖p ≤ c
(

|u0
∆t|2 +∆t‖f1

∆t‖p∗

∗

)

.

Since u0
∆t →u0 in H, the sequence {u0

∆t} is bounded in H. Moreover, Hölder’s in-
equality yields

∆t‖f1
∆t‖p∗

∗ =∆t

∥

∥

∥

∥

∥

1

∆t

∫ ∆t

0

f(t)dt

∥

∥

∥

∥

∥

p∗

∗

≤
∫ ∆t

0

‖f(t)‖p∗

∗ dt,
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with the right-hand side converging towards zero since f ∈Lp∗

(0,T ;V ∗). Hence, the
sequence {u1

∆t−u0
∆t} is bounded in H, and so there is a subsequence and an element

ξ∈H such that

u1
∆t−u0

∆t ⇀ξ in H.

On the other hand, the second estimate in (3.4) shows that

∥

∥u1
∆t−u0

∆t

∥

∥

∗
≤ c(∆t)1/p,

and, therefore,

u1
∆t−u0

∆t →0 in V ∗.

By density, we thus have ξ =0.
We now prove that not only weak but strong convergence of u1

∆t−u0
∆t towards

zero in H takes place. With (2.1) and the monotonicity of A, we find for any w∈V

(

u1
∆t−u0

∆t,u
0
∆t

)

=
(

u1
∆t−u0

∆t,u
1
∆t

)

−
∣

∣u1
∆t−u0

∆t

∣

∣

2

≤
(

u1
∆t−u0

∆t,u
1
∆t

)

=∆t
〈

f1
∆t,u

1
∆t

〉

−∆t
〈

Au1
∆t,u

1
∆t

〉

−∆t
〈

Bu1
∆t,u

1
∆t

〉

≤∆t
〈

f1
∆t,u

1
∆t

〉

−∆t
〈

Au1
∆t,u

1
∆t

〉

+∆t
〈

Au1
∆t−Aw,u1

∆t−w
〉

=∆t
〈

f1
∆t,u

1
∆t

〉

−∆t
〈

Au1
∆t,w

〉

−∆t
〈

Aw,u1
∆t−w

〉

. (4.4)

Because of the weak convergence of u1
∆t−u0

∆t towards zero and the strong convergence
of u0

∆t towards u0, both in H, we obtain

(

u1
∆t−u0

∆t,u
0
∆t

)

→0. (4.5)

We also observe that

∆t
∣

∣

〈

f1
∆t,u

1
∆t

〉∣

∣≤
(

∆t
∥

∥f1
∆t

∥

∥

p∗

∗

)1/p∗
(

∆t
∥

∥u1
∆t

∥

∥

p
)1/p

.

Since the first factor of the right-hand side converges towards zero and the second one
is bounded (see (3.4)), we find

∆t
〈

f1
∆t,u

1
∆t

〉

→0.

Furthermore, we infer from the growth condition for A that

∆t
∣

∣

〈

Au1
∆t,w

〉∣

∣≤∆t‖Au1
∆t‖∗‖w‖

≤ c∆t
(

1+‖u1
∆t‖p−1

)

‖w‖≤ c∆t‖w‖+c(∆t)1/p
(

∆t‖u1
∆t‖p

)1/p∗

,

and thus

∆t
〈

Au1
∆t,w

〉

→0.

We also find

∆t
∣

∣

〈

Aw,u1
∆t−w

〉∣

∣≤∆t‖Aw‖∗‖u1
∆t−w‖=(∆t)1/p∗‖Aw‖∗

(

∆t‖u1
∆t−w‖p

)1/p
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and thus, again with (3.4),

∆t
〈

Aw,u1
∆t−w

〉

→0.

This, finally, shows, because of (4.4), that

(

u1
∆t−u0

∆t,u
1
∆t

)

→0

and yields, because of (4.5),

∣

∣u1
∆t−u0

∆t

∣

∣

2
=

(

u1
∆t−u0

∆t,u
1
∆t

)

−
(

u1
∆t−u0

∆t,u
0
∆t

)

→0.

The proof for the semi-implicit variant is analogous and relies upon a modification
in (4.4) employing 〈B(u0

∆t,u
1
∆t),u

1
∆t〉=0 instead of 〈Bu1

∆t,u
1
∆t〉=0.

We are now ready to prove the main result.

Proof. [Proof of Theorem 4.1] For readability, we omit the subscripts k and k′.
First, we consider the numerical scheme (3.2), which can be rewritten as the

differential equation

v′
∆t +Au∆t +Bu∆t =f∆t, (4.6)

where f∆t denotes the piecewise constant interpolation of {fn
∆t}.

