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GLOBAL CLASSICAL SOLUTIONS OF THE VLASOV-DARWIN

SYSTEM FOR SMALL INITIAL DATA∗
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Abstract. A global-in-time existence theorem for classical solutions of the Vlasov-Darwin sys-
tem is given under the assumption of smallness of the initial data. Furthermore it is shown that in
case of spherical symmetry the system degenerates to the relativistic Vlasov-Poisson system.
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1. Introduction

Kinetic models play an increasingly important role in todays plasma physics. On
the one hand, much effort has been taken to deepen our analytical understanding of
some problems where no other description seems to be adequate. On the other hand
progress has also been achieved, especially with numerical simulations (see, e.g., [12]).

In the kinetic picture, the particle distribution of a one-species plasma is described
by a time dependent density function f(t,x,p) on phase space. If collisions of the par-
ticles are neglected and a relativistic model is used, then f is subject to the transport
equation

∂tf +v(p) ·∇xf +K(t,x) ·∇pf =0 (1.1)

with force term K =E +v×B. Here E and B denote the electric and the magnetic
field respectively and the relativistic velocity is given by

v(p)=
1

√

1+ |p|2
p. (1.2)

Note that all physical constants such as the speed of light or the rest mass of the
particles have been set equal to unity.

Equation (1.1) is usually called the Vlasov equation. Expressions for the charge
and current densities ρ and j in terms of the phase space density f are given by

ρ(t,x)=

∫

f(t,x,p)dp, j(t,x)=

∫

f(t,x,p)v(p)dp. (1.3)

To obtain a self-consistent closed system one has to take into account how the ensemble
modeled by the density f creates the fields E and B. Usually this is done with the
full system of Maxwell’s equations, but numerical difficulties of simulations of that
system have stimulated a search for alternatives (see [4]). The present paper deals
with what is known as the Darwin approximation. Here the electric field is split into
a transverse and a longitudinal component as follows:

E =EL +ET , ∇×EL =0, ∇·ET =0. (1.4)
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In the evolution part of the Maxwell equations the transverse part of the electric field
is neglected, resulting in

∂tEL−∇×B =−j, ∇·EL =ρ (1.5)

∂tB+∇×ET =0, ∇·B =0. (1.6)

The system consisting of the Equations (1.1) – ,(1.2),(1.3),(1.4),(1.5), and (1.6) is
called the Vlasov-Darwin system. The main feature of this system is that the field
equations are elliptic which in particular facilitates a numerical treatment since a time
integration step, which is needed to solve the Maxwell system can be avoided here
(cf. [12]). The justification of the model seems possible in the case where the particle
velocities are not too fast when compared to the speed of light.

Up to now there are few mathematical results known for this system. In 2003,
Benachour et al. [3] proved an existence theorem for small initial data: this assump-
tion implies global-in-time existence of weak solutions of the Cauchy problem. Later
Pallard [9] removed the smallness assumption and added a result about solvability of
the Cauchy problem in a classical sense: for a given initial datum f0∈C2

c (R6) there
exists T >0 and a classical solution f : [0,T [×R

6→R of the Vlasov-Darwin systems
satisfying f(0)=f0.

In the main part of the paper we present a result which is well known for the
Vlasov-Poisson system (VP), the Relativistic Vlasov-Maxwell system (RVM), and
other related systems such as the Relativistic Vlasov-Poisson system or the spherically
symmetric Vlasov-Einstein system (cf. [1, 2, 7, 11]) but seems to be new for the
Vlasov-Darwin system. We consider classical solutions of the Cauchy problem and
show that these exist for all times if the initial data are chosen to be sufficiently
small. The precise statement of our result is contained in the next section, where we
also formulate three propositions which are used to prove the theorem. Sections 3–6
are devoted to proofs. In section 7 we take a look at spherically symmetric solutions.
First it is shown that any symmetry of the initial datum with respect to an orthogonal
transformation is preserved for all times. This allows the conclusion that in the case
of spherical symmetry, the VD system reduces to the well known relativistic Vlasov-
Poisson system. In this case the solutions are global in time as well [6].

2. Results

Before presenting the main result of the present paper (which is formulated as
the following theorem) we fix some notation. Let R0,P0 >0 be fixed throughout the
paper. For r>0, let Br :=Br(0)={x∈R

3 : |x|<r}. Furthermore we must specify
the set where the initial data are taken from. Let C2

c (Rn) denote the space of twice
continuously differentiable functions on R

n with compact support and

D :={f ∈C2
c (R6) :f ≥0,‖f‖∞≤1,‖∇f‖∞≤1,supp f ⊂BR0

(0)×BP0
(0)}.

The Lebesgue space of square integrable functions is denoted by L2(R3) and
P : L2(R3)→L2(R3) is the projection on the divergence free part, which is discussed
in the Appendix.

If I is an interval and g : I×R
n →R

m, we denote the quantity supx∈Rn |g(t,x)| by
‖g(t)‖∞, and if K ⊂R

n, the expression ‖g(t)‖∞,K means supx∈K |g(t,x)|.

