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AN ANALYSIS OF THE DARWIN MODEL OF APPROXIMATION

TO MAXWELL’S EQUATIONS IN 3-D UNBOUNDED DOMAINS∗

CAIXIU LIAO† AND LUNG-AN YING‡

Abstract. In this paper, we derive the Darwin model in 3-D unbounded domains by the
decomposition of the vector fields; then we show that the Darwin model approximates Maxwell’s
equations up to the second order for the magnetic flux density, and to the third order for the electric
field with respect to η = v̄

c
, where v̄ is the characteristic velocity and c is the speed of light.
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1. Introduction

It is known that there are more and more problems involving the solution of
Maxwell’s equations:

1

c2

∂E

∂t
−∇×B=−µJ, (1.1)

∂B

∂t
+∇×E=0, (1.2)

∇·E=
1

ε
ρ, (1.3)

∇·B=0, (1.4)

where E=E(x,t), B=B(x,t) denote the electric field and the magnetic flux density re-
spectively, and ρ=ρ(x,t), J=J(x,t) are the charge and current densities, respectively,
which satisfy the charge conservation equation

∂ρ

∂t
+∇·J=0. (1.5)

The positive constants ε, µ are the electric permittivity and the magnetic permeability
of a vacuum, respectively. They are related by

εµc2 =1.

In many cases, there are many challenges in dealing with Maxwell’s equations
directly and the numerical resolution may be very expensive in terms of the compu-
tational cost. However, for some problems, e.g., the simulation of charged particle
beams when no high frequency phenomenon or no rapid current change occurs, it is
possible to use some simplified model which approximates Maxwell’s equations and
can be solved more economically. The Darwin model is such a simplified model.
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696 DARWIN MODEL IN 3-D UNBOUNDED DOMAINS

In 1992, Degond and Raviart [5] studied the Darwin model in 3-D bounded
simply connected domains. In order to derive the Darwin model, they decomposed
the electric field E into the sum of its transverse component ET and longitudinal
component EL, where ET is divergence free and EL is curl free. The Darwin model
is obtained by neglecting ∂ET

∂t
in (1.1). They denoted ED =ED

T +ED
L and BD as

the resulting Darwin approximation to the electric field and magnetic flux density
respectively. The Darwin model has the following characteristics (see Degond and
Raviart [5]):

(i) ED
L =EL =∇ψ, and ψ satisfies

{
△ψ =

ρ
ε in Ω,

ψ |Γi
=αi, 0≤ i≤m,

(1.6)

where αi,0≤ i≤m, are the solutions of the differential system





m∑
j=0

cij
dαj

dt
= 1

ε

∫
Ω
J ·∇χidx, 0≤ i≤m,

αi(0)=αi0, 0≤ i≤m,

(1.7)

and αi0 depend on the initial value of EL.

Here χi are the solutions of

{
△χi =0 in Ω,

χi |Γj
= δij , 0≤ j≤m,

(1.8)

and cij stand for
∫
Γj

∂χi

∂n
ds.

(ii) BD satisfies

−△BD =µ∇×J in Ω, (1.9)

∇·BD =0 in Ω, (1.10)

BD ·n=B0 ·n on ∂Ω, (1.11)

(∇×BD)×n=µJ×n on ∂Ω. (1.12)

(iii) ED
T satisfies

△ED
T =

∂

∂t
∇×BD, x∈Ω, (1.13)

∇·ED
T =0, x∈Ω, (1.14)

ED
T ×n |∂Ω=0, (1.15)

〈ED
T ·n,1〉∂Ω =0. (1.16)

Here, Γi, 0≤ i≤m are denoted as the connected components of the boundary Γ=∂Ω
with the unit outward normal n, and Γ0 is the outer boundary. The dual pairing
between H− 1

2 (∂Ω) and H
1

2 (∂Ω) is denoted by 〈·,·〉∂Ω.