By standard arguments, we find

f∆t →f in Lp∗

(0,T ;V ∗). (4.7)

The growth condition for A (see Lemma2.3) together with the boundedness of {u∆t}
in Lp(0,T ;V ) (this was a consequence of the a priori estimates (3.4) in Theorem 3.1,
see also Lemma 4.2) provides the boundedness of {Au∆t} in Lp∗

(0,T ;V ∗). Thus,
there is an element a∈Lp∗

(0,T ;V ∗) and a subsequence (still denoted by the subscript
∆t) such that

Au∆t ⇀a in Lp∗

(0,T ;V ∗). (4.8)

From Lemma 4.2, we already know that (again for a subsequence)

v′
∆t ⇀u′ in Lp∗

(0,T ;V ∗) (4.9)

for some u∈Wp,p∗

(0,T ). Indeed, we will show that u solves the original initial-value
problem (3.1). For the convection term with B, we observe that

Bu∆t ⇀Bu in Lp∗

(0,T ;V ∗). (4.10)

This can be seen as follows. Because of the growth condition (2.6) from Lemma
2.4, {Bu∆t−Bu} is bounded in Lp∗

(0,T ;V ∗). The subsequence can thus be chosen
in such a way that

Bu∆t−Bu⇀b in Lp∗

(0,T ;V ∗)

for some b∈Lp∗

(0,T ;V ∗). On the other hand, estimate (2.7) from Lemma 2.4 together
with the strong convergence u∆t →u in any Lr(0,T ;H) for r∈ [1,∞) (see Lemma 4.2)
provides the strong convergence

Bu∆t →Bu in Lq(0,T ;V ∗)



840 TIME DISCRETIZATION FOR NON-NEWTONIAN FLUID FLOW

for all sufficiently small q >1. (Indeed, we can choose q =p∗ if p>max(2,d) giving
strong convergence in (4.10).) Since Lq∗

(0,T ;V ) is dense in Lp(0,T ;V ), we conclude
with b=0.

Finally, we obtain from (4.6) in the limit the equation

u′+a+Bu=f in Lp∗

(0,T ;V ∗), (4.11)

and it remains to prove that a=Au and u(0)=u0.
In proving u(0)=u0, we observe the following. Since {v∆t} is bounded in

Wp,p∗

(0,T ) →֒C([0,T ];H), the sequence {v∆t(t)} is bounded in H for any t∈ [0,T ].
With (4.2) and Lemma 4.3, we have for a suitable subsequence

v∆t(0)=
1

2
(u1

∆t +u0
∆t)→u0 in H

as well as

v∆t(T )=
3

2
uN

∆t−
1

2
uN−1

∆t ⇀θ in H

for some θ∈H. Since u,v∆t ∈Wp,p∗

(0,T ), we can employ integration by parts and,
with (4.11) and (4.6), we obtain for all v∈V and φ∈C1([0,T ])

(u(T ),v)φ(T )−(u(0),v)φ(0)= 〈u′,vφ〉+〈vφ′,u〉= 〈f −a−Bu,vφ〉+〈vφ′,u〉
= 〈f −f∆t +v′

∆t +Au∆t +Bu∆t−a−Bu,vφ〉+〈vφ′,u〉
= 〈f −f∆t +Au∆t−a+Bu∆t−Bu,vφ〉+〈vφ′,u−v∆t〉

+(v∆t(T ),v)φ(T )−(v∆t(0),v)φ(0). (4.12)

Remember here that the dual pairing 〈·,·〉 is given by

〈g,w〉=
∫ T

0

〈g(t),w(t)〉V ∗×V dt, w∈Lp(0,T ;V ), g∈Lp∗

(0,T ;V ∗).

Taking the limit on the right-hand side of (4.12) and invoking (4.7), (4.8), (4.10) as
well as v∆t ⇀u in Lp(0,T ;V ) (see Lemma 4.2), we come up with

(u(T ),v)φ(T )−(u(0),v)φ(0)=(θ,v)φ(T )−(u0,v)φ(0).

Choosing φ(T )=0 and φ(0)=0, respectively, we find that u(0)=u0 and u(T )=θ in
H since V ∋v is dense in H, i.e.

v∆t(0)→u(0)=u0 in H, v∆t(T )⇀u(T ) in H. (4.13)

For proving a=Au, we adapt Minty’s monotonicity trick. Usually, this would
require strong convergence in (4.10). However, because of 〈Bv,v〉=0 for all v∈
Lp(0,T ;V )∩L∞(0,T ;H) (see (2.1)), the weak convergence suffices.