Theorem 2.1. There exists δ >0 such that the classical solution of the VD system
with initial datum f0 in D satisfying ‖f0‖∞≤ δ exists globally in time.
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For the proof of this result the reformulation of the field equations of the VD
system in terms of potentials Φ and A given in [9] is used. Let

∆Φ=ρ, lim
|x|→∞

Φ(t,x)=0, (2.1)

∆A=−P(j), lim
|x|→∞

A(t,x)=0. (2.2)

Then the components of the electromagnetic field are

EL =∇Φ, B =∇×A, ET =−∂tA,

cf. [9, Lem2.3].
The proof of the theorem is given in section 6. Sections 3, 4, 5 contain the proofs

of preliminary results, which are formulated in Propositions 2.3, 2.4 and 2.5. A certain
decay condition plays a prominent role in the following.

Definition 2.2. A classical solution f : [0,T [×R
6→R of the VD system is said to

satisfy a free streaming condition with parameter α on an interval [0,a] if

‖ET (t)‖∞+‖EL(t)‖∞+‖B(t)‖∞≤α(1+ t)−3/2,

‖∇ET (t)‖∞+‖∇EL(t)‖∞+‖∇B(t)‖∞≤α(1+ t)−5/2

for all t∈ [0,a].

As for the RVM, there is a continuation criterion for solutions of the VD system,
which says that solutions may be continued as long as the momentum support {p∈R

3 :
∃x,t : f(t,x,p) 6=0} remains bounded [9]. Using this criterion one can easily show that
a solution which satisfies a condition such as the one above on its maximal interval
of existence is indeed a global one.

We now discuss the main idea of the proof. The task will be to show that the
free streaming condition implies decay of the source terms ρ and j as well as decay of
the fields EL,ET ,B. This will be done in the following two propositions.

Proposition 2.3. There exist α, C1(R0,P0)>0 such that for every solution of the
VD system with f(0)∈D which satisfies a free streaming condition on an interval [0,a]
with parameter α, the following holds

‖ρ(t)‖∞+‖j(t)‖∞≤C1|t|−3, ‖∂xρ(t)‖∞+‖∂xj(t)‖∞≤C1.

Proposition 2.4. There exist α, C2(R0,P0)>0 such that for every solution of the
VD system with f(0)∈D which satisfies a free streaming condition on an interval [0,a]
with parameter α, the following holds for t∈ [1,a]

‖ET (t)‖∞+‖EL(t)‖∞+‖B(t)‖∞≤C2t
−9/5,

‖∇ET (t)‖∞+‖∇EL(t)‖∞+‖∇B(t)‖∞≤C2t
−8/3.

These estimates provide the main ingredient needed for the bootstrap argument
in the proof of the theorem. It follows that a solution satisfying a free streaming
condition decays asymptotically even faster. This is an important point for the global
existence argument. To start this bootstrapping we need a further tool, which is given
in the next proposition. If the initial datum is chosen sufficiently small, then the fields
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remain small for some time. This may be interpreted as a statement about continuous
dependence on initial data.

Proposition 2.5. Let ǫ,T >0 be given. Then there exists δ >0 such that any classical
solution f of the VD system with f(0)∈D and ‖f(0)‖∞≤ δ exists at least up to time
T and is such that

‖EL(t)‖∞+‖ET (t)‖∞+‖B(t)‖∞+‖∇EL(t)‖∞+‖∇ET (t)‖∞+‖∇B(t)‖∞≤ ǫ.

3. Decay of the source terms

For proving Proposition 2.3, we need the following

Lemma 3.1. Let t>0, ξ∈C2([0,t]), ξ(t)= ξ̇(t)=0 and let

|ξ̈(s)|≤ c1(s)+c2(s)|ξ(s)|+c3(s)|ξ̇(s)|

for s∈ [0,t], where c1,c2,c3≥0 are continuous and c3 is monotonically decreasing.
Then

|ξ(s)|≤
(∫ t

s

σc1(σ)dσ

)

e
R t

s
(σc2(σ)+c3(σ))dσ.

Proof. Define z(s) :=
∫ t

s
|ξ̇(τ)|dτ , so that |ξ(s)|≤z(s), ż(s)=−|ξ̇(s)|,z(t)= ż(t)=

0. Obviously

z(s)=

∫ t

s

∣

∣

∣

∣

∫ t

τ

ξ̈(σ)dσ

∣

∣

∣

∣

dτ

≤
∫ t

s

∫ t

τ

|ξ̈(σ)|dσdτ,

so that by our assumptions

z(s) ≤
∫ t

s

∫ t

τ

c1(σ)dσdτ +

∫ t

s

∫ t

τ

c2(σ)z(σ)dσdτ −
∫ t

s

∫ t

τ

c3(σ)ż(σ)dσdτ

=: I1 +I2 +I3.