In 1995, Ciarlet and Zou [6] studied the Darwin model by finite element methods.
They derived the H(curl;Ω) and H(curl,div;Ω) variational formulations for the Dar-
win model in 3-D bounded simply connected domains, and proved the well-posedness
of the variational systems. Nedelec’s and standard finite element methods were used
to solve these two kinds of variational problems.
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A new approach to deriving the Darwin model in open, bounded, simply con-
nected domains Ω⊂R3, with some generalizations, was introduced by Raviart and
Sonnendrücker [8]. Two kinds of boundary conditions were studied, namely, the con-
ditions for the perfect conductor boundary and for the absorbing boundary. The
models in [5] are quasi-static, that is, the equations are elliptic and the coefficients
might depend on the time t. As a result, the initial data in [5] are restricted to a
class of functions. On the contrary, the initial data in [8] are general, so the models
are governed by evolution equations.

The models in [5] in three dimensional exterior domains were studied by Fang
and Ying [3]. Related to the unbounded domains some different spaces were defined
and the corresponding variational formulations were studied. Well-posedness was
proved. The problems were solved by the infinite element method, and some numerical
examples as well as a proof of convergence were provided.

In this paper we study the approximation property of the models in [5, 6, 3] in
three dimensional exterior domains. Being the same as [5] we first derive the Darwin
model by using the decomposition result concerning L2(Ω) in three dimensional un-
bounded domains. Secondly, we scale the Maxwell’s equations, and then we expand
the electric field, the magnetic field and the current density in powers of η. Finally,
we show that the approximation of the Darwin model can be analyzed in terms of the
dimensionless parameter η, and the Darwin model approximates Maxwell’s equations
up to the second order for the magnetic field, and to the third order for the electric
field with respect to η. We consider the perfect conductor boundary only as that in
[5, 6] and [3]. It is an interesting problem whether the results for quasi-static solutions
can be extended to any other boundary conditions, for example the absorbing bound-
ary conditions in [8]. There are some technical difficulties, and this is the subject of
our future study.

The contents of the paper are arranged as follows: we first introduce some nota-
tions in Section 2; in Section 3 we study the decomposition of the vector fields in 3-D
unbounded domains, and we characterize the two parts of the decomposition under
suitable boundary conditions. Using the decomposition, we deduce the Darwin model
in Section 4. Section 5 is devoted to error estimates: we show that the Darwin model
approximates the Maxwell’s equations up to the second order for the magnetic flux
density, and to the third order for the electric field with respect to η, which justifies
the use of the Darwin model when no rapid change occurs in the physical system.

2. Notations and preliminaries

From now on, let Ω be an open domain in R3, and its boundary Γ=∂Ω be
Lipschitz-continuous. When we come to the unbounded problems, we further assume
that the boundary ∂Ω is simply closed. A simply closed curve is a plane curve which is
topologically equivalent to (a homeomorphic image of) the unit circle. We denote the
complementary domain of Ω by Ωc. The unit outward normal to ∂Ω will be denoted
by n. Let x=(x1,x2,x3) be a typical point in R3. We define D(Ω) to be the linear
space of infinitely differentiable functions with compact support on Ω, and let D′(Ω)
be the dual space of D(Ω), often called the space of distributions on Ω.

We introduce some Sobolev spaces (see [4]), L2(Ω), H1(Ω), H1
0 (Ω), H

1

2 (∂Ω), as

well as their vector forms (L2(Ω))3, (H1(Ω))3, (H1
0 (Ω))3, (H

1

2 (∂Ω))3. If there is no
confusion, we use only scalar notation for simplicity. We introduce the inner product
(·,·) and the norm ‖ · ‖0 in L2(Ω). ‖ · ‖1, | · |1 are the norm and seminorm for H1(Ω)
(also for H1

0 (Ω)). Furthermore, let us introduce some spaces needed for discussing
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our problems. For a bounded domain Ω, the most frequently used Hilbert spaces are

H(div;Ω)={v∈ (L2(Ω))3;∇·v∈L2(Ω)},

H(curl;Ω)={v∈ (L2(Ω))3;∇×v∈ (L2(Ω))3},

with their subspaces

H0(div;Ω)={v∈H(div;Ω);v ·n=0on Γ},

H0(curl;Ω)={v∈H(curl;Ω);v×n=0on Γ},

and their intersection space

H(curl,div;Ω)=H(div;Ω)∩H(curl;Ω).

