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A STABILITY RESULT FOR SOLITARY WAVES IN NONLINEAR

DISPERSIVE EQUATIONS∗
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Abstract. The stability of solitary traveling waves in a general class of conservative nonlinear
dispersive equations is discussed. A necessary condition for the exchange of stability of traveling
waves is presented; an unstable eigenmode may bifurcate from the neutral translational mode only
at relative extrema of the wave energy. This paper extends a result from Hamiltonian systems, and
from a few integrable partial differential equations, to a broader class of conservative differential
equations, with particular application to gravity-capillary surface waves.
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1. Introduction

This paper investigates the linear stability of nonlinear traveling waves in dis-
persive evolution equations. It is well known that the derivative of a solution to
a translation-invariant equation is a neutrally stable eigenfunction of the linearized
equation. The question addressed here is under what circumstances may the eigen-
value for this eigenfunction, referred to here as the translational mode, bifurcate from
zero. This type of analysis originated in Hamiltonian systems, where Saffman proved
that the linear stability of traveling waves in a family of waves may only change
at local extrema of the speed-energy curve [1]. More recently, similar results have
been shown for the the Nonlinear Schrödinger (NLS), Korteweg-de Vries (KdV), and
Kadomtsev-Petviashvilli (KP) equations [2, 3]. Here, we extend this result to classes
of one-way and bidirectional conservative, nonlinear, dispersive equations. The result
applies to models for gravity-capillary waves, where the dynamics and stability of soli-
tary waves is of current interest [4, 5]. In the gravity-capillary case, the bifurcation
studied in this paper has been observed numerically [6]. The understanding of this
observed bifurcation was the motivation for this paper.

2. Model equations and solitary waves

Consider the first order in time evolution equation of the form

ηt − iΩη +
1

2
Q∗(PQη)2x = 0. (2.1)

Here, x is the preferred direction of propogation. In this variable, Ω has a real, odd
Fourier symbol; P has a real, even Fourier symbol, and it is self-adjoint. The operator
Q has an arbitrary Fourier symbol; Q∗ is the adjoint operator to Q whose Fourier
multiplier is the complex conjugate of Q̂. Equation (2.1) conserves at least M =

∫

η
and E =

∫

ηPη, and is translation-invariant. For example, when Q = P = 1 and
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792 STABILITY OF DISPERSIVE SOLITARY WAVES

Ω̂ = k3 (where k is the Fourier dual variable to x) equation (2.1) is the KdV equation.
When Ω̂ = sgn(k)k2, it is the (nonlocal) Benjamin-Ono equation. Equations in more
than one spatial dimension are also amenable to the analysis we present. For example,
with Q = P = 1 and Ω̂ = k3 ∓ l2/k (where l is the Fourier dual variable to y), we
get the KP-I and KP-II equations. For deep water gravity-capillary waves one may
derive models using the full dispersion relation Ω̂ = sign(k)

√

|k|(1 + k2); examples of
such models are derived in [6].

We also consider the second order in time model

φtt + Ω2φ + Q∗(PQφt)
2
x = 0, (2.2)

which is also translation-invariant, and conserves at least M2 =
∫

φt and E2 =
∫

φtPφt + φPΩ2φ. The operators Q,P and Ω satisfy the same conditions as in equa-
tion (2.1). The operator Ω2 can thus correspond to any even, real, positive Fourier
multiplier. In the case of deep water gravity-capillary waves, Ω̂2 = |k|(1 + |k|2).

Equ. (2.2) can be factored symmetrically into left and right moving waves.

2u = φt + iΩφ, 2v = φt − iΩφ,

so

φt = u + v, iΩφ = u − v.

In terms of these new variables, equation (2.2) becomes

ut − iΩu +
1

2
Q∗(PQ(u + v))2x = 0, (2.3a)

vt + iΩv +
1

2
Q∗(PQ(u + v))2x = 0. (2.3b)

If, at initial times, the waves are primarily propagating in one direction (for example,
v(x, t) is small, then, depending on Q,P and Ω, these equations may decouple for
long times as in the gravity-capillary case [6]. Neglecting v, equation (2.3a) reduces
to equation (2.1).

The goal of this work is to investigate the stability of finite-amplitude, fully lo-
calized solitary waves (also called lump solutions in higher dimensions). We are
particularly interested in wave-packet type waves: those that bifurcate from linear
wavepackets at a finite wave-number. The equations that support such waves are
usually non-local and non-integrable. Wave-packet solitary waves have been found,
for example, as solutions to the free-surface Euler equations in deep water with surface
tension, and in a few model equations (for two dimensional examples, see [6, 3, 5, 7]).
For Ω̂ = sign

√

|k|(1 + k2), both (2.1) and (2.2) have such solitary wave solutions for
many choices of P and Q. Examples of these waves for one choice of P and Q that
conserves momentum in the fluid (see [6]) are plotted in Fig. 2.1. A diagnostic tool for
the existence of such waves at small amplitude in a particular evolution equation is the
existence of a focusing NLS equation governing wave-packets near the wavenumber
where the group and phase speed are equal [6, 8, 7].