Changing the order of integration it follows that

I1 =

∫ t

s

∫ σ

s

c1(σ)dτdσ≤
∫ t

s

σc1(σ)dσ

as well as

I2 =

∫ t

s

∫ σ

s

c2(σ)z(σ)dτdσ≤
∫ t

s

σc2(σ)z(σ)dσ.

The integral I3 can be estimated in the following way:

I3≤
∫ t

s

c3(τ)

(

−
∫ t

τ

ż(σ)dσ

)

dτ =

∫ t

s

c3(τ)z(τ)dτ,
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where the monotonicity of c3 was used in the first step and the relation z(t)=0 in the
second.

Hence the function z satisfies the integral inequality

z(s)≤
∫ t

s

σc1(σ)dσ+

∫ t

s

[σc2(σ)+c3(σ)]z(σ)dσ,

so that by Gronwall’s Lemma

|ξ(s)|≤z(s)≤
(∫ t

s

σc1(σ)dσ

)

e
R t

s
[σc2(σ)+c3(σ)]dσ.

Proof. [Proof of Proposition 2.3.] The proof presented here is an adaptation of
the corresponding argument for the Vlasov-Poisson system (cf. [10]). To get decay of
ρ, a change of variables is performed in the integral defining it. The transformation
determinant appearing can be shown to decay fast enough.

Let f be a classical solution of the VD system with f(0)=f◦∈D and denote by
(X(s,t,x,p), P (s,t,x,p)) the corresponding solution of the characteristic system

Ẋ(s,t,x,p)=v(P (s,t,x,p)),

Ṗ (s,t,x,p)=E(X(s,t,x,p),s)+v(P (s,t,x,p))×B(X(s,t,x,p),s)

with initial condition X(t,t,x,p)=x,P (t,t,x,p)=p.
Then we have

f(t,x,p)=f◦(X(0,t,x,p),P (0,t,x,p)).

If |p|≤P0, then by the free streaming condition,

|P (t,0,x,p)|≤P0 +

∫ t

0

(‖E(s)‖∞+‖B(s)‖∞)ds≤P0 +α

∫ t

0

(1+s)−3/2ds≤P0 +2α.

Hence for small enough α we may conclude that |p|≥P0 +1 implies that f(t,x,p)=0.
Define

ξ(s) :=∂pX(s,t,x,p)−(s− t)Dv(p).

We have ξ(t)=0, and using the characteristic system one obtains

ξ̇(s)=Dv(P (s))∂pP (s)−Dv(p).

So ξ̇(t)=0. Differentiating once more, we get

ξ̈(s)=D2v(P (s))Ṗ (s)∂pP (s)+Dv(P (s))∂pṖ (s).

As is easily checked, Dv(p) and D2v(p) are bounded independently of p, so that

|ξ̈(s)|≤C
(

|Ṗ (s)||∂pP (s)|+ |∂pṖ (s)|
)

,

and therefore by the characteristic system

|ξ̈(s)|≤C (|∂pP (s)|(‖E(s)‖∞+‖B(s)‖∞)+(‖∇E(s)‖∞+‖∇B(s)‖∞)|∂pX(s)|) .
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Resubstituting, we have

|∂pX(s)|≤ |ξ(s)+(s− t)Dv(p)|
and

∂pP (s)=(Dv(P (s)))
−1

(ξ̇(s)+Dpv).

Assuming |p|≤P0 +1, we can estimate

|∂pP (s)|≤C(P0)
(

|ξ̇(s)|+1
)

.

Using the free streaming condition, we finally obtain the following second order dif-
ferential inequality for ξ:

|ξ̈(s)|≤C(P0)α
{

(1+s)−3/2 +(t−s)(1+s)−5/2 +(1+s)−3/2|ξ̇(s)|+(1+s)−5/2|ξ(s)|
}

By Lemma 3.1,

|ξ(s)|≤C(P0)α(t−s)eC(P0)α,

where we possibly have to adjust the constant C(P0). In terms of the characteristic
variables this means for α chosen sufficiently small that

|∂pX(0,t,x,p)+ tDv(p)|≤ ǫt,

where ǫ>0 is prescribed such that

|p⊗p|
1+ |p|2 +ǫ

√

1+ |p|2≤β <1 for |p|≤P0 +1.

Here p⊗p denotes the matrix whose (i,j)-entry is pipj . This implies
∣

∣

∣

∣

∣

∂pX(0,t,x,p)+
t

√

1+ |p|2
I

∣

∣

∣

∣

∣

≤ ǫt+

∣

∣

∣

∣

∣

t
√

1+ |p|2
I− tDv(p)

∣

∣

∣

∣

∣

.

By direct computation

Dv(p)=
1

√

1+ |p|2

(

I− p⊗p

1+ |p|2
)

,

hence
∣

∣

∣

∣

∣

∂pX(0,t,x,p)+
t

√

1+ |p|2
I

∣

∣

∣

∣

∣

≤ ǫt+
t

√

1+ |p|2
|p⊗p|
1+ |p|2 <

t
√

1+ |p|2
β.