For the spaces H(div;Ω), H(curl;Ω) and H(curl,div;Ω), we define the associated
norms by

‖v‖0,div=(‖v‖2
0 +‖∇·v‖2

0)
1

2 ,

‖v‖0,curl=(‖v‖2
0 +‖∇×v‖2

0)
1

2 ,

‖v‖0,curl,div=(‖v‖2
0 +‖∇·v‖2

0 +‖∇×v‖2
0)

1

2 .

When we come to the exterior problem, the following weighted Sobolev space will
be useful (we might assume the origin o is in the interior of Ωc for simplicity):

H1,∗(Ω)={u∈D′;∇u∈L2(Ω)3,
u

|x|
∈L2(Ω)3},

which is also a Hilbert space [2], provided with the following norm:

‖u‖1,∗={

∫

Ω

|∇u |2 +
u2

|x |2
dx}

1

2 .

Let us denote H
1,∗
0 (Ω) as the closure of C∞

0 (Ω) with respect to the norm | · |1.

3. Decomposition of vector fields in 3-D unbounded domains

We provide the decomposition of the vector fields f∈ (L2(Ω))3 in 3-D unbounded
domains in this section; we have the following result about the decomposition:

Theorem 3.1. Any function f∈ (L2(Ω))3 can be written in the form

f=∇φ+∇×u,

where φ∈H1,∗(Ω) and ∇φ×n |∂Ω=0, u satisfies ∇·u=0, and

u∈B0c ={u∈D′;‖ξu‖0,curl,div <∞,(1−ξ)u∈H
1,∗
0 (Ω),u ·n|Ω =0};

here ξ∈C∞(Ω) is a cutoff function which satisfies: ξ≡1 near the boundary ∂Ω, ξ≡0
near infinity, and 0≤ ξ≤1.
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Proof. First we consider the following problem:




∆χ=0,
χ |∂Ω=1,
lim

|x|→∞
χ=0.

(3.1)

According to Ying [1] pp. 1–3, we know that the problem (3.1) admits a unique
solution in H1,∗(Ω).

Letting f∈ (L2(Ω))3, we consider the following problem:

∆φ=∇· f, (3.2)

φ |∂Ω=

∫
Ω
f ·∇χdx

∫
∂Ω

∂χ
∂n

ds
, (3.3)

lim
|x|→∞

φ=0. (3.4)

According to Ying [1] pp. 13–14, we know that the problem

∫

Ω

∇φ ·∇vdx=

∫

Ω

f ·∇vdx ,∀v∈H
1,∗
0 (Ω) (3.5)

admits a unique solution in H
1,∗
0 (Ω).

From (3.2), we can get ∇·(∇φ− f)=0. Furthermore, we know that ∇φ− f∈

H(div;Ω) and (∇φ− f) ·n |∂Ω∈H− 1

2 (∂Ω).
We take a sequence {fn} such that {fn}→ f in (L2(Ω))3, where {fn}∈C∞(Ω)3

and supp{fn}⊂⊂Ω. From the sequence {fn} we can get a sequence {φn}. We let
Ω1 =Ω∩B(0,R), and supp{fn}⊂B(0,R).

∫

Ω1

∆φnχdx =

∫

∂Ω

(
∂φn

∂n
χ−

∂χ

∂n
φn

)
ds−

∫

∂B(0,R)

(
∂φn

∂n
χ−

∂χ

∂n
φn

)
ds

→

∫

∂Ω

(
∂φn

∂n
χ−

∂χ

∂n
φn

)
ds (R→∞).

(3.6)

∫

Ω1

(∇· fn)χdx = −

∫

Ω1

fn ·∇χdx+

∫

∂Ω

fnχ ·nds+

∫

∂B(0,R)

fnχ ·nds

→ −

∫

Ω

fn ·∇χdx+

∫

∂Ω

fnχ ·nds (R→∞).
(3.7)

Combining (3.6), (3.7) with the fact that
∫

∂Ω
∂χ
∂n

φnds=
∫
Ω
fn ·∇χdx, and letting

n→∞, we can get
∫

∂Ω

(∇φ− f) ·nds=0. (3.8)

(a) Now we consider the function f satisfying: ∇× f=0, f×n |∂Ω=0.