3. Stability of traveling waves

The stability of solitary waves has been of long standing interest [9, 10]. In
previous work, the authors presented three simple one-dimensional one-way models
for infinite depth gravity-capillary waves, together with numerical computations of
their stability and dynamics [6]. It was found that the stability of these waves can
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Fig. 2.1. A depression (left) and an elevation (right) solitary wave solution to equation (2.1),

with Ω = sign(k)
p

|k|(1 + k2), P = |Ω|, and Q = |Ω|−1.

change as the amplitude increases. The purpose of this work is to find a criterion for
the stability change. The authors have proposed models for two dimensional waves
[11], which support lump solutions, and the present analysis applies to those also.

To begin, consider equation (2.1) in the frame of an exact solution moving with
speed c,

ηt − cηx − iΩη +
1

2
Q∗(PQη)2x = 0, (3.1)

and suppose that η̄(x) is a steady solution to (3.1), that is, a traveling solution to
(2.1). Consider perturbations of the form η = η̄ + ǫρ(x)eλt. The linearization of (3.1)
is

λρ − cρx − iΩρ + Q∗(PQη̄PQρ)x = 0. (3.2)

Equ. (3.2) is of the form Lρ = λρ. This equation has the well known solution λ = 0,
ρ(0) = η̄x, due to the translation-invariance of equation (3.1). The goal is now to
understand how this solution behaves in a neighborhood of λ = 0. In particular, we
want to determine when eigenmodes with real nonzero eigenvalues bifurcate from the
translational mode. First, we assume that |λ| ≪ 1 and express ρ as a power series in
λ about ρ(0).

ρ = ρ(0) + λρ(1) + λ2ρ(2) + ... (3.3)

Collecting powers of λ transforms the linear eigenvalue problem into a series of linear
problems with the eigenvalue removed. The leading order equation is the original
linear problem for the zero eigenvalue, which has solution ρ(0) = η̄x. At O(λ), the
leading order solution occurs as an inhomogeneous term in the equation for ρ(1):

Lρ(1) = η̄x. (3.4)

This equation has, as a particular solution, ρ(1) = −∂η̄
∂c

, which can be seen by differ-

entiating equation (3.1) with respect to c. At order O(λ2) the first correction, ρ(1),
forces the equation for ρ(2):

Lρ(2) = −η̄c. (3.5)
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Using the Fredholm alternative, a solvability condition for equation (3.5) is that η̄c is
orthogonal to solutions of the adjoint equation

cvx + iΩv − Q∗P (PQη̄Qvx) = 0. (3.6)

One solution to (3.6) is v = P η̄. The corresponding solvability condition is

∫

η̄cP η̄dx =
1

2

d

dc

∫

ηPη =
1

2

dE

dc
= 0.

We conclude that a necessary condition for the translational eigenmode to become
unstable is that the energy is at a local extremum, as a function of the wave speed.

The same technique can be used to derive stability conditions for second order
in time equations — by factoring into a system of first order in time equations,
and proceeding as before. We consider the second order in time model (2.2) which
conserves M2 =

∫

φt and E2 =
∫

φtPφt + φPΩφ. Rewriting (2.2):

φt = v (3.7a)

vt = −Ω2φ + Q∗(PQv)2x. (3.7b)

Changing to a traveling frame, traveling wave solutions (φ̄, v̄) to (3.7) are now steady
solutions to (3.8).

φt − cφx = v (3.8a)

vt − cvx = −Ω2φ + Q∗(PQv)2x (3.8b)

Linearizing about these solutions, writing (φ, v) = (φ̄, v̄) + δ
(

Φ(x)e(λt), V (x)e(λt)
)

yields

λΦ − cΦx = V (3.9a)

λV − cVx = −Ω2Φ + 2Q∗(PQv̄PQV )x. (3.9b)

As before, equation (3.9) is of the form

A
(

Φ
V

)

= λ

(

Φ
V

)

.

We write both Φ and V as a series in λ, about the translational solution (φ̄x, v̄x)

Φ = φ̄x + λΦ1 + λ2Φ2 + ...

V = v̄x + λV1 + λ2V2 + ...

At O(λ) we get a forced linear system.

A
(

Φ1

V1

)

=

(

φ̄x

v̄x

)

(3.10)

Equ. (3.10) has solution (Φ1, V1) = −(∂φ̄
∂c

, ∂v̄
∂c

). At O(λ2), the solutions (Φ1, V1) force
the equation for (Φ2, V2)

A
(

Φ2

V2

)

= −
(

φ̄c

v̄c

)

. (3.11)
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Fig. 3.1. Left: The real positive eigenvalue for depression waves in equation (2.1), with

Ω = sign(k)
p

|k|(1 + k2), P = (1 − ∂2
x
) and Q = (1 − ∂2

x
)−1, plotted as function of the wave speed.