So the linear map ∂pX(0,t,x,p) is invertible, and in conclusion the transformation
Ψ: BP0+1→R

3,p 7→X(0,t,x,p) is a local diffeomorphism. It is even a diffeomorphism
onto its image, since it is one-to-one as well. Let p,p̄∈BP0+1 be given and pτ :=
τp+(1−τ)p̄. Then

|Ψ(p)−Ψ(p̄)|=
∣

∣

∣

∣

∫ 1

0

∂pX(0,t,x,pτ )(p− p̄)dτ

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ 1

0

[

∂pX(0,t,x,pτ )+
t

√

1+ |pτ |2
I

]

(p− p̄)dτ −
∫ 1

0

t
√

1+ |pτ |2
(p− p̄)dτ

∣

∣

∣

∣

∣

≥ t|p− p̄|
∫ 1

0

1
√

1+ |pτ |2
dτ −βt|p− p̄|

∫ 1

0

1
√

1+ |pτ |2
dτ

≥C(1−β)t|p− p̄|,
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where C depends only on P0.
Denote the open range of Ψ by U and let Φ: U →BP0+1 be its inverse. Calculation

gives

ρ(t,x)=

∫

BP0+1

f(t,x,p)dp

=

∫

Φ(Ψ(BP0+1))

f◦(Ψ(p),P (0,t,x,p))dp

=

∫

Ψ(BP0+1)

f◦(w,P (0,t,x,Φ(w)))|detDΦ(w)|dw.

For the functional determinant showing up here we have by our previous calculations

|detDΦ(w)|= |det[DΨ(Φ(w))]−1|= 1

|detDΨ(Φ(w))| . (3.1)

Note that

detDΨ(p)=det

(

∂pX(0,t,x,p)+
t

√

1+ |p|2
I− t

√

1+ |p|2
I

)

=
t3

(1+ |p|2)3/2
det





√

1+ |p|2
∂pX(0,t,x,p)+ t√

1+|p|2
I

t
−I



.

But for the first matrix in the argument of the determinant we have
∣

∣

∣

∣

∣

∣

√

1+ |p|2
∂pX(0,t,x,p)+ t√

1+|p|2
I

t

∣

∣

∣

∣

∣

∣

≤β <1,

so the absolute value of the determinant is bounded from below by a positive constant
Cβ . Returning to (3.1), it is seen that

|detDΦ(w)|≤ Cβ,P0

t3
,

resulting in

ρ(t,x)≤ CR3
0‖f◦‖∞
t3

.

In addition,

|j(t,x)|≤ρ(t,x)≤ C∗

t3
.

For the bounds to be obtained for ∂xρ and ∂xj, note that

|∂xρ(t,x)|≤C(P0 +1)3‖∂xf(t)‖∞,

|∂xf(t,x,p)|≤C(|∂xX(0,t,x,p)|+ |∂xP (0,t,x,p)|).

Next let ξ(s) :=∂xX(s,t,x,v)−I such that ξ̇(s)=Dv(P (s))∂xP (s). Obviously ξ(t)=
ξ̇(t)=0. Differentiating further one has

|ξ̈(s)|= |D2v(P (s))Ṗ (s,t,x,p)∂xP (s,t,x,p)+Dv(P (s))∂xṖ (s,t,x,p)|
≤αC

(

(1+s)−3/2|∂xP (s,t,x,p)|+(1+s)−5/2|∂xX(s,t,x,p)|
)

,
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where again the decay of the fields due to (almost) free streaming was employed. By
definition

|∂xX(s)≤|ξ(s)|+1 and |∂xP (s)|≤C|ξ̇(s)|

and we may assume |p|≤P0 +1 to discover the relation

|ξ̈(s)|≤Cα
{

(1+s)−5/2|ξ(s)|+(1+s)−3/2|ξ̇(s)|+α(1+s)−5/2
}

,

which by Lemma 3.1 implies

|ξ(s)|≤Cα

∫ t

s

(1+σ)−3/2dσeCα
R t

s
(1+σ)−3/2dσ ≤2Cαe2Cα.

An easy application of Gronwall’s Lemma shows that |ξ̇(s)| is bounded too, which
means

(|∂xX(0,t,x,p)|+ |∂xP (0,t,x,p)|)≤C,

and all claims are proved.

4. Decay of the fields

Proof. [Proof of Proposition 2.4.] First let the constants α and C1 be as given
in Proposition 2.3. We want to get sufficiently good decay rate estimates for the
fields from the field equations, the decay of the source terms, and the free streaming
condition. The field ET is treated first. We have

∆ET =−∂t(∆A)=∂t(Pj)=P(∂tj),

where the last equation, i.e., the commutativity of P and ∂t, is read off directly
from the Fourier representation of the projection operator (compare with (4.1) or the
Appendix.)

The Vlasov Equation, equation (1.1), then implies

∂tj(t,x)=

∫

∂tf(t,x,p)v(p)dp=−
∫

〈v(p),∇xf〉v(p)dp−
∫

v(p)⊗K(t,x,p)∇pfdp.