From ∇× f=0, we can get

∇×(∇φ− f)=0. (3.9)
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Combining (3.3) with f×n |∂Ω=0, we can obtain:

(∇φ− f)×n |∂Ω=0. (3.10)

Combining with (3.2), (3.8), (3.9) and (3.10), according to Fang and Ying [3], we
obtain ∇φ− f=0. So f=∇φ.

(b) Now we consider the function f satisfying: ∇· f=0,
∫

∂Ω
f ·nds=0.

We consider the following variational problem (3.11-3.12):

∫

Ω

(∇×u)(∇×v)dx+

∫

Ω

(∇·v)pdx=

∫

Ω

f ·(∇×v)dx, ∀v∈B0c, (3.11)

∫

Ω

(∇·u)qdx=0,∀q∈L2(Ω). (3.12)

According to Fang and Ying [3], the problem (3.11)–(3.12) admits a unique solution
u∈B0c, ∇·u=0, and p=0.

Notice that since p=0, it follows from (3.11) that we can get

∇×(f−∇×u)=0 (3.13)

and

(f−∇×u)×n |∂Ω=0. (3.14)

Applying the result of (i), we obtain f−∇×u=∇φ. From ∇· f=0, combining with
(3.2), we get ∆φ=0.

We take a sequence {χn}∈C∞(Ω) such that {χn}→χ in H1,∗(Ω). According to
inregration by parts, we have

∫

Ω

f ·∇χndx=

∫

∂Ω

f ·χnnds. (3.15)

Combining with
∫

∂Ω
f ·nds=0, and letting n→∞, we can get

∫

Ω

f ·∇χdx=0. (3.16)

Next we extend χ such that χ≡1 for x∈Ωc. According to the extention, we know
that ∇χ=0 in Ωc. So we have

∫

Ω

(∇×u) ·(∇χ)dx=

∫

R3

(∇×u) ·(∇χ)dx. (3.17)

Since χn →χ in H1,∗(Ω) and χn ∈C∞
0 (R3), we have

∫

R3

(∇×u) ·(∇χn)dx=−

∫

R3

∇·(∇×u)χndx=0. (3.18)

Exactly speaking, the formula (3.18) is obtained using Green’s formula in a big enough
ball.
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Letting n→∞, then we can get
∫

R3

(∇×u) ·(∇χ)dx=0. (3.19)

Combining (3.19) with (3.16), we can get

∫

Ω

(f−∇×u) ·(∇χ)dx=0. (3.20)

Therefore, when the function f satisfies ∇· f=0,
∫

∂Ω
f ·nds=0; combining with (3.3),

we have

φ |∂Ω=

∫
Ω

(f−∇×u) ·∇χdx
∫

∂Ω
∂χ
∂n

ds
, (3.21)

i.e., φ |∂Ω=0. Combining with ∆φ=0 and (3.4), we have φ=0. According to
f−∇×u=∇φ, we have f=∇×u.

(c) For the general function f∈ (L2(Ω))3 :

We consider the following problem:

∇·(f−∇φ)=0, (3.22)

∫

∂Ω

(f−∇φ) ·nds=0, (3.23)

where φ is the solution of the problem (3.2)–(3.4).
According to the result of (ii), there exists a unique u such that f−∇φ=∇×u,

where u∈B0c and u satisfies ∇·u=0. So Theorem 3.1 holds.

4. The Darwin model in 3-D unbounded domains

Now we consider Maxwell’s equations (1.1)–(1.4) in Ω×(0,T ) with the following
boundary conditions:

E×n |∂Ω=0, (4.1)

∂

∂t
B ·n |∂Ω=0, (4.2)

and the initial conditions:

E(·,0)=E0, (4.3)

B(·,0)=B0; (4.4)

the initial data E0, B0 satisfy the constraints:

∇·E0 =
ρ0

ε
in Ω, ρ0 =ρ(·,0), (4.5)

∇·B0 =0 in Ω, (4.6)
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E0×n |Γ=0. (4.7)

The well-posedness of the initial boundary value problem of Maxwell’s equations
(1.1)–(1.4), (4.1)–(4.4) was shown in [1].