Testing (4.6) by u∆t and employing the monotonicity of A, we obtain for all
w∈Lp(0,T ;V )

〈v′
∆t,u∆t−v∆t〉+〈v′

∆t,v∆t〉+〈Au∆t,w〉+〈Aw,u∆t−w〉=
〈v′

∆t,u∆t〉+〈Au∆t,u∆t〉−〈Au∆t−Aw,u∆t−w〉+〈Bu∆t,u∆t〉≤〈f∆t,u∆t〉.
(4.14)

Because of (4.7), (4.8), and u∆t ⇀u in Lp(0,T ;V ) (see Lemma 4.2), we already have

〈Au∆t,w〉→〈a,w〉, 〈Aw,u∆t−w〉→〈Aw,u−w〉, 〈f∆t,u∆t〉→〈f,u〉.
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Moreover, with
(

3

2
a−2b+

1

2
c

)

(a−2b+c)=
3

2
(a−b)2−2(a−b)(b−c)+

1

2
(b−c)2

≥ 1

2
(a−b)2− 1

2
(b−c)2, a,b,c∈R,

and (4.3), we find

〈v′
∆t,u∆t−v∆t〉=

N
∑

n=1

∫ tn

tn−1

〈v′
∆t(t),u∆t(t)−v∆t(t)〉dt

=− 1

(∆t)2

∫ t1

0

(t− t1/2)dt |u1
∆t−u0

∆t|2

− 1

(∆t)2

N
∑

n=2

∫ tn

tn−1

(t− tn−1/2)dt

∣

∣

∣

∣

3

2
un

∆t−2un−1
∆t +

1

2
un−2

∆t

∣

∣

∣

∣

2

+
1

4

N
∑

n=2

(

3

2
un

∆t−2un−1
∆t +

1

2
un−2

∆t ,un
∆t−2un−1

∆t +un−2
∆t

)

=
1

4

N
∑

n=2

(

3

2
un

∆t−2un−1
∆t +

1

2
un−2

∆t ,un
∆t−2un−1

∆t +un−2
∆t

)

≥ 1

8

N
∑

n=2

(

|un
∆t−un−1

∆t |2−|un−1
∆t −un−2

∆t |2
)

≥−1

8

∣

∣u1
∆t−u0

∆t

∣

∣

2
,

with the right-hand side converging towards zero as was shown in Lemma 4.3.
With integration by parts (note that v∆t ∈Wp,p∗

(0,T )), we obtain

〈v′
∆t,v∆t〉=

1

2
|v∆t(T )|2− 1

2
|v∆t(0)|2,

and with (4.13), we come up with

〈u′,u〉= 1

2
|u(T )|2− 1

2
|u(0)|2≤ liminf

(

1

2
|v∆t(T )|2− 1

2
|v∆t(0)|2

)

=liminf〈v′
∆t,v∆t〉.

Altogether, we find from (4.14) with (4.11) (remember again 〈Bu,u〉=0)

〈u′,u〉+〈a,w〉+〈Aw,u−w〉≤〈f,u〉= 〈u′,u〉+〈a,u〉

and thus

〈Aw,u−w〉≤〈a,u−w〉.

With w=u∓sv for arbitrary v∈Lp(0,T ;V ), s∈ [−1,1], and the hemicontinuity of
A :Lp(0,T ;V )→Lp∗

(0,T ;V ∗) (see Lemma 2.3), we get a=Au from s→0, and the
assertion is proved.

We now give the modifications of the proof necessary for the semi-implicit variant
of (3.2) with (3.3). Without any further change, we have to replace Bu∆t in (4.6),
(4.12) as well as (4.14) by

B(Eu∆t,u∆t) with Eu∆t(t) :=

{

u0
∆t if t∈ [0,t1],

2un−1
∆t −un−2

∆t if t∈ (tn−1,tn](n=2,3,... ,N).
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The limit Equ. (4.11) remains true since, for a subsequence,

B(Eu∆t,u∆t)−Bu∆t ⇀0 in Lp∗

(0,T ;V ∗).

This can be seen as follows. We have

B(Eu∆t,u∆t)−Bu∆t =B(w∆t,u∆t)

with

w∆t(t) :=Eu∆t−u∆t =−
{

u1
∆t−u0

∆t if t∈ [0,t1],

un
∆t−2un−1

∆t +un−2
∆t if t∈ (tn−1,tn](n=2,3,... ,N).

Because of the first a priori estimate in (3.4) of Theorem 3.1, we easily find

w∆t →0 in L2(0,T ;H)

and, hence, in any Lr(0,T ;H) with r∈ [1,∞) since {w∆t} is bounded in L∞(0,T ;H).
This yields, with an estimate analogous to (2.7),

B(w∆t,u∆t)→0 in Lq(0,T ;V ∗)

for sufficiently small q >1. By growth estimates, we also know that {B(w∆t,u∆t)}
is bounded in Lp∗

(0,T ;V ∗) such that a subsequence is weakly convergent in
Lp∗

(0,T ;V ∗). By density arguments, the limit can only be zero.
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