Here K(t,x,p)=E(t,x)+v(p)×B(t,x). Integration by parts in the last term finally
leads to

∂tj(t,x) = −
∫

divx[f(t,x,p)v(p)⊗v(p)]dp+

∫

I−v⊗v
√

1+p2
f(t,x,p)K(t,x,p)dp

=:G1(t,x)+G2(t,x),

where the divergence appearing is to be understood row-wise.
Writing ET =E1

T +E2
T , where the components of the right hand side are solutions

of ∆E1
T =P(G1) and ∆E2

T =P(G2) respectively, we treat each of them separately.
Recall the Fourier representation of the projection operator P:

PF (x)=

∫

eikx |k|2I−k⊗k

|k|2 F̂ (k)dk, (4.1)

F̂ (k)=(2π)−3

∫

e−ikxF (x)dx (4.2)
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(see the Appendix). The solution of the Poisson equation may then be expressed as

El
T (t,x)=−

∫

eikx |k|2I−k⊗k

|k|4 Ĝl(k)dk, l=1,2.

Introducing M =(M1,M2,M3)=
∫

f(t,x,p)v(p)⊗v(p)dp, it follows that

E1
T (t,x)=

∫

eikx |k2|I−k⊗k

|k|4 Ĝ1(t,k)dk

=
∑

j

∫

eikx |k2|I−k⊗k

|k|4 ikjM̂j(t,k)dk

= i
∑

j

∫

eikxmj(k)M̂j(t,k)dk,

where mj(k)= |k2|I−k⊗k
|k|3

kj

|k| is a function homogeneous of degree -1. The theory of

pseudodifferential operators (see [8, Lem. 2.4]) permits us to make the estimate:

‖E1
T (t)‖∞≤C(‖M‖∞+‖M‖p), 1≤p<3. (4.3)

Note that we also obtain a similar expression for ∇xE1
T (t), where the symbol of the

the operator is now homogeneous of degree 0. Applying the last estimate given in the
proof of Lemma 2.4 in [8] we obtain

‖∇xE1
T (t)‖∞≤C(γ3/p′−2‖∇M‖p +log(γ−1)‖M‖∞+‖M‖q), (4.4)

3<p<∞,1<q <∞. Here the parameter γ is restricted to the interval ]0,1]. Since
‖M(t)‖∞≤‖ρ(t)‖∞≤Ct−3, equation (4.3) implies that with p=5/2,

‖E1
T (t)‖∞≤Ct−9/5.

Using estimates from the proof of Proposition 2.3 and ‖∇M(t)‖∞≤‖∇ρ(t)‖∞≤C it
follows that

‖∇M(t)‖p ≤‖∇M‖
p−1

p
∞ ‖∇M‖1/p

1 ≤C‖∇M‖1/p
1 ≤Ct3/p,

so that setting γ = t−3 in (4.4) we get for t≥1

‖∇E1
T (t)‖∞≤C

(

t−3(1−3/p)+3/p + t−3 logt+ t−3(q−1)
)

≤Ct−8/3,

where the choice p=36, q =17/9 was made.
Now consider ∆E2

T =P(G2). We have

E2
T (t,x)=

∫

eikx |k|2I−k⊗k

|k|4 Ĝ2(t,k)dk =

∫

eikxm−2Ĝ2(t,k)dk,

∂jE
2
T (t,x)= i

∫

eikx |k|2I−k⊗k

|k|3
kj

|k| Ĝ2(t,k)dk =

∫

eikxm−1Ĝ2(t,k)dk.

The symbols mα showing up here are homogeneous of degree α. A simple adaptation
of the proof of (45) in [8] shows that

‖E2
T (t)‖∞≤C(‖G2(t)‖∞+‖G2(t)‖p), 1≤p<3/2, (4.5)
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and as before

‖∂xE2
T (t)‖∞≤C(‖G2(t)‖∞+‖G2(t)‖p), 1≤p<3. (4.6)

Since |G2(t,x)|≤‖K(t)‖∞ρ(t,x), we have

‖G2(t)‖5/4≤C(1+ t)−3/2‖ρ(t)‖1/5
∞ ‖ρ(t)‖4/5

1 ≤ t−21/10

and

‖G2(t)‖5/2≤C(1+ t)−3/2‖ρ(t)‖3/5
∞ ‖ρ(t)‖2/5

1 ≤ t−33/10.

Altogether this implies

‖ET (t)‖∞≤Ct−9/5,

‖∇xET (t)‖∞≤Ct−8/3, t≥1.

Now we come to the other fields. The longitudinal part EL of the electric field is
treated exactly as in the case of the Vlasov-Poisson system (cf. [10]):

‖EL(t)‖∞≤Ct−2,

‖∂xEL(t)‖∞≤Ct−3 logt.

The bounds for the magnetic field B =∇×A field are obtained in a way analogous
to the procedure used so far. First we have a representation

∇A(t,x)=

∫

eikxm−1(k)ĵ(t,k)dk,

with m−1 homogeneous of degree −1. Therefore

‖B(t)‖∞≤‖j(t)‖∞+‖j(t)‖5/2≤Ct−9/5.