We define u=

(
E

H

)
; H=(H1,H2,H3)

T is the magnetic field and B=µH.

We first define

A=−i

(
ε−1 0
0 µ−1

)(
0 −∇×
∇× 0

)
.

The space is

D(A)=H0(curl;Ω)×H(curl;Ω).

The initial boundary value problem can be written in the form of

du

dt
+ iAu= f, u(0)=u0, (4.8)

where f=

(
− 1

ε
J

0

)
.

Then we define a weight

w=

(
ε 0
0 µ

)

and a weighted Hilbert space L2
w(Ω) with respect to the inner product (·,·)w =(w·,·)

and norm ‖ · ‖0,w . We choose Hw =L2
w(Ω)3×L2

w(Ω)3; according to [1] p. 57, we know
the operator A :D(A)→Hw is a self-adjoint operator.

We assume that f∈C([0,∞);Hw), the formulation of a weak solution to the prob-
lem (4.8) is: Find u∈C([0,∞);Hw) such that

∫ ∞

0

{(u,−
dϕ

dt
+ iAϕ)w−(f,ϕ)w}dt−(u0,ϕ(·,0))w =0 (4.9)

for all ϕ=

(
ϕ1

ϕ2

)
∈C0([0,∞);D(A))∩C1([0,∞);Hw).

According to Theorem 38 in [1], the problem (4.9) admits a unique solution
u∈C1([0,∞);Hw).

Theorem 4.1. Assume Au0∈Hw and
∫ t

0
‖Af‖0,wdτ <∞; then Au∈L∞((0,T );Hw),

∀T >0.

Proof. The proof is similar to the proof of Theorem 4.1 in [7], so we omit the
details here.

Theorem 4.2. Assume ∇·E0∈L2(Ω), then ∇·E∈L2((0,∞);L2(Ω)).

Proof. We let ϕ2 =0 in the formula (4.9); then the formula (4.9) becomes the
following:

∫ ∞

0

∫

Ω

{−E
∂ϕ1

∂t
−

1

ε
H ·∇×ϕ1}dxdt−

∫

Ω

E0(x) ·ϕ1(x,0)dx=

∫ ∞

0

∫

Ω

−
1

ε
J ·ϕ1dxdt.

(4.10)
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Now we take ϕ1 =∇φ, where φ∈C1([0,∞);C∞
0 (Ω)), then the formula (4.10) turns

to be the following:

∫ ∞

0

∫

Ω

{−E
∂∇φ

∂t
}dxdt−

∫

Ω

E0(x) ·∇φ(x,0)dx=

∫ ∞

0

∫

Ω

−
1

ε
J ·∇φdxdt. (4.11)

From ∇·E0∈L2(Ω) we have ∇·E∈L2((0,∞);L2(Ω)).

Theorem 4.3. Assume ∇·B0∈L2(Ω); then ∇·B∈L2((0,∞);L2(Ω)).
The proof is the same as for Theorem 4.2.

We know Maxwell’s equations (1.1)–(1.4) with the boundary conditions (4.1)–
(4.2) and the initial conditions (4.3)–(4.4) are well-posed. Combining with Theorem
4.1, Theorem 4.2 and Theorem 4.3, we know that there exists a strong solution of
Maxwell’s equations. Now if we neglect ∂ET

∂t
in (1.1), then the approximations ED =

ED
T +ED

L , BD of E, B are the solutions of the following equations:

1

c2

∂ED
L

∂t
−∇×BD =−µJ, (4.12)

∂BD

∂t
+∇×ED

T =0, (4.13)

∇·ED
T =0, (4.14)

∇·ED
L =

ρ

ε
, (4.15)

∇·BD =0, (4.16)

and the boundary conditions satisfy the following:

ED
T ×n |∂Ω=0, (4.17)

ED
L ×n |∂Ω=0, (4.18)

∫

∂Ω

ED
T ·nds=0, (4.19)

BD ·n=B0 ·n. (4.20)

Combining with (4.13), (4.14), (4.17) and (4.19), we know that ED
T satisfies





∇×ED
T =−∂B

D

∂t
,

∇·ED
T =0,

ED
T ×n |∂Ω=0,∫

∂Ω
ED

T ·nds=0.