Right: The energy of depression waves in this equation plotted as a function of the wave speed.
The solution bifurcates from a linear wavepacket at c =

√
2.

For equation (3.11) to have solutions, a necessary condition is that the vector (∂φ̄
∂c

, ∂v̄
∂c

)
is orthogonal to solutions to the adjoint equation

A∗

(

ψ
u

)

=

(

c∂x Ω2

−1 c∂x − 2Q∗P (PQv̄Q∂x)

)(

ψ
u

)

= 0. (3.12)

One solution to (3.12) is (ψ, u) = (PΩ2φ̄, P v̄). The corresponding solvability condition
is

∫

∂v̄

∂c
P v̄ +

∂φ̄

∂c
PΩ2φ̄ =

1

2

d

dc

(
∫

φtPφt + φPΩ2φ

)

=
1

2

dE2

dc
= 0.

This stability condition allows one to understand the linear stability of traveling
waves via the graph of the speed versus the relevant conserved quantity, as in Fig. 3.1
(right). The stability of traveling solitary waves of elevation and depression for two
equations of the form of (2.1) was investigated numerically in [6]. The linear spectra
were computed, and the instabilities were observed via numerical time evolution. For
equation (2.1) with Ω, P,Q as defined in Fig. 2.1 the waves of elevation were unstable
at all amplitudes, and those of depression were stable. However, in an example with
Ω̂ = sign(k)

√

|k|(1 + k2), P̂ = (1 + k2), and Q̂ = (1 + k2)−1, which corresponds to
a model of gravity-capillary waves that conserves exactly the quadratic fluid energy
E = ||u||2H1 =

∫

uPu =
∫

u2 + u2
x, the stability is quite different. Depression waves

have a linear spectrum which is purely imaginary for both small and large amplitude
waves, but waves of intermediate amplitudes have a real positive eigenvalue which
bifurcates from zero at the local extrema of the energy. The unstable eigenvalue for
this example equation is plotted in Fig. 3.1, together with the speed-energy curve.
The long time evolution of this instability is a time-periodic traveling solution, orbiting
the stable state at the energy level of the unstable wave [6].

Note that neither derivation of the stability criterion relies on the whether φ or η
are functions of one or more space dimensions. In this case we assume that Ω̂ is odd
in the vector k (for real η and φ). In two-dimensions, if Ω̂ is odd in k, then it must
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be even in l. If it does not vanish at k = 0 then extra conditions must be imposed on
the initial data’s mean in x, as in KP. There also may be additional conditions on P
and Q that we do not consider.

Examples of two dimensional equations for which our result applies are the KP-I
equation,

ut −
1

6
uxxx +

1

2
∂−1

x uyy +
3

2
uux = 0, (3.13)

which is integrable and for which lumps are always stable, and the fifth-order KP-
equation,

ut +
1

6
uxxx +

1

90
uxxxxx +

1

2
∂−1

x uyy +
3

2
uux = 0, (3.14)

for which lumps seem to have more complicated stability characteristics [3]. Both
apply to a rather unphysical situation of gravity-capillary waves in shallow water
based on the surface tension length scale: the former applies to a regime of B > 1/3
and the latter for B ≈ 1/3, where B is the Bond number [12]. These equations govern
long waves in x with even weaker variation in y, and their linear parts are obtained
by expanding the dispersion relation about k = (kx, ky) = 0. For gravity-capillary
waves on infinite depth, one can also derive a KP-like equation by expanding about
k= (kx, ky) = (1, 0), and imposing some global conditions on the dispersion relation.
The result is

ut +

√
2

4
Hu −

√
2

4
Huxx + ǫ

(√
2

2
Huyy − 3

4
√

2
uux

)

= 0. (3.15)

The operator H is the Hilbert transform in x, whose Fourier symbol is Ĥ = −isign(k).
The forgoing analysis predicts the change of stability of lump solutions to this equa-
tion. An example lump solitary wave solution to equation (3.15) and its speed-energy
plot are in Fig. 3.2. The authors present the derivation of equation (3.15), as well as
stability and dynamics of solitary waves in [13].
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Fig. 3.2. Left: An example of a lump depression wave solution to equation (3.15). Right:
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4. Conclusion

A necessary condition on the bifurcation of unstable eigenvalues for the transla-
tional eigenfunction of traveling waves in one-way and bidirectional classes of disper-
sive nonlinear equations was derived. Bifurcations can occur only at local extrema in
the graph of the speed versus the quadratic conserved quantity. Solitary waves are
computed for an example equation, and the linear stability changes exactly at the
local extremum in the speed-energy plot.

This note focuses on equations with quadratic nonlinearities. One-way and bidi-
rectional equations can be written with nonlinearities of higher degree. The result
can be trivially extended to equations with higher power nonlinearities, for example

ηt + iΩη +
∑

n

anQ∗(PQη)n
x = 0 (4.1)

with an arbitrary constants.
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