In analogy to our treatment of ET we find

‖∇xB(t)‖∞≤C
(

γ3/p′−2‖∇j‖p +log(γ−1)‖j‖∞+‖j‖q

)

, (4.7)

and the proof may be completed as shown before.

5. Continuous dependence

In this section we denote by C a constant depending only on R0,P0, which may
change from line to line. For the proof we first collect some facts.

Let (f,EL,ET ,B) be a solution of the VD system on some time interval [0,T [
with f0 =f(0)∈D. Define

Q(t) :=sup{|p| :∃x,0≤s≤ t : f(t,x,p) 6=0}.

Then we have the following

Lemma 5.1. Let f be a solution with f(0)∈D. Then there holds

‖ρ(t)‖4/3 +‖j(t)‖4/3≤C‖f0‖∞,

‖A(t)‖∞≤C‖f0‖Q(t)1/3,

‖∇A(t)‖∞+‖∇Φ(t)‖∞≤C‖f0‖∞Q(t)5/3.
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To estimate the field ET only a local result is available.

Lemma 5.2. Let f : [0,T ]×R
6→R be a solution with f(0)∈D. Then

‖ET (t)‖∞,BR0+T
≤CR0+T (1+‖ρ(t)‖3)(‖F (t)‖6/5 +‖F (t)‖2),

where F =F1 +F2 with

F1(t,x)=

∫

div(x)(f(t,x,p)v(p)⊗v(p))dp,

F2(t,x)=

∫

I−v(p)⊗v(p)
√

1+ |p|2
f(t,x,p)(EL(t,x)+v(p)×B(t,x))dp.

Detailed proofs of these lemmas are given in Pallard’s paper [9], where the fol-
lowing theorem is also proved.

Theorem 5.3. Let f0∈C2(R6). Then there exists T ∗ >0 and a unique solution
(f,EL,ET ,B) to the Vlasov-Darwin system with f(0)=f0 satisfying

f ∈C1([0,T ∗[×R
3×R

3),

EL,B∈C1([0,T ∗[×R
3),

ET ,∇xET ∈C([0,T ∗[×R
3),

and such that for any t∈ [0,T ∗[ the distribution function f(t,·) is compactly supported.

By inspection of the constants in the proof one finds that a strict lower bound for
T ∗ is given by T ′ := (C‖f0‖2

∞)−1, with a constant C independent of f0, i.e., T ∗ >T ′.
In addition one has

Q(t)≤C(R0,P0) (0≤ t≤T ′). (5.1)

One last ingredient for the proof of Proposition 2.5 is contained in the following.

Lemma 5.4. Let f be a solution and let T ′ be defined as above. Then

‖∇x,pf(t)‖∞≤C(R0,P0) (0≤ t≤T ′).

The proof can again be found in [9]. From the Lemma we immediately deduce
the bounds

‖∇ρ(t)‖∞+‖∇j(t)‖∞≤C, 0≤ t≤T ′.

With these tools at hand we are now ready for the

Proof. [Proof of Proposition 2.5.] Let ǫ,T >0 be given. From the above facts one
immediately finds that the solution interval can be made as long as we wish and that
‖EL(t)‖∞ and ‖B(t)‖∞ can be made as small as necessary by choosing δ sufficiently
small.

It is standard to obtain a bound for ‖∇xEL(t)‖∞ (see [10]), and for ‖∇B(t)‖∞ we
can use equation (4.7) from section 4. By finite propagation speed and since ‖∇j(t)‖∞
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remains bounded for t∈ [0,T ′], we can choose the parameter γ on the right-hand side
of the inequality properly to get the result.

We still have to get control over ‖ET ‖∞ and ‖∇ET ‖∞. From (4.3) and (4.5) we
have the estimate

‖ET (t)‖∞≤C(‖ρ(t)‖∞+‖ρ(t)‖2 +‖G2(t)‖∞+‖G2(t)‖5/4),

where the notation introduced in section 4 is used again. Now

|G2(t,x)|≤
∣

∣

∣

∣

∣

∫

I−v(p)⊗v(p)
√

1+ |p|2
f(t,x,p)K(t,x,p)dp

∣

∣

∣

∣

∣

≤C

∫

|p|≤Q(t)

f(t,x,p)|K(t,x,p)|dp

≤CQ(t)3‖f0‖∞‖K(t)‖∞,BR0+T
χBR0+T

(x),

and since we have bounds for ‖K(t)‖∞,BR0+T
by Lemma 5.2, we get ‖ET (t)‖∞≤ ǫ for

‖f0‖∞ chosen sufficiently small in view of (5.1).

To estimate ‖∇ET (t)‖ we note as in section 4:

‖∇xET (t)‖∞≤C
(

γ3/p′−2‖∇M‖p +log(γ−1)‖M‖∞+‖M‖2 +‖G2(t)‖∞+‖G2(t)‖2

)

,

with 0<γ≤1,3<p<∞. So again each term can be made as small as we wish, and
the proof is complete.