(4.21)
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From (4.12), combining with the decomposition of the vector fields,

−△BD =µ∇×J (4.22)

and

∇×BD×n |∂Ω=µJ×n. (4.23)

Combining with (4.22), (4.23), (4.16), (4.20), BD satisfies





−△BD =µ0∇×J,

∇·BD =0,

BD ·n=B0 ·n,

∇×BD×n |∂Ω=µ0J×n.

(4.24)

According to ∇×ED
L =0, ED

L ×n |∂Ω=0, there exists a function φ such that ED
L =

∇φ; combining with (4.12), we can see that ∂φ
∂t

is the solution of





∂
∂t
△φ=− 1

ε
∇·J,

φ |∂Ω=−
1

ε

R

Ω
J·∇χdx

R

∂Ω

∂χ
∂n

ds
,

lim
|x|→∞

φ=0.

(4.25)

Combining with the charge conservation equation (1.5) and the hypothesis that
△φ(·,0)= ρ0

ε
, we can obtain the following:





△φ= ρ
ε
,

φ |∂Ω=−
1

ε

R

Ω
J·∇χdx

R

∂Ω

∂χ
∂n

ds
,

lim
|x|→∞

φ=0.
(4.26)

The problem (4.26) is a Poisson equation with Dirichlet boundary condition, so
it is easy to know that the problem (4.26) is well-posed. According to Fang and Ying
[3], the problem (4.21) and the problem (4.24) are well-posed. So after neglecting
∂ET

∂t
in Maxwell’s equation, the problem (4.12)–(4.20) is still well-posed.

5. Error estimates

First we claim that ED
L =EL. In order to explain this result clearly, we introduce

some lemmas first:

Lemma 5.1. Let f∈ (L2(Ω))3. Then ∇×f=0 in Ω, f×n |∂Ω=0 if and only if there
exists a function φ∈H1,∗(Ω) such that f=∇φ; moreover, the function φ satisfies
(3.2–3.4).

Proof. The sufficiency is obvious, and the necessity follows by Theorem 3.1 (i).

Lemma 5.2. Let f∈ (L2(Ω))3. Then ∇·f=0 in Ω,
∫

∂Ω
f ·nds=0 if and only if there

exists a function u such that f=∇×u, where u∈B0c and ∇·u=0.

Proof. The sufficiency is obvious, and the necessity follows by Theorem 3.1 (ii).
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Next we introduce the following subspaces of the space L2(Ω)3.

L1 ={f∈L2(Ω)3;∇· f=0,

∫

∂Ω

f ·nds=0},

L2 ={f∈L2(Ω)3;∇× f=0, f×n |∂Ω=0}.

Theorem 5.3. Assume that the domain Ω is 3-dimensional and unbounded; then we
have the following decomposition of the space L2(Ω)3: L2(Ω)3 =L1⊕L2.

Proof. We let

L̃1 ={∇×u;u∈B0c,∇·u=0},

L̃2 ={∇φ,φ∈H1,∗(Ω);φ satisfying (3.2)−−(3.4)}.

Use Green’s formula:
∫

Ω

(∇×u) ·∇φdx=

∫

Γ

(n×u) ·∇φds=

∫

Γ

u ·(∇φ×n)ds=0.

We know that L̃1, L̃2 are orthogonal subspaces of L2(Ω)3; according to the decompo-

sition of the vector fields, we know that L2(Ω)3 = L̃1⊕ L̃2.

Furthermore, according to Lemma 5.1 and Lemma 5.2, we know L̃1 =L1, L̃2 =L2,

so L2(Ω)3 =L1⊕L2.

Theorem 5.4. Assume ED
L (·,0)=E0L; then we have ED

L =EL.