6. Proof of the theorem

Proof. We start by choosing a constant T0 >0 such that for t≥T0 the following
holds:

C2t
−9/5 <α(1+ t)−3/2 and C2t

−8/3 <α(1+ t)−5/2, (6.1)

where α and C2 are the constants given by Proposition 2.4. Proposition 2.5 says that
there exists δ >0 such that a solution of the Vlasov-Darwin system with initial f0∈D
and ‖f0‖∞ <δ satisfies

‖EL(t)‖∞+‖ET (t)‖∞+‖B(t)‖∞+‖∇EL(t)‖∞+‖∇ET (t)‖∞+‖∇B(t)‖∞
<α(1+T0)

−5/2,

for t belonging to [0,T0 +1]. Moreover, it may be assumed that the maximal interval
of existence I =[0,Tmax[ is strictly larger than [0,T0 +1], i.e. T0 +1<Tmax.

If f is a solution as above, then by continuity f satisfies a free streaming condition
with parameter α on an interval [0,T ∗], with T0 <T ∗≤Tmax, and T ∗ may be chosen
maximal with these properties. Because of equation (6.1) we may now conclude with
Proposition 2.4 that

‖EL(t)‖∞+‖ET (t)‖∞+‖B(t)‖∞≤α(1+ t)−3/2,

‖∇EL(t)‖∞+‖∇ET (t)‖∞+‖∇B(t)‖∞≤α(1+ t)−5/2,

for all t∈ I. But this implies that Tmax =∞ and the solution is global.
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7. Spherically symmetric initial data

In the case where the initial datum f◦ is spherically symmetric, which in the
present situation by definition means

f◦(Qx,Qp)=f◦(x,p) ∀x,p∈R
3,Q∈O(3),

the Vlasov-Darwin system reduces to the relativistic Vlasov-Poisson system, as is
shown in the following. First we show that spherical symmetry is preserved.

Lemma 7.1. Let f : [0,T [×R
6→R be a classical solution of the Vlasov-Darwin system

and let f(0) be spherically symmetric. Then f(t) is spherically symmetric for all
0≤ t<T .

Actually we will see that any invariance of the initial datum with respect to an
orthogonal transformation is preserved for all times, which implies at the same time
that e.g. cylindrical symmetry or reflectional symmetries are preserved as well.

Proof. Let Q∈O(3) be given and set f̃(t,x,p) :=f(t,Qx,Qp). It suffices to show
that f̃ solves the Vlasov-Darwin system. One finds

ρ̃(t,x) :=

∫

f̃(t,x,p)dp=ρ(t,Qx),

j̃(t,x) :=

∫

f̃(t,x,p)v(p)dp=Q−1j(t,Qx).

For the potentials Φ̃ and Ã one therefore has

Φ̃(t,x)=Φ(t,Qx),

Ã(t,x)=Q−1A(t,Qx),

as can be seen easily from the Fourier representation of the projection operator P, see
(4.1). This implies that

ẼL(t,x) :=∇Φ̃(t,x)=Q−1EL(t,Qx),

ẼT (t,x) :=−∂tÃ(t,x)=Q−1ET (t,Qx).

We set B̃ :=∇×Ã. Then by Lemma 2.3 in [9] and since

∂tρ̃(t,x)+∇· j̃(t,x)=∂tρ(t,Qx)+∇·j(t,Qx)=0

the quantities (EL,ET ,B) solve the field equation part of the Vlasov-Darwin system.
We have to show that the transport equation (1.1) holds. Consider the term

p×B̃(t,x)=p×(∇×Ã(t,x)). By well known vector identities we can write

p×B̃(t,x)=∇(Ã(t,x)p)−(p ·∇)Ã(t,x))

=

[

(

DÃ(t,x)
)t

−DÃ(t,x)

]

p.

Here D denotes the total derivative with respect to x. Now DÃ(t,x)=
Q−1DA(t,Qx)Q and therefore

Q(p×B̃(t,x))=
[

(DA(t,Qx))
t−DA(t,Qx)

]

Qp

=Qp×B(t,Qx).
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The last equality holds because the forgoing applies equally well to A as to Ã. This
finally leads to (1.1).

We have seen that spherical symmetry is preserved for all times. This includes
that for t∈ [0,T [,Q∈O(3) the following identities hold

ρ(t,Qx)=ρ(t,x),

Φ(t,Qx)=Φ(t,x),

j(t,Qx)=Qj(t,x),

A(t,Qx)=QA(t,x.)

Lemma 7.2. The vector field j is radial.

Proof. In the following the dependence of j on t is suppressed. Let x∈R
3 \{0}

be given and choose a positive orthonormal basis (b1,b2,b3) with b1 = x
|x| . Let Q1,Q2

be orthogonal transformations with matrices

M1 =





−1 0 0
0 −1 0
0 0 1



 , M2 =





−1 0 0
0 1 0
0 0 −1



 ,

with respect to the basis chosen. Let j(x)=
∑

j αjbj . Then

Q1j(x)=−α1b1−α2b2 +α3b3, Q2j(x)=−α1b1 +α2b2−α3b3.

But since Q1j(x)= j(Q1x)= j(−x)= j(Q2x)=Q2j(x) it follows that α2 =α3 =0.

Lemma 7.3. There holds Pj≡0.

Proof. First note, that ∇·j(Qx)=∇·j(x) for all Q∈O(3). Recall the definition
of P:

Pj(x)= j(x)+∇Ψ(x)

where

Ψ(x)=
1

4π

∫ ∇·j(y)

|x−y| dy.

But since the source term ∇·j has rotational symmetry, the foregoing simplifies to

∇Ψ(x)=−
∫ r

0

s2(∇·j)(s)ds
x

r3
, r= |x|.

The integral in the last expression can be transformed to
∫ r

0

s2(∇·j)(s)ds=
1

4π

∫

Br

∇·jdV

=
1

4π

∫

∂Br

jndS

= j(x)nr2.

So

Pj(x)= j(x)+∇Ψ(x)= j(x)−j(x)n
x

r
=0.
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Lemma 7.3 implies that also A(t)=0 for t∈ [0,T [. This immediately leads to
ET =B =0, so that the following proposition is proved.

Proposition 7.4. In the case of a spherically symmetric initial datum f◦, the Vlasov-
Darwin system reduces to the (spherically symmetric) relativistic Vlasov-Poisson sys-
tem (with repelling forces). Hence in this case the solution is global.

The proof of the last statement is given in [6].

Appendix. We start with some remarks about the projection operator
P : L2(R3)→L2(R3), which is defined as follows. For F ∈C1

c (R3;R3), one sets

(PF )(x) = F (x)+∇Φ(x), where

Φ(x) :=
1

4π

∫

(∇·F )(y)

|x−y| dy.

Since −∆Φ=∇·F we clearly obtain ∇·PF =0. Applying the Fourier transform to
these relations it follows that

P̂F (ξ)= F̂ (ξ)+ iΦ̂(ξ)ξ,

Φ̂(ξ)=
i

|ξ|2 ξ · F̂ (ξ),

hence

P̂F (ξ)=

(

I− ξ⊗ξ

|ξ|2
)

F̂ (ξ). (A.1)

Therefore |P̂F (ξ)|≤C|F̂ (ξ)|, so that by the Plancherel Theorem P extends to a con-
tinuous operator on L2(R3) characterized by (A.1).

We conclude with some remarks about the pseudodifferential operators used in
section 4. Such an operator is of the form

Au(x)=
1

(2π)n

∫

A0(ξ)û(ξ)eix·ξdξ, (A.2)

where n is the dimension of the underlying space R
n, the function A0 is called the

symbol of the operator and is chosen from a suitable set of functions, and û is the
Fourier transform of u. We can restrict ourselves to the case that u belongs to the
Schwarz space S(Rn) of rapidly decreasing functions. It is shown, e.g., in [5], that
an operator of the form (A.2) with a symbol A0 homogeneous of degree α>−n, i.e.
A0(tξ)= tαA0(ξ) for t>0,ξ∈R

n, has a representation as an integral operator of the
form

Au(x)=

∫

a0(x−y)u(y)dy,

where a0 is a function homogeneous of degree −α−n. For such a (smooth) function
one clearly has

|a0(y)|≤C|y|−α−n

and this is all one needs to know for the estimates presented here and in [8].
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[4] N. Besse, N. Mauser and E. Sonnendrücker, Numerical approximation of self consistent Vlasov

models for low-frequency electromagnetic phenomena, Int. J. Appl. Math. Comput. Sci.,
17(3), 361–374, 2007.

[5] G.I. Eskin, Boundary Value Problems for Elliptic Pseudodifferential Equations, AMS, Provi-
dence, 1980.

[6] R.T. Glassey and W.A. Strauss, On symmetric solutions of the relativistic Vlasov-Poisson

system, Comm. Math. Phys., 101, 459–473, 1985.
[7] R.T. Glassey and W.A. Strauss, Absence of shocks in an initially dilute collisionless plasma,

Comm. Math. Phys., 113, 191–208, 1987.
[8] S. Klainerman and G. Staffilani, A new approach to study the Vlasov-Maxwell system, Commun.

Pure Appl. Anal., 1(1), 103–125, 2002.
[9] C. Pallard, The initial value problem for the relativistic Vlasov-Darwin system, Int. Mat. Res.

Not., 2006.
[10] G. Rein, Collisionless kinetic equations from astrophysics—the Vlasov-Poisson system, Hand-

book of Differential Equations, Evolutionary Equations, 3, 2007.
[11] G. Rein and A.D. Rendall, Global existence for solutions of the spherically symmetric Vlasov-

Einstein system with small initial data, Comm. Math. Phys., 150, 561–583, 1992.
[12] H. Schmitz and R. Grauer, Darwin-Vlasov simulations of magnetized plasmas,

arXiv:physics/0601220v1, 2006.