Proof. Comparing (1.1) with (4.12), we have

µJ =∇×B−
1

c2

∂ET

∂t
−

1

c2

∂EL

∂t
=∇×BD−

1

c2

∂ED
L

∂t
.

We find that ∇×B− 1
c2

∂ET

∂t
, ∇×BD ∈L1, and 1

c2

∂EL

∂t
, 1

c2

∂E
D
L

∂t
∈L2.

Using the uniqueness of the decomposition of vector fields given by Theorem 5.3,

we know
∂E

D
L

∂t
= ∂EL

∂t
. Combining with ED

L (·,0)=E0L, we have ED
L =EL.

We know already that ED
L =EL; it remains to evaluate the errors ED

T −ET and
BD−B.

We introduce

l̄ = characteristic length,
t̄ = characteristic time,
v̄ = l̄

t̄
= characteristic velocity,

ρ̄,J̄ = characteristic charge and current densities,
Ē = characteristic electric strengths,
B̄ = characteristic magnetic strengths,

and we set

x= l̄x′, t= t̄t′, ρ= ρ̄ρ′ J= J̄J′, E= ĒE′, B= B̄B′.
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We assume that the characteristic velocity v̄ is small compared with the light velocity
c; then Maxwell’s equations (1.1)–(1.4) become the following:





v̄
c2

Ē
B̄

∂E
′

∂t′
−∇′×B′ =−µ J̄ l̄

B̄
J′,

v̄ B̄
Ē

∂B
′

∂t′
+∇′×E′ =0,

ε Ē
l̄ρ
∇′ ·E′ =ρ′,

∇′ ·B′ =0.

(5.1)

The charge conservation equation becomes

ρ̄v̄

J̄

∂ρ′

∂t′
+∇′ ·J′ =0.

Now given l̄, t̄ and ρ̄, we choose Ē such that ε Ē
l̄ρ̄

=1, and J̄ , B̄ so that J̄
ρ̄

= c,

Ē
B̄

= c. Here we set η = v̄
c
, and dropping the primes for simplicity, Maxwell’s equations

can be written in dimensionless variables as the following:

η
∂E

∂t
−∇×B=−J, (5.2)

η
∂B

∂t
+∇×E=0, (5.3)

∇·E=ρ, (5.4)

∇·B=0. (5.5)

The charge conservation equation turns to be the following:

η
∂ρ

∂t
+∇·J=0, (5.6)

with the boundary conditions:

E×n |Γ=0, (5.7)

∂

∂t
B ·n |Γ =0, (5.8)

and with the initial conditions:

E(·,0)=E0, (5.9)

B(·,0)=B0, (5.10)

where E0, B0 satisfy the following:




∇·E0 =ρ0,

∇·B0 =0,
E0×n |Γ=0.

(5.11)
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According to ∇×EL =0, EL×n |Γ=0, ∇·EL =ρ, we can get that there exists a
function φ∈H1,∗(Ω) such that EL =∇φ, where φ satisfies the following:





△φ=ρ,

φ |∂Ω=−
1

η

R

Ω
J·∇χdx

R

∂Ω

∂χ
∂n

ds
,

lim
|x|→∞

φ=0.

(5.12)

From now on, we assume that η is a very small parameter. We expand the fields
E, B in powers of η.

E=E0 +ηE1 +η2E2 + ···+o(ηk+1), (5.13)

B=B0 +ηB1 +η2B2 + ···+o(ηk+1). (5.14)

We further assume that ρ is independent of η, and J satisfies the following:

J=J0 +ηJ1. (5.15)

From the charge conservation equation η ∂ρ
∂t

+∇·J=0, we know that

∇·J0 =0 (5.16)

and

∂ρ

∂t
+∇·J1 =0. (5.17)

We replace (5.2)-(5.5) by E,B,J′s expansions (5.13), (5.14), (5.15); then we can
obtain formally that Ek and Bk satisfy the following equations:

(i) o(η0) terms:

∇×B0 =J0, (5.18)

∇×E0 =0, (5.19)

∇·E0 =ρ, (5.20)

∇·B0 =0. (5.21)

(ii)o(η1) terms:

∂E0

∂t
−∇×B1 =−J1, (5.22)

∂B0

∂t
+∇×E1 =0, (5.23)

∇·E1 =0, (5.24)
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∇·B1 =0. (5.25)

(iii)o(ηk) terms, k≥2:

∂Ek−1

∂t
−∇×Bk =0, (5.26)

∂Bk−1

∂t
+∇×Ek =0, (5.27)

∇·Ek =0, (5.28)

∇·Bk =0. (5.29)

Similarly, we deduce the following from the boundary condition:

Ek×n |∂Ω=0, k≥0. (5.30)

We suppose that B0 is independent of η; then we have

B0 ·n=B0 ·n, (5.31)

Bk ·n=0,k≥1. (5.32)

We assume

E0(·,0)=E0L =∇φ0. (5.33)

Theorem 5.5. Assume that the domain Ω is 3-dimensional and unbounded, J0

satisfies (5.16) and
∫

∂Ω
J0 ·nds=0, J1 satisfies (5.17); then we have E0 =EL.

Proof. From ∇×E0 =0, we know there exists φ0 such that E0 =∇φ0. According to
(5.22), arguing as before, we know that (E0 =∇φ0,B1) is the solution of the equations
(5.19), (5.22), (5.25), (5.30) for k=0 and (5.32) for k=1.

Moreover, combining with (5.17), we know that φ0 =φ0(·,t) satisfies





∂
∂t

(−△φ0 +ρ)=0,
∂φ0

∂t
|∂Ω=−

R

Ω
J
1·∇χdx

R

∂Ω

∂χ
∂n

ds
,

lim
|x|→∞

φ0 =0.

(5.34)

If we assume φ0(·,0) satisfying △φ0(·,0)=ρ(·,0), we can get ∇·E0 =ρ, i.e., φ0

satisfies

△φ0 =ρ. (5.35)

On the other hand, from ∇·J0 =0,
∫

∂Ω
J0 ·nds=0 we have

∫

Ω

J0 ·∇χdx=−

∫

Ω

∇·J0χdx+

∫

∂Ω

J0 ·nχds=0.
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Since J=J0 +ηJ1, we have the following:
∫

Ω

J1 ·∇χdx=
1

η

∫

Ω

J ·∇χdx. (5.36)

Combining with (5.34), (5.35), (5.36), we know φ0 coincides with the solution of
(5.12), i.e., E0 =EL.

Now let us consider the Darwin model in scaled variables




η
∂E

D
L

∂t
−∇×BD =−J,

η ∂B
D

∂t
+∇×ED

T =0,

∇·ED
L =ρ,

∇·ED
T =0,

∇×ED
L =0,

∇·BD =0,

(5.37)

provided with the boundary condition (4.17–4.20) and the initial condition
ED

L (·,0)=E0L.

Theorem 5.6. Assume the hypotheses of Theorem 5.5; then we have ED
L =E0, ED

T =
ηE1 +η2E2, BD =B0 +ηB1.

Proof. We have proved that ED
L =EL =E0.

Now we consider ẼD
T =ηE1 +η2E2, B̃D =B0 +ηB1. Using (5.18)–(5.29), we can check

that (EL,ẼD
T ,B̃D) is indeed a solution of the equations (5.37). Moreover, it satis-

fies the boundary condition (4.17)–(4.20) and the initial condition ED
L (·,0)=E0L by

(5.30)–(5.32) and (5.33) respectively. According to the well-posedness of the Dar-

win model in Fang and Ying [3], we know that ED
T = ẼD

T , BD = B̃D. Hence ED
L =E0,

ED
T =ηE1 +η2E2, BD =B0 +ηB1 holds.

Theorem 5.7. Assume that the hypotheses of Theorem 5.6 hold; then we have the
following error estimates: ‖E−ED ‖0,Ω≤Cη3 and ‖B−BD ‖0,Ω≤Cη2.

The proof of the theorem is obvious.

Acknowledgement.We are grateful to the referees for their detailed comments
to improve the paper, in particular their calling our attention to the paper by Raviart
and Sonnendrücker.
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